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ABSTRACT

This paper demonstrates how objects can be recognized, recon-
structed, and localized within a 3D map, using observations and
matching of SIFT features in keyframes. The keyframes arise as
part of a frame-rate process of parallel camera tracking and map-
ping, in which the keyframe camera poses and 3D map points are
refined using bundle adjustment. The object reconstruction process
runs independently, and in parallel to, the tracking and mapping
processes. Detected objects are automatically labelled on the user’s
display using predefined annotations. The annotations are also used
to highlight areas of interest upon the objects to the user.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—; I.4.8 [Scene Analysis]:
Object Recognition—Tracking

1 INTRODUCTION

In this paper, we describe a method to allow users of a wearable
augmented reality system to view AR constructs not only at lo-
cations of interest, but on objects of interest. A modification of
Klein’s parallel tracking and mapping (PTAM) method [4] that al-
lows a user to create and traverse multiple maps is used for camera
tracking and mapping [2]. The parallel tracking and multiple map-
ping system (PTAMM) is combined with a method based on feature
descriptors to allow simultaneous recognition, reconstruction, and
localization of objects within 3D maps.

The camera is tracked from frame-to-frame over the short term,
and its pose, along with the positions of the 3D map points, op-
timally recovered at keyframes using bundle adjustment. At the
same time, known planar objects are detected and recognized using
Lowe’s SIFT descriptors [5], and are located by optimizing their
3D structure by triangulation, with the keyframe camera poses de-
termined by bundle adjustment used as fixed quantities. The objects
used here are planar, but planarity is imposed after, not during, re-
construction. There is almost no object modelling involved, with
the method requiring only an image of the object to function.

2 OBJECT DETECTION IN KEYFRAMES

The object detection, recognition and localization process runs in a
separate thread from the tracking and mapping threads, allowing it
to be all but independent from the rest of the system. The process
uses the keyframes from the mapping process to find objects, and
its outputs are augmentations to the 3D map and do not influence
the map’s evolution.

2.1 Object database entries

To recognize objects a database of known objects is required. This
is constructed using frontal images of the objects of interest. After
correcting for radial distortion, SIFT keypoint descriptors σi and
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their positions xi are computed following Lowe’s method [5]. The
j-th database entry becomes

Oj = { Ij , {σi
j , x

i
j}i=1...Ij , {xm

Bj}m=1...Mj , (1)

{xn
ARj , “AR-markup”}n=1...Nj }

containing the frontal image Ij of the object, the list of SIFT de-
scriptors σi

j and their image locations xi
j , the locations of several

boundary points xm
Bj to define the object extent, and lastly a number

of positions xn
ARj tagged with graphical annotations.

2.2 Object detection and recognition

While running on-line, once a keyframe k has been selected for
processing (described later), SIFT descriptors and their locations
(σl

k, xl
k, l = 1...Lk) are extracted from its associated image. These

keypoints are stored in the keyframe structure.
The keypoint descriptors are compared with those in the database

using Beis and Lowe’s approximate best-bin-first modification of
kd-trees [1], which provides faster look-up than linear search. If
the number of keypoints matched between the keyframe image and
any given object’s database entry exceeds a threshold, that object is
flagged as potentially visible. However, because of repeated struc-
ture or other scene similarity, some of the features may be incor-
rectly matched. Here the object’s planarity is exploited to remove
outliers, by using RANSAC to estimate the homography between
the database feature positions and the keyframe feature positions,
xj = Hxk, and inferring that the object is indeed visible if the con-
sensus set of inliers is large enough. The inliers are added to a list
of observations for their particular database keypoint, for use in the
localization process. The homography itself is discarded.

2.3 Keyframe selection

To triangulate a keypoint in 3D it needs to be observed in at least
two keyframes. As the recognition process runs independently from
the mapping process any keyframe could be selected and processed.

To enable the most efficient processing of keyframes for timely
presentation of information, keyframes are selected in pairs in the
following manner: the first processed is that keyframe whose po-
sition and orientation are closest to the current camera’s; and the
second is the keyframe that is most similar to the first.

To assist the search for this pair, whenever a keyframe is added
to the map, the keyframe in the map that is most similar is recorded.
This becomes its parent, and the parent also records that this new
keyframe is a child, forming a bidirectional tree. The similarity
measure used is the number of map points the two keyframes have
in common. This bidirectional tree allows all of the most similar
frames to be quickly located for any particular frame.

3 OBJECT RECONSTRUCTION AND LOCALIZATION

Once an object has been found visible in two or more keyframes,
there will be a subset of object keypoints that were observed in two
or more of the keyframes. First their scene positions are recon-
structed quite generally, and only then are they fitted to the under-
lying shape of the model to obtain the position and orientation of
the object in the scene.



3.1 Keypoint triangulation
A keypoint is triangulated by treating the keyframe poses as fixed,
as PTAMM’s bundle adjustment has already optimized them. With
just two views the usual algebraic residual is minimized [3]. Up to
scale, the two observations of the homogeneous scene point X are
x1 = P1X , and x2 = P2X , where the projection matrix for each
view P1,2 = K[R1,2|t1,2] is known. Combining these,

AX =

264 x1p13 − p11

y1p13 − p12

x2p23 − p21

y2p23 − p22

375 X = 0 (2)

where pij is the j-th row of Pi, and the residual is minimized when
X is, up to scale, the column of V corresponding to the smallest
singular value in the SVD UDV> ← A. As more observations are
added, Levenberg-Marquardt (LM) is used to minimize error in the
image, and the inhomogeneous X is estimated so as to minimize
the L2 norm of errors in the image

X = arg min
X∗

(X
k

||xk − xp (X∗, Pk) ||2

)
(3)

where xk is the (inhomogenous) observation in keyframe k and
xp() is the predicted image position. When the map is adjusted the
keyframes may move. This is handled by checking for a change in
keyframe poses and rerunning LM for the affected objects.

3.2 Plane fitting
Once at least three keypoints have been localized a plane is fitted to
them using RANSAC to expose outlying data. For the inlying set,
the mean and covariance

µ =
1

n

nX
i=1

Xi C =

nX
i=1

(Xi − µ)(Xi − µ)> (4)

are computed. The plane normal n̂ is the column of U correspond-
ing to the smallest eigenvalue in Λ from the eigendecomposition
UΛU> ← C . The inliers are now projected onto the plane,

X′
i = Xi − n̂(n̂ · (Xi − µ)), (5)

and these in-plane point locations are now used to locate the object
on the plane. The optimized locations of the keypoints found by the
bundle adjustment process are left unchanged.

3.3 Object fitting
The final stage is to fit the database keypoint locations xi to those
on the located plane X′

i. Then the boundary points of the object
can be found in 3D.

For n iterations, where here n = 100, two of the projected in-
lier points X′

i are selected at random to act as scaling and rota-
tion reference points. The database keypoints of the inlier set are
transformed from the image plane of the object to the estimated 3D
plane, relative to the two projected inlier points. The pair that result
in the minimum distance between points are accepted as the best
match. The boundary points xB are then found relative to the best
pair of in-plane points, and saved as additional data with the map.
The same is also done for any AR annotations xAR located on the
object. The object can now be used in the AR rendering process.

4 RESULTS

The system has been implemented in C++, and runs under Linux
on a 2.20 GHz Intel Dual Core processor. It is used here to identify
paintings in a gallery, using a database of 37 paintings with some
75 000 features. PTAMM’s multiple-map capability is used, with

Figure 1: 11 paintings located within the 3 gallery maps. The bidirec-
tional tree connecting the keyframes can also be seen.

Figure 2: The detected paintings are automatically labelled.

separate maps made along each of three walls with paintings, and
the relocalizer used to switch between them. 3D views of the three
maps are shown Fig. 1. In each of these the detected paintings,
keyframes, and the tree structure linking the keyframes is shown.
As the maps are created, the paintings are detected, localized and
labelled for the user with two examples shown in Fig. 2.

5 CONCLUSION

This paper has shown how objects can be recognized and their
shape reconstructed and localized within a 3D map using obser-
vation and matching of SIFT features between keyframes. Only
a single image is required, greatly simplifying the modelling pro-
cess. Using the dense and well spaced keyframes generated by the
underlying mapping process allows the mapped environment to be
thoroughly searched for known objects. The object detection pro-
cess runs independently, and in parallel to, the mapping and track-
ing processes providing the 3D location of detected objects within a
map. Automatic labelling of objects allows a user to freely explore
an environment while being presented with relevant information.
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