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ABSTRACT

Walking in place for moving through virtual environments has at-
tracted noticeable attention recently. Recent attempts focused on
training a classifier to recognize certain patterns of gestures (e.g.,
standing, walking, etc) with the use of neural networks like CNN
or LSTM. Nevertheless, they often consider very few types of ges-
tures and/or induce less desired latency in virtual environments. In
this paper, we propose a novel framework for accurate and effi-
cient classification of in-place gestures. Our key idea is to treat
several consecutive frames as a “point cloud”. The HMD and two
VIVE trackers provide three points in each frame, with each point
consisting of 12-dimensional features (i.e., three-dimensional posi-
tion coordinates, velocity, rotation, angular velocity). We create a
dataset consisting of 9 gesture classes for virtual in-place locomo-
tion. In addition to the supervised point-based network, we also take
unsupervised domain adaptation into account due to inter-person
variations. To this end, we develop an end-to-end joint framework
involving both a supervised loss for supervised point learning and an
unsupervised loss for unsupervised domain adaptation. Experiments
demonstrate that our approach generates very promising outcomes,
in terms of high overall classification accuracy (95.0%) and real-time
performance (192ms latency). Our code will be publicly available
at: https://github.com/ZhaoLizz/PCT-MCD.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction techniques—Gestural input; Human-
centered computing Human computer interaction (HCI)—
Interaction paradigms—Virtual reality

1 INTRODUCTION

Locomotion in the virtual environment is an important function
in virtual reality (VR) applications [25]. An ideal, immersive and
natural approach to virtual locomotion is real walking [50]; however
the limitation of physical space often makes this approach difficult
to implement [49]. Joystick-based movement is a common method
in video games, but this method can cause motion sickness in virtual
reality environments [[17]. The Walking-in-place (WIP) method
allows the user to navigate the virtual environment with walking-in-
place gestures, which provides kinesthetic feedback similar to real
walking and provides high immersion and naturalness [25].
Although the WIP technique has the advantages mentioned above,
it is still not widely used mainly due to several challenges. The
first challenge is to classify gesture patterns that map the user’s
specific gestures in the real world to virtual locomotion with low
latency [7]]. There are many proposed WIP methods to recognize
specific WIP gestures of users and then to transform them into vir-
tual movements. For instance, LLCM-WIP [5]], GUD-WIP [47] and
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SAS-WIP [3] implemented low-latency WIP gestures detection by
manually designing features. Hansen et al. [[14] used a convolutional
neural network to classify whether the user is standing or WIP. VR-
STEP [40] utilized a dynamic threshold method proposed in [56]] to
detect WIP gait. However, many existing methods suffer from manu-
ally designing features such as threshold parameters, or introducing
high classification latency, or focusing on classifying only two types
of gestures (standing and walking) while ignoring other common
in-place gestures (e.g., jogging or jumping). Moreover, due to the
inter-person variations which represent different characteristics of
users such as height, weight, gender and locomotion habits, domain
gaps do exist between users. So the method designed may be ac-
curate for some users, but may not work for others. DCTC [36] is
based on improved Long Short-Term Memory (LSTM) network for
classifying 7 types of foot patterns and can be generalized across
different sensors and individuals, but it induces a relatively high
latency (i.e., 500ms for 95% accuracy).

To address the above challenges in virtual locomotion, we propose
an effective method that can accurately classify the user’s in-place
gestures in the real world with low latency and can bridge the domain
gap between users so that the model is generalizable across persons.
Our key idea is to use the head-mounted display (HMD) and two
VIVE trackers attached to the thighs to collect the user’s head and
legs position, velocity, rotation angle and angular velocity data in
each frame, and treat the data of several consecutive frames as a point
cloud. Thus each point in the point cloud consists of 12-dimensional
features which provide rich geometric, trajectory shape and scale
information of user’s WIP gestures [|11,/12]]. We then design an end-
to-end point-based classification network that takes both supervised
learning and unsupervised domain adaptation into account, with a
supervised loss and an unsupervised loss for joint training.

As for creating the dataset, we first collect 9 classes of locomotion
data from 14 participants using the HMD and two VIVE trackers
mentioned above. Then, using the sliding window method, the data
is partitioned into samples, with each sample representing a point
cloud. Then we label each sample with the gesture that appears
most number of times in that sample. For a particular user, we first
collect the locomotion data of the user, and define the unlabeled
data of the user as the target domain and the labeled data in the
dataset as the source domain. Inspired by Maximum Classifier
Discrepancy (MCD) [34]] from image processing and Point Cloud
Transformer (PCT) [[10] from point cloud learning, we design an end-
to-end framework by fusing MCD with PCT. With the adversarial
training strategy proposed in MCD, the encoder from PCT is used
as a feature generator, and two task-specific classifiers are used
as the discriminator which takes features from the generator as
input. Two classifiers are trained to simultaneously classify source
samples and detect target samples that are not clearly categorized
into some classes. The generator is trained to fool the discriminator
by generating target features close to the two classifiers’ decision
boundaries.

In summary, this paper makes the following main contributions.

* We propose a novel gesture classification framework for virtual
locomotion, by regarding several consecutive frames as a point
cloud in which the HMD and two VIVE trackers provide three
points in each frame and each point consists of 12-dimensional
features. To our knowledge, it is the first work for in-place



gestures classification context with considering consecutive
frames as a point cloud.

* We take both supervised learning and unsupervised domain
adaptation into account and develop an aggregated architecture
for joint training.

* We create a dataset that involves 9 classes of gestures. To our
knowledge, this is the first dataset that includes the largest
number of in-place gesture classes. We will release it and our
source code to the community.

* We conduct experiments on our dataset with the proposed
method. Results show that our method is able to generate high
overall classification accuracy (95.0%) with real-time latency
(192ms).

2 RELATED WORK
2.1 Walking-in-Place for Virtual Locomotion

Virtual locomotion is a technique by which the user controls the
virtual avatar to travel in a 3D virtual environment. It has a signif-
icant impact on the users’ sense of presence [36]]. Real walking is
an immersive and natural approach to navigate in the virtual envi-
ronment [32}|42]], but this method requires the same large physical
space as the virtual environment for users to move, which in most
cases can not be satisfied because the virtual space can be infinite
and the room space is limited [2}|5].

WIP is a natural way of virtual locomotion using leg motions
while remaining in place, which makes it easy to be applied in
limited physical space. WIP is easy to control the direction and
distance of movement [37./421|50] and it can also reduce simulation
sickness [40].

WIP motion is usually detected by wearable sensors, such as in-
ertial measurement units (IMUs) embedded in HMD, smartphones,
and trackers, etc. We can get the information of leg position, linear
velocity, acceleration, angular velocity etc by attaching the wearable
sensors to the user’s body [[14]]. Tregillus et al. [40] used the smart-
phone’s inertial sensors which include a 3-axis accelerometer and
3-axis gyroscope to collect the acceleration signal from the HMD
in real-time and used Zhao’s proposed pedometry algorithm [56] to
implement VR-Step. Wendt ez al. [46] built a model that uses only
the bobbing head-track position data to estimate the walking speed,
step frequency and direction. Paris et al. [27] used the IMU of the
smartphone for Samsung Gear VR to detect whether the user is step-
ping by setting threshold values of the acceleration signal. Feasel
et al. [5] proposed a LLCM-WIP System to reduce the system la-
tency by using a chest-orientation tracker and foot trackers. Lee et
al. [20] used the vertical position of the HMD to detect the jogging
in place step and considered eliminating the impact of the HMD’s
pitch angle on the vertical position. Wendt ez al. [47] implemented
a Gait Understanding-Driven(GUD) WIP model with a fairly low
start-stop latency by attaching two 6-DoF trackers to the user’s shins.
With prior knowledge of biomechanics, they implemented a state
machine with manual-tuning of parameters, then walking speed was
estimated by the proposed GUD WIP model from step frequency
and foot position.

Most of the aforementioned methods rely greatly on empirical
experience and require the experimenter to be familiar with the
biomechanical characteristics of the gait in order to manually adjust
the parameters of the WIP model such as threshold values. More-
over, as suggested by [36], there are inter-person and intra-person
variations. The intra-person variation refers to the fact that the sen-
sor signal of the same person may change significantly for multiple
repetitions of the same experiment due to physical exertion, and
the inter-person variation refers to the fact that the sensor signal
of the same gesture may vary significantly for different users, due
to the differences in height, weight, gender and movement habits

among users. These factors lead to significant differences in the
effectiveness of manually setting model parameters for different
users [|14].

2.2 Machine Learning for Walking In Place

Previous data-driven approaches for WIP were usually used to rec-
ognize certain patterns of motion. Slater ez al. [31] used the position
of the HMD as input to a simple neural network to identify whether
the user is walking in place or not. Hanson et al. [14] utilized the
linear acceleration of the X, y, z axes of the HMD as input and fed
it into a convolutional neural network to predict whether the user
is currently walking or standing in real-time. Their approach im-
proves the generalization of the WIP model and reduces the impact
of inter-person variation across different users on the model. Lee et
al. [22] used the position values of the x-axis and z-axis of the HMD
labeled with the torso direction of the user to train a model based on
the LSTM network to predict the current WIP direction of the user.
Lee et al. [|21] attached the VIVE tracker to the user’s left ankle and
used the continuous x-y-z coordinates and yaw angles of the HMD
and tracker labeled with the user’s posture in the gait cycle to train
a convolutional neural network for predicting the gait state of the
user’s WIP posture. Maghoumi et al. [24]] proposed an end-to-end
gesture recognition network consisting of an encoder network of
stacked gated recurrent units, attention module and classification
layers. It directly took as input a sequence of raw 3D gesture vector
features collected by sensors to predict gesture labels.

Shi et al. [36]] attached a microchip and three pressure sensors
to the insole, which were then used to collect pressure signals from
users under seven different gait patterns to create a dataset. This
dataset was used to train a pattern classifier for real-time classifi-
cation of user’s gait, which is based on the LSTM. Shi et al. then
proposed a Dual-Check Till Consensus (DCTC) method, which dy-
namically adjusted the segment length of the input data according
to the classifier’s probability, to improve the classification accuracy
of the LSTM and to reduce the system latency. Their approach can
achieve excellent generalization across sensors and individuals.

2.3 Deep Learning on Point Clouds

A point cloud is a set of unordered 3D points, which is the most
direct way to represent 3D geometric information [13]]. PointNet 28]
was pioneer in directly consuming raw point cloud representation
without either voxelization or projection. It obtains permutation
invariance by a symmetric function. Qi er al. further proposed
PointNet++ [29], a hierarchical network that extracts the geometric
features of each point’s neighborhood. DGCNN [45]] is a graph-
based method which creates a dynamic graph in the feature space
and uses the EdgeConv layer to learn the edge features of the graph.
Guo et al. [[10] proposed Point Cloud Transformer (PCT) to apply
the traditional Transformer [43]] to the field of point cloud learning.
They constructed an attention mechanism based on the Transformer
for the learning of point cloud features. The Transformer has the
order-invariant property, which is favorable for processing point
clouds. Zhang et al. proposed to filter 3D point clouds with a point-
based network [S5]]. Vatavu et al. [44] proposed to consider the
two-dimensional strokes generated by gestural input as a disordered
set of points, and introduced a $P recognizer, a member of the
$-family, to recognize the input stroke gestures.

2.4 Unsupervised Domain Adaptation (UDA) for Point
Clouds

Qin et al. [30] proposed PointDAN, which aligns the local and global
features of point clouds together using a Self-Adaptive (SA) node
module with an adjusted receptive field. They also used an adver-
sarial training strategy to learn and align features across domains.
Achituve et al. [1]] applied self-supervised learning(SSL) to point
cloud processing. They came up with a multi-task architecture with



a multi-head network, where one head is used to train the classifier
and one head is trained using the loss caused by the self-supervised
Deformation Reconstruction (DefRec) task. SqueezeSetV2 [52]
used geodesic correlation alignment and progressive domain cali-
bration to bridge the domain gap between synthetic and real point
clouds.

3 METHOD

The goal of our research is to build a model that can quickly and
accurately identify the user’s in-place gestures for virtual locomotion.
To this end, we first collect locomotion data using the HTC VIVE Pro
HMD and two VIVE trackers attached to the user’s thighs, in which
each device provides a point at each frame. Each point involves
the 3D position coordinates, velocity, rotation and angular velocity
of the user’s head or legs. We treat the data of several consecutive
frames as a point cloud sample and build a point cloud dataset by
labeling all samples. To consider the inter-person variations, we
design a point-based classification network by fusing unsupervised
domain adaptation with a point cloud backbone for joint supervised
and unsupervised training. A general overview of our approach is

shown in Figure [T}
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Figure 1: We treat the data of several consecutive frames collected
by the HMD and the two trackers as a point cloud sample, which is
fed into the developed PCT+MCD classifier for gesture prediction in
real time.

3.1 Dataset
3.1.1 Participants

To collect the dataset for training the in-place gesture classification
model, we recruit 14 volunteers, all of whom are students from
our university, with a mean age of 24.3 and a standard deviation of
2.1. In them, 5 are female and 9 are male. Before data collection
begins, we ask the volunteers about their familiarity with virtual
reality using a questionnaire from [36]. The average familiarity
score is 2.9 and the standard deviation is 0.87. According to [36],
these numbers represent a moderate level of familiarity with virtual
reality for this group of participants. Each participant is informed of
the methodology and purpose of the study before the experiments.

3.1.2 Selection of Gestures

There are many common forms of body movement in virtual real-
ity games or applications [8,/16,33}|51L|53]]. Referring to previous
work [6,/40,48]l, we choose walking in place as the basic way to navi-
gate through the virtual environment while keeping users in a limited
horizontal space. In order to allow the user to control the speed [[14]
and move quickly in the virtual environment, we also consider the
“jog-in-place” motion [20]]. Furthermore, we use real steps forward
or backward as triggers to control whether the direction of walking
or jogging in place is forward or backward. In the existing work [33],

jumping is a form of movement with high presence, creativity and
immersion, so we also add jumping as a form of locomotion in our
dataset. VR exergames have been shown to be effective in engaging
and motivating sedentary users to exercise [35]], and squatting is a
common gesture in exergames [54]. Therefore, we add three labels
to our dataset to identify squat-related gestures: squatting down,
keeping squatting, and squatting up. Finally, with considering stand-
ing, our dataset involves a total of 9 labels: walking in place, jogging
in place, jumping, stepping forward, stepping backward, squatting
down, keeping squatting, squatting up and standing. To our knowl-
edge, our dataset has the largest number of classes for virtual loco-
motion. The normalized point cloud visualization of these gestures is
shown in Figure[2] where each subplot represents a gesture and each
point is provided by the HMD or VIVE tracker. Different devices
are indicated by different point colors. (a)standing,(b)walking in
place,(c)jogging in place,(d)jumping,(e)squatting down,(f)keeping
squatting,(g)squatting up,(h)stepping forward,(i)stepping backward

3.1.3 Collection Procedure

We used the HTC VIVE Pro HMD!] and two VIVE trackerd?] at-
tached to the front of the participant’s thighs to collect 6 DoF head
and leg motion tracking data from the participants. We developed a
Unity3D application to collect 3D spatial position coordinates, veloc-
ity, rotation angle and angular velocity information from the HMD
and VIVE trackers at a frequency of 30 Hz. The HMD rendered a
virtual scene of a beautiful mountain village with the participants
positioned on the flat ground of the village.

After the experimenter helped the participants to put on the HMD
and VIVE trackers, the participants followed the experimenter’s in-
structions and performed the aforementioned 9 gestures as described
in Section[3.1.2] sequentially, and each gesture lasted for about two
minutes. The participants could see the current gesture name and
duration timer in the HMD. Before data were formally recorded for
each gesture, the experimenter instructed participants to familiarize
themselves with the corresponding gesture, and this step lasted ap-
proximately one minute per gesture. The experiment can be paused
at any time when the participant feels fatigued until the participant
is well-rested and feels ready to continue.

We recorded the participants’ data collection experiments on
video, which was used as a reference to manually label the dataset.
The total experiment time for each participant was approximately
40 minutes.

3.2 Gesture Classification
3.2.1 Data pre-processing

We propose to transform the collected data into a point cloud dataset
for in-place gesture recognition. Since we collect data from the
HMD and the two VIVE trackers at 30Hz, we can acquire 3 points
at each sampling frame, with each point containing its 3D position
coordinates, velocity, rotation angle and angular velocity, i.e., a total
of 3 x 4 = 12 dimensional features.

We use the sliding window method as mentioned in [26] to seg-
ment the whole dataset into point clouds. The fixed window size
is 180ms, which means 6 consecutive samples at a frequency of
30Hz, and the window step size is 90ms. Each point cloud contains
6 x 3 = 18 points, where 3 refers to three sensors and the shape of
the point cloud is (18,12). The label of the point cloud indicates
the ground truth of the pose contained in the corresponding window.
Suppose there are C classes of gestures in the window, we choose
the class that appears the most number of times in this window as
the label of the window, as illustrated in Figure[3] The number of
point cloud samples in the collected dataset is presented in Table

Thttps://business.vive.com/us/product/vive-pro-eye-office/
Zhttps://www.vive.com/us/accessory/vive-tracker/
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Figure 2: Point cloud data visualization of 9 types of gestures for virtual locomotion (after normalization). (a): standing, (b): walking in place, (c):
jogging in place, (d): jumping, (e): squatting down, (f): keeping squatting, (g): squatting up, (h): stepping forward, (i): stepping backward. Different
colors denote different tracking sources. Yellow: HMD, Green: right VIVE tracker, Purple: left VIVE tracker.

l | Class #c |

Groundtruth _|

Sensor data

et SN S T

Sliding Window
180ms T

Frame #f Frame #(+6)

Figure 3: Splitting the data into point cloud samples with labels through
the sliding window method.

Table 1: Number of point cloud samples for each gesture in our
collected dataset.

Gestures Number of samples
standing 31790
walking in place 18409
jogging in place 16857
jumping 12200
squatting down 5205
keeping squatting 2278
squatting up 4688
stepping forward 4522
stepping backward 4457
total 100406

We apply data augmentation methods for point clouds as men-
tioned in [41], including adding Gaussian noise to jitter point clouds,
randomly rotating point clouds, shifting and scaling point clouds.
Then we normalize the point clouds into [0, 1] using the min-max
normalization [26]. Data augmentation and normalization are ap-
plied to all feature channels.

We train a model for each user, by using the current user data
for unsupervised domain adaptation (target domain) and all other
users’ data for supervised learning (source domain). We divide the
entire dataset into two parts, the labeled source domain {Xy,¥s}
and the unlabeled target domain X;, and fuse unsupervised domain
adaptation in image learning [23]] with a point cloud backbone to
train an end-to-end classifier on the target domain. Inspired by
the Leave-One-Subject-Out Cross-Validation method [9], given a
specific user, we use the unlabeled data of this user in the dataset as
the target domain, then we remove this user’s data from the dataset
and use the remaining labeled data as the source domain. We select
all the data in the source domain as the source training set. For the
data in the target domain, we select 80% of the data as the target
training set (unsupervised) and the remaining 20% of the data as the
target test set. Both source training set and target training set are used

to train an end-to-end gesture classification model. The target test
set is used to evaluate the performance of the model. Separating the
training and testing data at the individual level allows evaluating the
generalization performance of the model for users without labeled
data [36].

3.2.2 Network Architecture

‘We apply point cloud transformer (PCT) [[10]] as the backbone and
fuse unsupervised domain adaptation in image learning (MCD -
Maximum Classifier Discrepancy) [34]. Our model is dubbed as
PCT+MCD. PCT is a Transformer-based model for learning point
clouds, achieving state-of-the-art results for point cloud classifica-
tion and semantic segmentation tasks. PCT uses the neighborhood
embedding module to capture the local geometric features of the
point clouds and the optimized offset-attention module to learn the
global features. PCT employs the neighbor embedding module com-
bined with 4 offset-attention modules and Linear, BatchNorm, and
ReLU layers as encoder, and uses three Linear layers with Batch-
Norm and ReL.U layers as a decoder, for classification tasks. Inspired
by the novel adversarial training strategy proposed by MCD, we use
the encoder from PCT as the feature generator, and two task-specific
classifiers as the discriminator which take features from the gener-
ator as input. The two classifiers are trained to correctly classify
samples in the source domain while detecting target samples that
are not clearly categorized into some classes. The feature generator
is trained to fool the two classifiers by generating target features
close to the two classifiers’ decision boundary. After fusing them,
we achieve the network architecture in our work, as shown in Figure
1

We use the encoder from PCT as the feature generator G to
extract the global features of the point clouds, and we adopt two
classifiers F1 and F, consisting mainly of multiple linear layers
as the discriminator. X; is the point cloud in the labeled source
domain {Xj,Y;}, and x; is the point cloud in the unlabeled target
domain {X;}. Both x; and x; contain N points, each point with
a d-dimensional feature (here d = 12). We first feed x; and x; to
G to extract the global feature f; = maxpooling (G(x;))), where
x; represents i-th sample of x; and x;, f; € R4 denotes the global
features of x;. Then we feed f; to classifiers F| and F> to obtain
K-dimensional probabilistic outputs p (y; | x;) and p;(y; | x;) which
classify f; into K classes (9 kinds of gestures), respectively.

Inspired by [34]], our total loss function consists of a classification
loss and a discrepancy loss. We adopt the cross-entropy loss function
as the classification loss, which is used to train two classifiers F}
and F, and generator G to classify samples from the source domain
{Xs, Y5 }:

K
L (X5, Ys) = —E(x y)mxory) 2 Lkmyy logp (v | %)
=1

The discrepancy loss is defined by the /; distance of the outputs
of the two classifiers F| and F; :

Lais (%1) = Ex,x, [[p1 (¥ [ %) = p2 (¥ | %]



Generator

64 64 128 128 256 ] 256 256

256 256 256 256 1024 ‘

Discriminator

1280 | e
> P | Classifier 2 l leticted
| ————— \I Class
Input Point 512 256
Cloud ] ;

Offset-
BR  (G) Knn-group Attention

» Maxpool g LBRD %Linear }>Average @ Concat

Figure 4: Our architecture (PCT+MCD). The number above each module denotes its output channel number. The LBR module represents the
sequential Linear, BatchNorm and ReLU layers. The LBRD module represents the sequential LBR and Dropout layers. Knn-group module groups
the point feature data into n groups with k-nearest neighbors. In each epoch, we first train the generator and the two classifiers with the labeled
source data to minimize the cross-entropy classification loss. Then we train the classifiers to maximize the discrepancy loss, which is defined as
the difference between the outputs of the two classifiers. Finally we train the generator to minimize the discrepancy loss. The last two steps use

only unlabeled target samples.

3.2.3 Training

As suggested by [34], we also implement three steps in each epoch
to realize the end-to-end training in an adversarial manner.

Step 1. We train both classifiers and generator simultaneously
by minimizing the classification loss . (X, Ys), so as to make the
network correctly classify the point clouds in the source domain.

min % (X,,Y)
G,k b

Step 2. We fix the parameters of the generator G and train two
classifiers F; and F, by maximizing the discrepancy loss to better de-
tect the target samples. Classification loss is also added empirically
to update the model more stably.

%IJ(XS,Y 5) — Laav (X)

Step 3. We fix the parameters of the two classifiers, and train the
generator G by minimizing the discrepancy loss.

rrgn 7 adv (Xt )

4 DISCUSSION
4.1 Model Evaluation

We implement our method on PyTorch. We choose Adam [19] as
the optimizer and train the model on an Nvidia TITAN RTX GPU.
The learning rate is set to 0.001 and the weight decay is assigned
to 0.0001. The batch size is set to 64. Similar to [38]], we train an
individual model for each selected user in the dataset. Each model
is trained for 250 epochs. Note that for a given user, we first remove
his/her data from the dataset and use his/her unlabeled data as target
and the remaining labeled data as source.

We selected 10 subjects from the dataset marked as S1 to S10. 4
subjects in the dataset were not selected because of missing data for
the squatting gesture due to a systematic error during data collec-
tion. For these subjects, we evaluated the classification results after
training the individual models separately, including the classification
accuracy of each class, the mean class accuracy (the average of each
accuracy per class), and the overall accuracy (the number of cor-
rectly predicted samples divided by the number of total samples to
predict). The classification results obtained for each selected subject
are listed in Table[2} The results show that the average classification

accuracy of keeping squatting is the lowest (85.9%), which is caused
by the relatively small amount of data of keeping squatting. During
the data collection phase, subjects tended to get up immediately after
squatting down, resulting in a relatively short period to maintain the
keeping squatting posture. Except for keeping squatting, the average
classification accuracy of all other classes is greater than 92.5%.
Jogging has the highest mean classification accuracy of 97.7%. Note
that a window size of only 180ms enables an accuracy of 94.4%
with 12ms model inference time (192ms in total), which satisfies the
requirement of real-time applications.
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Figure 5: The average confusion matrix normalized over the true
(rows) condition for all the 10 selected classification models. The
horizontal axis is for the predicted class and the vertical axis is for
the true class. The diagonal elements represent the recall values. All
other off-diagonal elements along a row are wrong predictions. The
more the correctness of a class, the green hue it has in a cell of the
confusion matrix.

The average confusion matrix normalized over the true (rows)
condition for all the 10 selected classification models is shown in
Figure[5] The figure shows that stepping forward achieves the lowest
recall of 87%, and stepping backward is the second-lowest recall
of 90%, and these two postures are easily misclassified as standing.



This is probably because users are allowed to do some relaxing
actions such as turning in place or resting when standing to better
observe the virtual environment. These unintentional relaxed turns
are sort of similar to forward movements or backward movements,
which leads to relatively low recall of these two gestures. The recall
of squatting is also relatively low (90%) due to the relatively small
sample number in the dataset.

The results of the model (mean class accuracy and overall ac-
curacy) for different sliding window sizes (number of consecutive
frames) are shown in Figure [f] The sequence duration time for
generating a sample with a window size of 3 is 90ms, but the cor-
responding model has the lowest mean class accuracy and overall
accuracy, which are only 92.3% and 92.0%, respectively. This is
probably because a sample contains only 9 points which represent
little spatial information in making gesture classification. When the
window size is 6, the mean class accuracy and overall accuracy reach
94.4% and 95.0%, respectively, inducing a moderate sequence dura-
tion time (180ms). When the window size is increased to 10 and 16,
we do not observe any remarkable improvement in the classification
accuracy. Therefore, we choose a window size of 6 in this work.

For latency, we experimentally examine the inference time of
PointNet, PointNet++, DGCNN, and PCT+MCD networks on the
same sample, and the results show that they all consume around
10ms. Shi et al. [36| also mentioned that the maximum inference
time of DCTC is around 15ms. This means the networks have very
similar inference time. To achieve an accuracy of about 95%, our
method requires a sequence duration of 180ms, while DCTC requires
500ms. The inference time of these networks is significantly smaller
than the sequence duration time, which indicates that the delay of
ours and other machine learning methods mainly arises from the
sequence duration time rather than the inference time. In short, to
achieve similar accuracy, our method induces a much smaller delay
compared to CNN and LSTM. This is mainly because our method
only requires the collection of a few data points in a sample.
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Figure 6: Mean class accuracy and overall accuracy with different
sliding window sizes (number of consecutive frames).

4.2 Comparison with Existing WIP Methods

Hanson et al. [15] applied convolutional neural networks to WIP
research. They classity walking or standing using a simple CNN
structure and achieved 98.6% accuracy on the test set with a latency
of 680ms (a sample is composed of 40 consecutive triaxial data and
data is polled every 0.017 seconds) for the Oculus Go and 92.6%
accuracy with a latency of 1020ms (60 consecutive triaxial data)
for the Samsung Gear VR. For comparison purpose, we trained a
binary classification model using only the samples of walking and
standing in the dataset. In contrast, our method is more accurate
for classifying standing and walking, with a mean class accuracy
of 99.2%, and our method significantly shortens the latency (taking
only about 192ms).

LLCM-WIP [5] achieves a start latency of 138ms and a stop
latency of 96ms, which is faster than our method. However, LLCM-
WIP requires manual adjustment of thresholds for the model, such
as the speed-offset threshold. Due to inter-person variations, the
threshold of the model needs to be adjusted across users [36] which
actually consumes time. In comparison, our approach avoids the
need for manual setting of threshold parameters and can personal-
ize the model using only the user’s unlabeled data, which is more
flexible and automatic.

DCTC [36] can classify 7 foot patterns based on the LSTM model
using the pressure sensor data. They achieve 95% accuracy at S00ms
delay and 85.3% accuracy at 300ms delay. In contrast, our method
can achieve 94.4% mean class accuracy and 95.0% overall accuracy
at 192ms latency, which has overall better performance than DCTC
with considering the latency. Moreover, DCTC provides different
general models according to the shoe size. By contrast, our method
needs to collect unlabeled data for each user to train an individual
model.

4.3 Comparison with Existing Point Cloud Classifica-
tion Methods

We compare our method (PCT + MCD) with a series of point cloud
classification methods, including PointNet [28]], PointNet++ [29],
DGCNN [45] and PointDan [30]]. PointDan also involves unsuper-
vised domain adaptation. These experiments are all using Adam as
the optimization strategy, with a learning rate of 0.001 and a batch
size of 64. The cosine annealing schedule is adopted to adjust the
learning rate for each epoch. The models are trained using the same
10 subjects’ posture data as shown in Table2]and the train-test split-
ting method as described in Section[3.2.1] All models are evaluated
on the test set of the target domain. The comparison results are
summarized in Table[3]

As illustrated in Table[3} our method achieves the best result of
95.0% overall accuracy and 94.4% mean class accuracy. Compared
to PointNet, our method achieves a 3.7% improvement in mean class
accuracy and 2.0% improvement in overall accuracy, respectively.
Compared with PointDAN which also uses the unsupervised domain
adaptation, our method achieves 4.7% gain on mean class accuracy
and 3.1% gain on overall accuracy, respectively. We also perform
an ablation experiment, eliminating MCD and using only PCT for
classification, and obtains a mean class accuracy of 92.2% and an
overall accuracy of 93.7%, which are lower than PCT+MCD. This
demonstrates the necessity of MCD.

To verify the significance of the improvement of our introduced
PCT+MCD, we perform two-tailed t-tests for mean class accuracy
of different methods. The t-test results show that the mean class
accuracy of PCT+MCD is significantly higher than that of PointNet
(t = —3.56, p =.002), PointNet++ (r = —4.31, p < .001), DGCNN
(t =—3.90, p < .001), PointDAN (t = —4.49, p < .001) and PCT
(t =—-3.12, p = .0006).

5 USER STUuDY

In this section, we conducted user study using the evaluation testbed
proposed by [4] to evaluate the straight-line walking and directional
control performance, agility, and user experience of our model for
locomotion in the virtual environment.

5.1 Participants

15 volunteers participated in this experiment, each of them use their
individual model trained by labeled dataset and their unlabeled data
to perform the virtual locomotion experiment. Note that if the partic-
ipant participated in the dataset collection experiment as mentioned
in Section (3.1} we remove his/her data from the dataset before train-
ing. There are 4 female volunteers and 11 male volunteers, and their
mean age is 25.6 and the standard deviation is 2.8. The mean value
of their familiarity with VR was 2.8, and the standard deviation



Table 2: Gesture classification results (%) of our method. “Mean”: mean class accuracy. “Overall”: overall accuracy. “average” row gives the
average of each column.

Standing ~ Walking  Jogging  Jumping Squatting down  Keeping squatting ~ Squattingup  Forward Backward Mean  Overall
S1 97.2 96.3 100.0 93.6 100.0 84.8 100.0 100.0 100.0 96.9 97.4
S2 91.2 97.8 100.0 74.5 100.0 76.9 100.0 100.0 94.9 92.8 93.0
S3 96.6 100.0 100.0 99.5 96.4 90.3 92.6 94.7 97.2 96.4 97.9
S4 97.3 95.6 99.0 67.6 90.2 89.2 96.4 96.1 100.0 92.4 94.5
S5 93.8 97.2 95.2 97.4 94.9 94.7 98.4 92.9 92.5 95.2 95.3
S6 91.8 95.2 94.4 100.0 89.2 87.5 92.8 91.2 96.7 93.2 93.6
S7 95.4 922 98.0 97.3 91.5 96.4 87.5 98.4 90.6 94.2 95.0
S8 87.7 97.1 100.0 100.0 100.0 66.7 97.8 97.5 97.4 93.8 95.7
S9 85.9 97.9 94.4 98.9 91.4 96.3 94.8 96.4 98.1 94.9 93.2
S10 87.9 97.7 96.3 99.6 100.0 75.8 98.6 98.0 93.2 94.1 94.8
average 92.5 96.7 97.7 92.8 95.3 85.9 95.9 96.5 96.0 94.4 95.0

Table 3: Comparison with other point cloud classification methods.
“Mean” and “Overall”: mean class accuracy and overall accuracy of
the 10 selected models.

Method Mean  Overall
PointNet [28] 90.7 93.0
PointNet++ [29] 88.5 91.5
DGCNN [45] 91.1 91.7
PointDAN [30] 89.7 91.9
PCT [10] 92.2 93.7
PCT+MCD(ours) 94.4 95.0

was 0.82. None of these volunteers suffered from severe motion
sickness.

5.2 Experimental Setup

We utilize 1 square meter of space in the center of the room for
moving in place and install two SteamVR Base Stations around the
space. Participants wear HTC VIVE Pro HMD and are attached two
VIVE trackers to their left and right thighs respectively. Participants
then performed a series of movements in place as described in
Section3.1.2]

We develop the virtual locomotion system in Unity3D. Our model
is deployed to the server through the torchservd’|framework, which
allows Unity clients to call the prediction model via HTTP requests.
We sample the user’s motion data at 30Hz and input samples to
the model every 180ms to predict the user’s gesture class. The
user’s forward direction is defined as the average value of the z-
axis rotation of the two VIVE trackers. When a backward step is
detected, we reverse the forward direction, and when a forward step
is detected, we reset the forward direction. When detecting a user
walking in place or jogging in place, we calculate the time between
steps (fsrep), Which is defined as:

Istep = |fmaxpm‘y _tminposyl

where tiqaxposy refers to the time corresponding to the last maximum
peak of the vertical position of the HMD, and #,inposy refers to the
time corresponding to the last minimum peak of the vertical position
of the HMD. A large fg., means that the user is walking slowly
and vice versa. Then we calculate the virtual locomotion speed of
walking (vyqiking) and jogging (v jogging ) With the equation proposed
by [40]:

tstep — Inin
Vwalking= 7 5 * (Vimax — Vmin) + Vinin
Imax — Inin

3https://pytorch.org/serve/

Vjogging = k*Vyaik

where [Lyqx, Imin] are respectively the upper and lower bounds of
tsteps and [Vipax, Vinin| are respectively the maximum and minimum
values of velocity. k is a constant greater than 1. When #y,), is less
than I, We S€t Viygiking t0 Vimax, and when the user is detected to be
standing, we Set Vy,qiking to 0. When a user is detected to be jumping,
we apply a forward and upward force to the rigid body of the user’s
virtual avatar, so that the avatar jumps forward. Finally, when the
user is detected to be squatting down or keeping squatting , we lower
the avatar’s view and collision body, and when the user is detected
to be squatting up, we reset the avatar’s view and collision body.

We selected several scenarios and tasks from the testbed [4]
which are relevant to our locomotion gestures for experiments. The
first scenario is called Straight Line Movement and consists of 4
tasks. Task 1 requires the user to walk towards the target spot,
following the green straight line on the ground as closely as possible.
Task 2 requires the user to walk through three progressively smaller
circular areas in sequence. Task 3 requires the user to follow a
circle, staying inside the circle as much as possible, which moves
forward at a variable speed. Task 4 requires the user to dash through
a straight corridor as fast as possible. The second direction control
scenario is used to evaluate the directional control performance of
the locomotion method and includes 5 tasks. First, the user walks
along the folded lines marked on the ground to reach several targets,
then the user must walk backward through a door while gazing at
the target ahead, after that, the user adjusts the appropriate direction
through a narrow and curved tunnel, without hitting the walls as
much as possible. Next, the user jumps through a staircase and walks
across a ramp. Finally, the user crosses a dangerous area on the edge
of the roof of a tall building and avoids falling from the roof. The
third agility scenario is used to evaluate the agility of the locomotion
method. This scenario requires the user to cross a corridor with
blocks of various shapes moving towards the user. The user has to
control the direction of movement and squat to avoid the oncoming
blocks.

Following the instructions [4]], we collect some objective met-
rics which focus on accuracy and latency for each task during the
experiment, which are classified as the Accuracy (AC) and the Error-
proneness (EP). We recommend that readers refer to [4] for detailed
explanation of these objective metrics. The questionnaire provided
by the testbed [4] is used to investigate user’s subjective feelings,
including Input sensitivity, Input responsiveness, Ease of use, Per-
ceived errors, Appropriateness and Satisfaction, and so on. Then we
use the SSQ tool [18]] to assess the symptoms of motion sickness
caused by our experiment (if any).

For comparison, we choose the improved LLCM-WIP [5] method
embedded in the testbed [4]]. This method attaches two VIVE track-
ers to the back of the user’s left and right calves. To be fair, we set
its forward direction to be the average of the z-axis value of rota-



tion of the two trackers, which is the same as our method. We also
trained a model of DGCNN for comparison purpose. Before the
experiment, participants will be assigned one of these three methods
without knowing which one it is.

5.3 Results
5.3.1 Error-proneness

The results of the error proneness collected during the experiment
are presented in Figure[7] The results show that our method has
significantly fewer errors than the LLCM-WIP method in Task 4 of
Scenario 1 and Task 2 of Scenario 2. This is because our method is
easy to toggle the forward or backward direction of movements and
has a relatively low start-stop delay. The LLCM-WIP method does
not have a backward mechanism, and the user has to turn his body
and turn his/her head backward, which leads to lower performance
in the backward task. However, our method has more errors than
LLCM-WIP in Task 3 of Scenario 1. In this task, the circle that
the user is chasing will suddenly accelerate at a moment and the
user tends to toggle from walking to jogging at this moment, so
the walking speed will increase suddenly from V,ygxing t0 Viogging
instead of increasing smoothly, resulting in the user having difficulty
in controlling the speed and then drifting out of the circle. In other
tasks, both our method and the LLCM-WIP method show a small
error proneness, and there is no significant difference between them.
We also found a slight increase in user error-proneness when using
the DGCNN model due to a decrease in classification accuracy
compared to the PCT+MCD model.

14| = PCT+MCD(ours) 1
= LLCMWIP 13
= DGCNN i

Number of times

Figure 7: Error proneness results.

5.3.2 Accuracy

The experimental results for the accuracy metric are presented in
Figure[8] We can conclude that our method is more accurate than
LLCM-WIP for Task 1 and Task 2 in Scenario 1 and Task 2 in
Scenario 2. When using our method, the user can walk closer to
the target straight line indicated on the ground and can stop more
accurately within the target range. The results on other tasks do not
show any significant difference between our method and LLCM-
WIP. When compared with DGCNN, our method is more accurate
on tasks of Scenario 2, but slightly less accurate than DGCNN on
tasks of Scenario 1.

5.3.3 Subjective Evaluation

We conducted a simulator sickness questionnaire before and after
the experiment, and we found that the experiment did not induce
motion sickness symptoms.

For latency, we asked users to respectively evaluate the input
responsiveness questionnaire at the end of each scenario experiment
and at the end of the full experiment. Users are asked to rate two
statements in a scale from 1 (Strongly Disagree) to 5 (Strongly
Agree), with the first statement being “The response to user input
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Figure 8: User study accuracy results. Each subplot illustrates an
objective metric.

was acceptable” and the second being “The response time did not
affect my performance”. The results show that the average rating
of PCT+MCD and LLCM-WIP are 4.7 (SD: 0.48) and 4.9 (SD:
0.32), respectively. We then perform the two-tailed t-test at the 5%
significance level and did not find a statistically significant difference
in the rating of PCT+MCD and LLCM-WIP delays (t = 1.095,
p = .288).

6 CONCLUSION

We presented an effective classification framework for classifying
9 in-place gestures for virtual locomotion. We propose to treat
several consecutive frames as a point cloud in which the HMD
and two VIVE trackers provide three points in each frame. We
design an end-to-end method by fusing supervised learning with
unsupervised domain adaptation. Experiments show that our method
achieves very promising outcomes, i.e., 95.0% overall accuracy and
a latency of 192ms. We also conducted user study to further verify
the effectiveness of our method.

However, the manual labeling of the dataset is time-consuming
and tedious, which limits us to build a larger dataset. In future, we
would like to speed up this with the aid of other techniques like
pose estimation [39]]. We also plan to increase the number of IMUs,
and fuse deep learning methods with traditional biomechanics-based
methods to improve accuracy.
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