
Panoramic Mapping on Mobile Phone GPUs

Georg Reinisch∗

Supervised by: Clemens Arth†

Institute of Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

Creating panoramic images in real-time is an expensive
operation for mobile devices. Depending on the size of
the camera image the mapping of individual pixels into
the panoramic image is one of the most time consuming
parts. This part is the main focus in this paper and will be
discussed in detail. To speed things up and to allow larger
images the pixel-mapping process is transferred from the
Central Processing Unit (CPU) to the Graphics Processing
Unit (GPU). The independence of pixels being projected
on the panoramic image allows OpenGL shaders to do
the mapping very efficiently. Different approaches of the
pixel-mapping process are demonstrated and confronted
with an existing solution. The application is implemented
for Android phones and works fluently on current genera-
tion devices.

Keywords: Mobile Phone, GPU, OpenGL, Panoramic
Image, Augmented Reality

1 Introduction

In the literature, different kinds of techniques are proposed
for the purpose of generating panoramic images. For the
creation of such panoramic images out of several regu-
lar photographs, images that are composed and aligned
using stitching or image mosaic algorithms are required
[13][14]. Most of the recent approaches that generate
panoramic images do this in an offline process [12][14].

For AR purposes, Wagner et al. created a method that
captures an image with the camera of a mobile phone and
maps it onto the panoramic image in real-time [15]. The
approach takes the camera live preview feed as input and
continuously extends the panoramic image, while the ro-
tational parameters of the camera motion are estimated.

Since the existing real-time panoramic mapper and
tracker solely works on the CPU, it can only handle a small
image resolution. Increasing the size of the camera image
has a significant and adverse impact on the render speed of
the mapping process. Therefore, the application is accel-
erated by only mapping new pixels to keep the number of

∗georg.reinisch@student.tugraz.at
†arth@icg.tugraz.at

pixels to map as low as possible. A downside of Wagner’s
approach is that it eliminates the chance of blending pixels
to cover seams generated by brightness differences.

In this work we complement the CPU-based rendering
approach by Wagner et al. with a GPU-based implemen-
tation to transfer computational costs from the CPU to the
GPU. The advantages of this GPU-mapping approach are
on the one hand the parallel processing of pixels and on
the other hand the efficient way of improving the image
quality. In this work, methods are discussed for reducing
or eliminating seams and artifacts generated by mapping
camera images of different brightnesses.

The approaches for improving the image quality are
tested with regard to the general impression of the
outcome, the tracking quality of the newly generated
panoramic image and the render speed. The results are in-
terpreted and compared with results of the CPU-mapping.
In terms of speed, significantly larger panoramic image
sizes are tested. To enhance the user-friendliness of taking
panoramic images, a wiping function is added that allows
the user to remove unwanted areas of the panoramic image
and remap them again.

2 Related Work

For aligning images several approaches exist that are suit-
able for different types of cases. A tracking method de-
scribed by Lowe [9] that searches for scale invariant key
points (SIFT), is used in several offline approaches. Most
existing approaches for panoramic imaging or creating im-
age mosaics work offline [3, 12, 14].

Adam et al. in [1] discuss a method in which the succes-
sive images of a camera’s view finder are aligned online
and in real-time. However this method does not permit to
create closed 360 degree images and to track the 3D mo-
tion of the phone. In [16] the viewfinder algorithm is used
for tracking the camera motion to create high resolution
panoramic images. The whole approach itself does not
run in real-time and requires offline processing.

Baudisch et al. in [2] generate a low resolution real-time
preview while shooting the panoramic image. Similar to
the approach described in this paper, the preview is used
to avoid missing to capture relevant areas or that relevant
areas disappear when cropping the panoramic image to its

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

rectangular shape.
A similar real-time tracking method as in [15] is de-

scribed by DiVerdi et al. in [5]. The system called Envisor
is capable of creating environment maps online. For refin-
ing optical flow measurements DiVerdi et al. use landmark
tracking, which requires extensive GPU resources for real-
time processing and does not run on mobile phones.

GPU-acceleration: López et al. developed a docu-
ment panorama builder, which takes several low resolu-
tion viewfinder images from a video of a document for
interactively creating an image mosaic that reduces blurry
artifacts [7]. Pulli et al. warp their images via spherical
mapping calculated on the GPU [10]. Since López et al.
and Pulli et al. used OpenGL ES 1.1 they are not able to
have the flexibility of programmable shader, but still point
out to gain speed for parallelizing the processes.

An approach that creates spherical image mosaics in
real-time using graphics processors for faster computation
is discussed by Lovegrove et al. [8]. However this ap-
proach does not run on mobile phones in real-time, since
the computational power of handheld devices is very lim-
ited.

Image Refinement: Removing the seams of panoramic
images that occur if two images with different illumination
are stitched together is a widely discussed topic. Despite
all the offline approaches, no image refinement approach
has been found that completely removes seams and ghost-
ing artifacts and runs in real-time, especially not on mobile
phones. Additionally most of the approaches use all cap-
tured images for refining the panoramic outcome, which
requires a lot of memory and is hard to realize for achiev-
ing real-time frame rates.

The real-time approach described by Lovegrove et al.
[8] sums up the pixels’ color values and divides them
through the number of times the pixel has been mapped.

Pulli et al. in [10] use a fast image cloning approach
for transition smoothing based on [6], which runs in real-
time for desktop-GPUs and delivers seamless results, but
cannot be computed online on mobile phones.

As an extension to the approach of Wagner et al.
[15], Degendorfer [4] implemented a brightness correction
method to enhance the image quality with an extended dy-
namic range. The strength of the seams is reduced, but
they are not eliminated completely.

In summary, all approaches mentioned are either not
running in real-time on mobile phones or cannot eliminate
artifacts such as ghosting or brightness seams completely.

3 Panoramic Mapping and Tracking

The tracking approach used for this work was taken from
Wagner et al. [15]. The main advantage of this tracker is
that it combines the panoramic mapping and orientation
tracking on the same data set on mobile phones in real-
time. Wagner’s approach runs at 30Hz on current mobile
phones and is used for various applications, such as the

Figure 1: Projection of the camera image on the cylindric
map. [15]

creation of panoramic images, offline browsing of panora-
mas, visual enhancements through environment mapping
and outdoor Augmented Reality.

In the following, the tracking and mapping approach by
Wagner et al. is described in more detail.

Panoramic Tracking: To estimate the location of the
current camera image for the mapping process, the new
image has to be tracked accurately. Therefore the FAST
corner detector [11] for feature point extraction is used,
ranking the feature points found by strength. To get a valid
tracking result, the number of the corner points must ex-
ceed a given threshold.

For the tracking process a motion model is used, which
estimates the new orientation of the camera in a new
frame. The difference in orientation between the currently
mapped camera image and the previous one is used to cal-
culate the direction and velocity of the camera. Using the
estimated orientation, the current frame extents are pro-
jected back onto the map and the key points in the area are
extracted. Backwards-mapping them into the camera im-
age eliminates the key points that are projected outside of
it. As a support area of a feature point, 8x8 pixel patches
are used and are warped back such that they correspond
to the camera image. On success, the rotation matrix ac-
quired is used in the mapping process to project the current
camera image onto the map.

Panoramic Mapping: As a mapping surface, a cylin-
der is chosen. The panoramic map is split up into a reg-
ular grid of 32x8 cells, which simplifies the handling of
an unfinished map. During the mapping process the cells
get filled with mapped pixels. As soon as a cell is com-
pletely mapped it is marked as completed, down-sampled
to a lower resolution and key points are extracted for track-
ing purposes.

For mapping the camera image onto the cylinder pure
rotational movement is assumed and therefore 3DOF are
left to estimate the correct projection of the camera image.
The rotation matrix calculated by the tracker is used to
project the camera frame onto the map. The corner pixel
coordinates of the camera image are forward-mapped into
map space and the put up area by the frame represents the
estimated location of the new camera image.

Since forward mapping the pixels from the camera

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

frame to the estimated location on the cylinder can cause
artifacts, the camera pixel data has to be backwards-
mapped. Even though the mapped camera frame repre-
sents an almost pixel-accurate mask, pixel holes or over-
drawing of pixels can occur. Mapping each pixel of this
projection would generate a calculation overload since for
a 320x240 pixel image more than 75,000 pixels have to
be mapped. By reducing the mapping area to the newly
mapped pixels (only those pixels where no image data
is available), the computational power is reduced signif-
icantly.

4 GPU Shader Implementation

Since the development of OpenGL ES 2.0 the programmer
has more control of rendering a scene. Especially for gen-
eral purpose GPU applications it is very useful to be able
to access each vertex and fragment in a respective shader
program. During the mapping process several parts can be
parallelized and hence they are ideal to calculate on the
GPU. Since the mapping is completely independent for
each individual pixel, the idea of this paper is to compute
this part in a shader-program on the GPU. The possibil-
ity to use shader for image processing allows to perform
approaches that are extremly costly to compute on CPUs,
however can be realized with little computational effort
on the GPU. Such approaches with regard to the mapping
process are for example image refinement methods that re-
quire pixel blending, clearing certain areas or enlarging the
amount of pixels to be rendered.

For blending pixels, information about the current
panoramic image is required. Therefore a render-to-
texture approach using two framebuffers has been chosen
and a common method also known as "ping-pong tech-
nique" has been applied.

The vertex shader is used to map the panoramic texture
coordinates on the respective vertices of a plane. The tex-
ture coordinates between the vertices are interpolated and
passed on to the fragment shader, where each fragment can
be manipulated and written to its coordinate in the frame-
buffer. In the fragment shader the color values for each
fragment are determined. For the mapping part the re-
quired information consists of the current camera image
deployed as a texture, the coordinates of the fragment the
shader-program is processing, the panoramic image avail-
able as another texture and mathematical information of
the camera orientation (i.e. the rotation matrix calculated
by the tracker).

In general, every pixel of the panoramic image is
mapped separately in its own shader program run. This
means that for each pixel it is calculated if it lies in the
area where the camera image is projected or not. If the
pixel lies in this area, the color of the respective pixel of
the camera image will be stored at this location. Other-
wise the pixel of the input texture is copied to the output
texture.

Shader Data Preparation: To prepare the shader data,
as many of the required calculations as possible are cal-
culated before the information is passed to the fragment
shader. It is crucial to keep the number of calculations in
the shader to a minimum, since it will be executed for each
fragment and will amount to huge computational costs in
total. All the information that does not vary across the sep-
arate fragments is prepared outside the fragment shader.
This information contains the panoramic image resolution,
the camera image texture and camera image resolution, the
rotation matrix, ray direction, the projection matrix and
the angle resolution. Using this information the mapping
calculations can be efficiently performed in the fragment
shader.

To calculate the angular resolution, the model for the
parametrization of the surface needs to be known. As sug-
gested in [15] we chose a cylindrical model for the map-
ping procedure. The radius r of the cylinder is set to 1 and
the circumference C is therefore 2 ·π · r. The ratio of the
horizontal and vertical size can be arbitrarily chosen, but in
our case a 4 by 1 ratio is used. The height h of the cylinder
is therefore set to C/4.0. The angle resolution for the x-
coordinate a is composed by the circumference divided by
panoramic texture width W and for the y-coordinate b it is
composed by the cylinder height divided by the panoramic
texture height H as follows:

a =
C
W

b =
h
H

(1)

Every pixel of the panoramic map can be transformed
into a 3D-vector originating from the camera center of the
cylinder (0,0,0). The ray direction can be imagined as such
a vector pointing in the direction of the camera orientation.
To calculate the ray direction #»r the rotation matrix R is re-
quired. During the render cycles the rotation matrix will
be calculated externally in the tracking process. The direc-
tion vector

#»

d is constantly pointing along the z-axis and in
order to get the ray direction, the transpose of the rotation
matrix is multiplied with this vector:

#»r = RT #»

d (2)

For the calculation of the projection matrix the calibra-
tion matrix K (generated in an initialization step), the rota-
tion matrix R (calculated in the tracking process) and the
camera location #»t is required. Since the camera is located
in the center of the cylinder (#»t (0, 0, 0)), calculating P can
be simplified by multiplying K by R.

Shader Calculations: After preparing this informa-
tion the data is sent to the fragment shader via uni-
forms. The coordinates of the input/output texture u and
v (framebuffer-switching) are acquired from the vertex
shader. In the fragment shader each fragment is mapped
into cylinder space and checked if it falls into the cam-
era image (backwards mapping). The cylinder coordinates
#»c (x, y, z) are calculated as follows:

cx = sin(u a) cy = v b cz = cos(u a) (3)

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

a and b are the angle resolutions as given in Equation 1.
When projecting a camera image on the cylinder it is

projected twice (once on the front-side and once on the
back-side that is flipped). To avoid mapping the image
twice, a check whether the cylinder coordinates are in the
front of the camera or in the back is performed. The check
eliminates the back side of the cylinder.

The next step is to calculate the image coordinates
#»
i (x,y,z) in camera space. Therefore the projection matrix

P is multiplied with the 3D-vector transformed from the
cylinder coordinates. As mentioned above this is possi-
ble, because the camera center is positioned at (0,0,0) and
each coordinate of the cylinder can be transformed into a
3D-vector.

ix = P0,0 cx +P1,0 cy +P2,0 cz (4)

iy = P0,1 cx +P1,1 cy +P2,0 cz (5)

iz = P0,2 cx +P1,2 cy +P2,0 cz (6)

To get the image point the homogenous coordinates are
converted to image coordinates.

After rounding the result to integral numbers the coordi-
nates can be checked if they fall into the camera image. If
this test fails, the color of the corresponding input texture
coordinate will be copied to the current fragment again.
If the test succeeds the color of the corresponding camera
texture coordinate will be copied to the current fragment.

Without optimization this procedure is performed for all
the fragments of the output texture. For a 2048x512 pixels
texture resolution and therefore about 1 Mio. fragments
every operation done in the shader will be executed over
one million times. Even when discarding the shader pro-
gram as soon as it is known that the current fragment does
not fall into the camera image, a lot of redundancy orig-
inates, due to the values for the checks have to be calcu-
lated.

4.1 Shader Optimization

Since mapping a camera image onto a panoramic map
updates only a small region of the panoramic image, the
shader program should not be executed for every frag-
ment. Instead only the area where the camera image is
mapped needs to be passed to the shader. To reduce the
size of this area, the coordinates of the estimated camera
frame, calculated in the tracking process, are used to cre-
ate a bounding-box. The minimal and maximal coordi-
nates of the bounding-box are then forwarded to a scissor
test, where only the area that passes the test is passed to
the shader. This reduces the maximal number of shader
runs from about 1 Mio. to about 75,000 (320x240 pixels),
which is equivalent to a reduction in computational com-
plexity to about 7.5 % over a naive implementation.

A second optimization step is to focus only on newly
mapped fragments to further reduce the computing costs,
only mapping those that were not mapped before. Assum-
ing a panoramic image is tracked in real-time the frame

Figure 2: Red: mapped area; blue: current frame; green:
small update region that is cut by the scissor test and
passed to the shader. The additional optimization approach
saves comptation costs.

Figure 3: Red: mapped area; blue: current frame; green:
big update region that is cut by the scissor test and passed
to the shader. The additional optimization approach does
not save a lot of computation costs.

is mapped about 25 times per second. If the camera is
not moved too fast, only a very small area is new in the
current frame. To achieve this reduction, newly updated
cells that are already calculated by the tracker, are used.
Each cell consists of an area of 64x64 pixels. If the cell
is touched by the current tracking update, the coordinates
are used to calculate another bounding-box around those
cells. Then the intersecting area of the bounding-box of
the whole camera image and the cell-bounding-box is cut
again by the scissor test and passed to the shader as the
new mapping area (see Figure 2).

Employing this optimization step does not necessarily
reduce computational costs, because it directly depends on
the movement of the camera. The update area can grow
larger if the rotation of the camera results in a diagonal
movement within panoramic space. Similarly, the update
areas might become larger if the camera is rotated about
the z-Axis. If more update areas come up at different loca-
tions the bounding-box can stay nearly the same size as in
the approach described before, even if they are very small
as shown in Figure 3.

Nevertheless processing only the newly mapped areas
can reduce the number of shader runs significantly, since
in more frequent cases only one small update area ap-
pears. The second optimization step is an additional im-
provement to the one calculating a bounding-box around
the camera frame.

4.2 Wiping

Using a mapping approach running on the GPU allows us
to add new features, such as the possibility to wipe out
areas in the panoramic images in real-time. Panoramic
images happen to contain unwanted areas like persons or

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: Circular white spots have been cleared while
taking the panoramic image

cars that cover an essential part of the scene. To remove
these unwanted spots the panoramic image can be edited
in real-time by wiping over the panoramic image preview
displayed on the mobile phone’s screen. For example, by
specifying an area in a preview image of the panoramic
map, the coordinates might be passed to the shader and
the region around that coordinate is cleared and marked as
unmapped. A new frame arriving can cover those cleared
areas and fill the empty spots with color information again.

A possible implementation of this feature is a simple
wipe operation on a touch screen. In such an implementa-
tion, the area around the coordinates that has been marked
to clear is defined to be circular with a radius of N pixels.
The program simply passes the coordinates to the fragment
shader. There the clearing area is calculated using the dot
product of the euclidean distance between the current frag-
ment coordinate #»t and the marked wiping coordinates #»w .

(
#»t − #»w) · (#»t − #»w)< (N2) (7)

If the condition is true and the wiping coordinate lies
within the euclidean distance, the pixel that is currently
processed by the fragment shader can be cleared. This
approach can also be computed in a CPU-based mapping
process, but the advantage of the GPU-based wiping is that
it runs in real-time.

4.3 Image Refinement

A significant problem while taking panoramic images in
real-time is the changing exposure time of the camera,
which can usually not be fixed on current mobile phones.
When moving the camera towards a light source the ex-
posure is reduced, which significantly darkens the input
image. Moving the camera away from the light source
again brightens the input image in an unproportional way.
The artifacts that arise due to the diverging exposure time
are sharp edges between earlier mapped regions and newly
mapped camera images as seen in Figure 5.

Several approaches dealing with the exposure problem
do not map and track in real-time or need some pre- and
/ or post-processing to create a seamless panoramic im-
age. Additionally most of the other approaches require
a lot of memory since they use the taken images for post-
processing and therefore have to store them. Using a GPU-
based mapping approach however, we can directly employ
shading and blending effects right while the panoramic im-
age is recorded. No additional image information has to

Figure 5: Sharp edges in homogenous areas due to diverg-
ing exposure time

Figure 6: Brightness offset correction calculated from fea-
ture points [4]

be stored on the device. Using the attributes of a GPU,
the postprocessing steps therefore vanish and become an
active part of the real-time capturing of a panorama for
certain approaches.

Brightness Offset Correction: One way to manually
correct the differences in brightness values of the current
camera image is to find matching points in the panoramic
image and the camera image and calculate their brightness
difference from the color data. The average offset of these
differences is then forwarded to the shader and considered
in the mapping process.

To calculate the brightness offset of matching points the
approach implemented by Degendorfer [4] is revised. De-
gendorfer calculates the brightness offset for the feature
points found by the tracker (see Figure 6). This solu-
tion is not ideal, however, as the best areas for compar-
ing brightnesses are homogenous regions rather than cor-
ners. The advantage of this approach is that it can be per-
formed at almost no additional computational overhead,
since the tracker inherently provides the matches and the
actual pixel values are just compared.

Pixel Blending: Blending the camera image with the
panoramic image in the mapping process is a way to
smoothen sharp transitions of different brightness values.
To achieve smoother transitions several different blend-
ing approaches were investigated, however, a frame-based
blending approach turned out to achieve the best continu-
ously image.

Since the camera image does not cover 100 % of the
already mapped panoramic map, not every pixel can be
blended. The color values of newly mapped pixels have
to be drawn as they appear in the camera image or they
would be blended with the initial white background color.
To avoid having sharp edges at the border to the newly
mapped pixels, only a frame area represented by an inner
and an outer frame is blended as shown in Figure 7. Pix-
els at the image border (outer frame) are taken from the
panoramic map. A linear blending operation is used in the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: Linearly blending the camera image with the
panoramic image in the frame area (yellow) between the
outer (green) and the inner (purple) blending frame.

area between the frames along the direction of the normal
to the outer frame. The region inside the blending frame is
directly mapped from the camera image. To avoid blend-
ing the frame with unmapped white background color, new
pixels are mapped without blending directly from the cam-
era image.

The following pseudo code represents the blending al-
gorithm, where x and y are the camera image coordinates,
frameWidth is the width of the blending frame, camColor
and panoColor are the colors of the respective pixels of
the camera and panoramic image and alphaFactor is the
calculated blending factor:

Algorithm 1 Frame Blending
Require: fragment in camera frame

if fragment in blending frame) then
if alreadyMapped == TRUE) then

minX = x > frameWidth ? camWidth - x : x;
minY = y > frameWidth ? camHeight - y : y;
alphaFactor = minX < minY ? minX/frameWidth :
minY/frameWidth;
newColor.r = camColor.r*alphaFactor +
panoColor.r*(1.00-alphaFactor);
newColor.g = camColor.g*alphaFactor +
panoColor.g*(1.00-alphaFactor);
newColor.b = camColor.b*alphaFactor +
panoColor.b*(1.00-alphaFactor);

else
color = camColor;

end if
else

color = camColor;
end if

Blending two images using the fragment shader is a
computationally cheap operation and can easily be ap-
plied to the naive form of pixel mapping. However, the
pixel-blending requires the optimization method where the
whole camera image is updated in every frame, as the area
of the whole camera frame is required for the blending pro-
cess. Naturally, the blending operations can be combined
with the brightness offset correction.

4.4 Large panoramic images

Mapping a panoramic image on a CPU in real-time is pos-
sible for medium-size panoramic images only. Increas-
ing the panoramic map and the camera image resolution
for real-time CPU-based mapping it will quickly meet its
limits in computational power. The GPU-based mapping
approach can handle larger texture sizes with a negligi-
ble loss in render speed. Reducing the area passed to the
fragment shader in an optimization step, the size of the
panoramic map does not have much influence on the real-
time frame rates. The camera image size would have more
influence, however, the live preview feed of recent mo-
biles, which is about 640x480 pixels can still be rendered
in real-time. A limitation for the GPU-mapping is the lim-
ited texture size of a mobile phone’s GPU. This problem
can be avoided by splitting the panoramic texture into sev-
eral parts.

5 Experimental Results

The evaluation is divided into three main sections. In the
first section the image quality is tested by means of the im-
age refinement approaches discussed in the previous chap-
ter. The quality is determined from a perceptual point of
view for achieving continuous results without seams and
artifacts. The second test section compares the results of
the refinement approaches in terms of robustness of the
tracking process and in the third section the render speed
performed for every approach is tested. The experimental
results highlight which image refinement algorithm per-
forms best in terms of quality, robustness and speed. The
results are also compared with the CPU-side mapping ap-
proach by Wagner et al. [15].

5.1 Panoramic image refinement

When taking a panoramic image, the most difficult process
of seamlessly mapping the camera image in the panoramic
map is to cover the brightness differences. Having the sun
as a strong light source in the scene exacerbates this test
scenario. However distinctive shadow structures enable
the tracker to find corresponding points on otherwise ho-
mogenous regions.

Figure 8(a) is the reference image created by the orig-
inal application ([15]). Brightness differences are signifi-
cantly visible. Even seams between consecutively mapped
camera images are visible and artifacts appear in the lower
region of the panoramic image. Reducing the bright-
ness differences with a modified brightness correction ver-
sion as described by [4] slightly reduces the differences
in brightness between former mapped camera images and
later mapped images, but emphasizes the brightness seams
between consecutively mapped camera images as shown
in Figure 8(b).

In Figure 8(c) the seams as well as general differences
in brightness are smoothed by the blending approach com-

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) CPU-mapped image created by the application of Wagner et al. [15] (b) GPU-mapped image with brightness offset correction

(c) GPU-mapped image with blending and brightness offset correction

Figure 8: Panoramic images of a sunny scene

bined with the brightness offset correction. As a result of
the smoothing, the image gets a bit blurry. However it
emphasizes the impression of one continuous image. Ar-
tifacts like lens flares are visible since in this approach the
whole camera image is mapped every time. Approaches
that only map new pixels usually do not suffer from these
artifacts since lens flares do not appear at image borders
very often. The gray area in the left half of the image
originates from the brightening process of an almost black
region, due to brightness correction. The blending ap-
proaches are dependent of the movement of the camera,
which means that they create different results, concerning
the image quality, by moving the camera differently to-
wards or away from light sources. Since the test result was
generated from an image sequence of a taken video, still
visible artifacts could not be removed. In practical use the
user would have recognized the gray area and its seams,
due to the panoramic preview and remapped it by moving
the camera from a different direction over that region.

5.2 Robustness

The results of each test run are not only tested visually, but
also by forwarding the GPU-mapped images to the tracker
and calculating matching points for the current camera
image. Subsequently the amount of key points found is
compared with the number of key points found using the
CPU-mapped image. Getting a higher number of match-
ing points increases the tracking robustness and confirms
an improvement to the existing PanoMT-application.

Table 1 shows the tests listed with the results of the
found key points and the number of matches. For each
frame the key points and their matches are stored and the
average value of all found feature points and matches are
taken for comparison. An image refinement approach that

Approach � Matches � Key Points
CPU

Standard Mapping 80.00 1000.30
GPU

No Refinements 80.00 1050.18
Brightness Correction
from Feature Points

80.00 1053.41

Frame Blending 73.95 1028.54
Frame Blending +
Brightness Correction

78.03 1030.62

Table 1: Average of found key and matching points for the
respective refinement approach

reaches a higher score of averagely found key points and
reaches the maximum of 80 matches, is considered to be
more robust than approaches with a lower score.

For tracking the camera image in the panoramic map
using the FAST corner detection algorithm, the sharpness
of corners and edges are of most importance. Therefore
image refinement approaches that only map new pixels
achieve better results than the ones mapping the whole
camera image. Strong differences in brightness however
can force the tracker to loose its orientation and it needs
to relocate the orientation. This costs additional compu-
tation time and is disturbing in practical use. Since all
approaches achieve acceptable tracking results, the image
quality and render speed are used to decide which image
refinement approach is to prefer. In general approaches
that update only pixels that have not been mapped before
achieve a better tracking score than in the CPU-mapping.

5.3 Render Speed

The speed tests discussed in this section measure the av-
eragely rendered frames per second for each image refine-

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

FPS: SGS2 FPS: LG FPS: SGS3
Approach (low/high) (low/high) (low/high)
No Refinements 27.50 / 25.67 27.55 / - 22.46 / 21.15
Brightness Correction
from Feature Points

27.20 / 25.08 26.55 / - 21.94 / 20.77

Frame Blending 27.27 / 24.61 23.30 / - 23.41 / 19.91
Frame Blending +
Brightness Correction

25.53 / 23.61 22.53 / - 23.48 / 19.34

Table 2: Render speed for the diverse image refinement
approaches on the SGS2 (1st column), LG (2nd column)
and SGS3 (3rd column) for resolutions of 2048x512 and
4096x1024 pixels. The maximum texture size of the LG is
2048x2048 pixels.

ment approach and for different panoramic mapping sizes.
For calculating the frame rate the first 50 frames are dis-
missed and then the average of the next 50 frames is taken
to determine the speed of the current image refinement ap-
proach. Each test is run three times for each refinement
approach and mobile phone. The average of the results is
taken as the render speed result. For testing the speed dif-
ferences for different panoramic mapping sizes, two reso-
lutions are chosen. A lower and standard texture resolu-
tion of 2048x515 pixels and a higher texture resolution of
4096x1024 pixels are realized for this test. The tests are
realized with three different testing devices:

• Samsung Galaxy S II (SGS2): 1.2GHz dual core; Mali-
400MP; Android 2.3.5

• LG Optimus 4x HD (LG): 1.5GHz quad core; Nvidia Tegra
3; Android 4.0.3

• Samsung Galaxy S III (SGS3): 1.4GHz quad core; Mali-
400MP; Android 4.0.3

Table 2 displays the render speed for the SGS2, the LG
and the SGS3 for lower and higher resolution panoramic
images.

Concerning the render speed for the standard resolu-
tion of 2048x512 pixels, all image refinement approaches
run fluently with a frame rate higher than 20 FPS. Simi-
lar to lower resolutions, when rendering a higher resolu-
tion panoramic image (4096x1024 pixels) the frame rate
is about 20 FPS or higher for all approaches. Despite of
the higher computational power of the SGS3, the results
cannot keep up with the SGS2. This is surprising, but the
reason for that seems to be the different Android versions
(Ice Cream Sandwich versus Gingerbread).

6 Conclusions

In this paper, a GPU-based approach for mapping
panoramic images is proposed. Investigating several meth-
ods that address the auto-exposure of cameras, artifacts
and brightness seams can be eliminated or strongly re-
duced. The mapping process implemented on the GPU
works very efficiently using shader programs, since pixel-
mapping is heavily parallelizable. This allows larger
panoramic images to be generated in real-time and addi-
tional functionality, such as wiping is added.

The proposed GPU-based mapping approach still re-
quires the mapping on the CPU-side for tracking, which
can be replaced by key-frame tracking as future work.

References
[1] A. Adams, N. Gelf, and K. Pulli. Viewfinder alignment.

Computer Graphics Forum (Proc. Eurographics), pages
597–606, 2008.

[2] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyt-
tendaele, C. Pal, and R. Szeliski. Panoramic viewfinder:
providing a real-time preview to help users avoid flaws
in panoramic pictures. In Australian Conf. on Computer-
Human Interaction, pages 1–10, 2005.

[3] M. Brown and D.G. Lowe. Recognising Panoramas. In
ICCV, volume 2, pages 1218–1225, 2003.

[4] C. Degendorfer. Mobile augmented reality campus guide.
Master’s thesis, Graz University of Technology, 2010.

[5] S. DiVerdi, J. Wither, and J. Höllerer. Envisor: Online Envi-
ronment Map Construction for Mixed Reality. In VR, 2008.

[6] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and
D. Lischinski. Coordinates for instant image cloning. ACM
Transactions on Graphics, 28(12):1–9, 2009.

[7] M.B. López, J. Hannuksela, O. Silvén, and M. Vehviläi-
nen. Graphics hardware accelerated panorama builder for
mobile phones. In Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, pages 72560D–
72560D–9, 2009.

[8] S. Lovegrove and A. Davison. Real-time spherical mosaic-
ing using whole image alignment. In ECCV, pages 73–86,
2010.

[9] D.G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. IJCV, 60(2):91–110, 11 2004.

[10] K. Pulli, M. Tico, and Y. Xiong. Mobile Panoramic Imag-
ing System. In Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 108–115, 2010.

[11] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. In ECCV, volume 1, pages 430–
443, 2006.

[12] D. Steedly, C. Pal, and R. Szeliski. Efficiently Registering
Video into Panoramic Mosaics. In ICCV, volume 1, pages
1300–1307, 2005.

[13] R. Szeliski. Image Alignment and Stitching: A Tutorial.
Foundations and Trends in Computer Graphics and Vision,
2:1–104, 2006.

[14] R. Szeliski and H. Y. Shum. Creating Full View Panoramic
Image Mosaics and Environment Maps. In 24th Annual
Conference on Computer Graphics - SIGGRAPH, 1997,
pages 251–258, 1997.

[15] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg.
Real-Time Panoramic Mapping and Tracking on Mobile
Phones. In VR, pages 211–218, 2010.

[16] Y. Xiong, X. Wang, M. Tico, C.K. Liang, and K. Pulli.
Panoramic imaging system for mobile devices. In Poster
at Int. Conf. and Exhib. on Computer graphics and interac-
tive techniques (SIGGRAPH 2009), 2008.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

