Fine Virtual Manipulation with Hands of Different Sizes
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Abstract—Natural interaction with virtual objects relies on two major technology components: hand tracking and hand-object physics
simulation. There are functional solutions for these two components, but their hand representations may differ in size and skeletal
morphology, hence making the connection non-trivial. In this paper, we introduce a pose retargeting strategy to connect the tracked and
simulated hand representations, and we have formulated and solved this hand retargeting as an optimization problem. We have also
carried out a user study that demonstrates the effectiveness of our approach to enable fine manipulations that are slow and awkward

with naive approaches.
Index Terms—Hand simulation, hand tracking, pose retargeting.

1 INTRODUCTION

To date, VR has reached a high degree of visual realism, allowing
the creation of truly immersive virtual experiences [14,15,27]. When
virtual objects appear real, the next natural step is to reach out and start
interacting with them [6]. But this apparently simple action entails ad-
ditional tasks in VR: hand tracking and hand-object simulation, which
are typically solved independently. For hand tracking, the common
solution is to use computer vision methods, which output the skeletal
morphology and configuration of a hand that best matches the user’s
actual hand [20]. For hand-object simulation, the most general ap-
proach is to find the configuration of a simulated hand that takes the
tracked hand as goal, but is subject to a model of hand biomechanics
and the laws of contact mechanics [34]. Some modern commercial
hand-tracking solutions, such as Oculus Quest, provide some limited
hand interactions by building an ad-hoc physics-based model on top
of the tracked hand morphology. In our work, we address challenges
arising in the connection of hand tracking and hand-object simulation.
As a result, we aim for VR animations of fine object manipulation,
commanded by interactive hand tracking of the user’s hands.

When connecting hand tracking and hand-object simulation, we find
that the hand models used in these two tasks may differ in size and
skeletal morphology. These differences may be due to at least two
major reasons: First, it is non-trivial to produce a simulation model that
fits exactly the size and morphology of the user’s hand. Even though
embodying the user in an avatar with different hand size is perfectly
viable from a perceptual point of view [1], it is not free of technical
difficulties. Second, to leverage existing work in hand tracking and
hand simulation, it is convenient to integrate off-the-shelf solutions,
but it is unlikely that these solutions use hand representations with the
same skeletal morphology. For instance, there is no consensus on the
placement of joints across different hand representations, particularly
at the palm.

Due to these differences in hand size and skeletal morphology, the
hand pose computed by hand tracking cannot be directly input to hand-
object simulation. If the pose is applied naively, it results in inaccurate
finger configurations, which complicate dexterous manipulation of vir-
tual objects. Thanks to visual feedback of the simulated hand, the user
may correct the real hand pose and try to work around the mismatch.
We have found that this is sufficient for gross manipulation of virtual
objects. However, some finger configurations are impossible to reach
when the pose of the tracked hand is applied naively to the simulated
hand, which altogether prevents dexterous fine manipulation of virtual
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Fig. 1. Natural physics-based interaction with small objects. This VR
scene was implemented by connecting off-the-shelf hand tracking and
hand simulation solutions, which use hand models with different skeletal
morphology.

objects.

In this paper, we introduce a pose retargeting strategy to connect
the tracked hand and the simulated hand. Our approach works with
any type of tracking or simulation method, as it stands at the interface
between both tasks. We use an intermediate hand representation that
shares the size and morphology of the simulated hand, but which tries
to match the configuration of the tracked hand. The retargeting strategy
formulates an optimization of the pose of this intermediate hand, based
on features that represent the pose of the tracked hand. We have used
finger tip positions as features, as they represent key information for
fine manipulation. We describe the formulation and solution to the
optimization problem in Section 3, together with a brief summary of
the hand-object simulation using the CLAP library [34].

We have evaluated the practical impact of the hand mismatch on
the manipulation of virtual objects, and we have compared our pose
retargeting strategy vs. naive copy of the hand pose. To this end, we
have carried out a user study, discussed in Section 4, comparing task
performance of virtual object manipulation. We have confirmed that
the mismatch of the hand representation is not critical for gross manip-
ulation (i.e., large objects), but it is critical for fine manipulation (i.e.,
small objects). With our pose retargeting approach, the performance
of pick and drop actions for small objects is significantly faster than
the performance of naive strategies, and users also report increased
precision, naturalness and ease of manipulation.



2 RELATED WORK

The computation of skeletal configurations of hand models is at the
core of both hand tracking and hand simulation. These two lines of
research differ in the input data and the formulation of the computa-
tional problem, but both solve the pose of the hand (i.e., joint or bone
transformations).

Optical hand tracking takes as input images of hands or key feature
points, and computes the skeletal configuration of the hand that best
reproduces the input data. Modern methods can be classified into two
large sets. Discriminative methods work by directly regressing the
hand configuration based on the input data, and they require a training
step [2,5,10,16,22,33,35]. Generative methods, on the other hand,
work by finding the hand configuration that minimizes an objective
function, and require a hand model but no training [19,28,32]. Our hand
pose retargeting method shares the general methodology of generative
hand tracking methods. Also related to ours are the recent tracking
methods that are able to estimate the hand pose while manipulating
rigid objects [26,29]. However, physically-correct interactions cannot
be enforced since forces are not modeled.

Physics-based hand simulation aims to compute a hand configuration
that satisfies force equilibrium. The competing forces are dominated
by contact and joint constraints, but may also include soft-tissue de-
formation. The different approaches consider articulated hand repre-
sentations [3, 23], geometric flesh skinning [7], local skin deformation
at fingers [13,30], or full flesh deformation [8, 12]. The method of
Verschoor et al. [34], which we use for our hand simulation, formulates
the problem as an optimization. Our approach leverages the existing
solutions for the tracking and simulation components, and formulates a
simpler optimization problem whose goal is just to connect these two
components in a simple way.

There is a broad line of research that studies the effect of the hand
representation on the embodiment of the VR user [1]. Most works try
to understand how different aspects of VR visualization and interaction
affect embodiment, for example through analysis of the virtual hand
illusion [17]. This line of research is orthogonal to our work. Its
conclusions may indicate that embodiment is possible under notable
differences in the simulated hand, and this calls for methods that bridge
the tracked and simulated hand representations, such as our method.

While the focus of our work is hand simulation, the challenges and
methods parallel those of skeletal body animation. Some authors have
addressed the problem of motion retargeting across characters of very
diverse morphology [11], or even within video-to-video [4].

3 TRACKING-BASED HAND ANIMATION

As discussed in the introduction, we wish to drive a VR simulated
hand model using as input interactive hand tracking data. However, the
representations of the simulated hand and the tracked hand may differ
in size and skeletal morphology. Furthermore, the simulated hand is
constrained by contact with objects in the VR scene, while the tracked
hand is not.

We use an intermediate hand representation to connect the user’s
tracked hand and the VR simulated hand. This intermediate hand shares
some properties with the tracked hand (i.e., it is not constrained by
other VR objects), and other properties with the simulated hand (i.e., its
size and skeletal morphology). We characterize all three hand instances
by their skeletal pose 6. Then, formally we denote the three following
hand poses: 6! for the user’s tracked hand, 8" for the intermediate hand
representation, and 6° for the VR simulated hand. Let us emphasize
that, even though we use the same symbol 0 to conceptually repre-
sent pose for all three hand instances, the joint angles of the tracked
hand may have a different geometric interpretation from those of the
intermediate and simulated hands, due to the differences in skeletal
morphology. Recall that our method is general and works for any hand
representation, hand tracker, and hand simulation method. In our imple-
mentation, we use Leap Motion as tracker, with its corresponding hand
representation, and the MANO representation [25] for the simulated
hand. Figure 2 shows schematically the interconnection of all three
hand instances.

Fig. 2. Left: Tracked hand (in red), obtained using a Leap Motion tracker.
Right: VR simulated hand (skeleton in blue, flesh semitransparent) im-
plemented using CLAP [34] with MANO hand representation [25]. The
skeletal morphology differs, in particular at the palm and thumb joints.
Moreover, the simulated hand is constrained by contact with VR objects,
while the tracked hand is not. Middle: We connect both hands using an
intermediate representation (in green), which shares the morphology of
the simulated hand but matches the pose of the tracked hand.

The intermediate hand representation serves as target configuration
for the VR hand simulation. By matching the skeletal morphology of
the simulated hand, it is easy to formulate input forces and torques for
each bone in the simulated VR hand. These forces and torques are
combined with contact forces and elastic deformation forces to produce
the overall smooth simulation of the VR hand.

We start this section by describing a pose retargeting strategy to
compute the intermediate hand 8'. We motivate the formulation of
the strategy to optimize fine manipulation tasks, and we describe an
efficient solution algorithm. We conclude the section with a summary
of the physics-based hand simulation method.

3.1 Hand Pose Retargeting

Given a pose of the tracked hand 6", we wish to compute a pose
of the intermediate hand 60, such that it retains the most relevant
characteristics, despite skeletal differences. We do this by defining a
set of features f, and solving an optimization problem. Prior to this,
we apply a uniform scale to the tracked hand, such that it matches the
overall size of the simulated hand. We do this by fitting a bounding box
to an open palm pose.

The pose features should describe important characteristics of the
pose, but with no assumptions about the skeletal morphology or size. In
this work, we focus on the ability to manipulate small objects with high
dexterity; therefore, we define the feature vector f by concatenating
the positions of finger tips. In Section 4 we demonstrate that our pose
retargeting approach is effective at producing dexterous manipulations
of fine objects.

Based on this feature vector, we formulate the computation of the
intermediate hand pose as the solution to the following constrained
optimization problem:

o' = argrréiin% (f(oi) —f(Q‘))T w (f(ei) —f(et)) +R(6Y), (1)
st ¢(61) > 0.

In a nutshell, the optimization finds the pose of the intermediate hand
that produces features (i.e., finger tip positions) as close as possible
to those of the tracked hand. W represents a (diagonal) weight matrix
for the different features, which allows us to put more emphasis on
the motion of the thumb and the index, for very accurate pinching.
R(0") is a regularization term; we use a small spatial and temporal
regularization, to smooth interphalangeal rotations and avoid temporal
discontinuities. ¢(6') represents constraints, to handle joint limits in
the optimization.

We solve the optimization problem (1) iteratively using the Gauss-
Newton method [21]. On each iteration, given a current estimate 6,

of the pose of the intermediate hand, we linearize the feature vector as
f(e(i)) + % AB', and the active constraints as c(e(i)) + aagi AB'. Then,
with Lagrange multipliers A to enforce the active constraints, each
iteration of Gauss-Newton amounts to solving the following linear




Fig. 3. With our pose retargeting (top), thumb-index pinch motions of
the tracked hand are accurately reproduced on the simulated hand,

despite skeletal differences. Naive retargeting (bottom) does not reach
comparable accuracy, which complicates fine manipulation.
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To solve the linear system, we compute a Cholesky factorization of the

T 2
55 Wig+ ,;995
to compute the Lagrange multipliers A, and we conclude by computing
the pose update AG'.

Let us pay some attention to the computation of gradients aaefi . With-
out loss of generality, finger tip positions f; can be computed from the
hand pose as a concatenation of relative rotations:

matrix , then we use a Schur-complement approach

fj = Xwrist T Rpalm (Xpalm +Ry (Xl +R; (XZ +R3 XB))) )]

x; and Ry, denote, respectively, phalanx bone vectors and joint rotations.
For gradient computations, we use a tangent-space representation of
rotations [31]. In a nutshell, given the current joint rotation Ry, a
joint axis k, and a differential rotation angle ¢, the joint rotation can
be expressed as R = (I+ ¢ skew(k)) Ro. The gradient with respect

to the rotation angle is then simply 3% = skew(k)Rg. We use this

expression to compute the gradient of finger tip positions with respect
to each component of the hand pose in (3), and thus we assemble the

full gradient 3‘7; to be used in (2). In some joints, rotations have two
degrees of freedom, and are expressed as the concatenation of two
one-degree-of-freedom rotations.

Figure 3 depicts the accuracy of our pose retargeting strategy on
a thumb-index pinch pose. We also compare the accuracy of a naive
retargeting strategy. For this, we align the intermediate and tracked
hands using the base positions of the four fingers (which are very similar
on the Leap Motion and MANO skeletons), we place the palm and
thumb base joints based on the dimensions of the MANO skeleton, and
then we copy the relative Leap Motion pose to the intermediate MANO
hand. As shown in the figure, the naive strategy fails to reproduce pinch
poses correctly, which complicates fine manipulation.

The constrained Gauss-Newton solver requires on average 16 itera-
tions per frame. This amounts to a total cost of 5 ms. per frame in our
implementation on a commodity processor.

3.2 Hand Simulation

On every simulation frame, once the pose of the intermediate hand is
computed following the retargeting approach described above, we use
it to command the simulation of the VR hand. As mentioned in the
introduction, we use the freely available CLAP simulation library to
this end [34]. The decomposition of the hand animation into two sub-
problems, retargeting and simulation, simplifies the overall approach,
and allows us to leverage off-the-shelf simulation libraries. As a result,
we can create with no effort VR scenes with physics-based contact and
natural hand interaction, as the one shown in Figure 1.

Fig. 4. We have studied a cube manipulation task, where users were
asked to move a cube from A to B. In a user experiment, we have
compared Our pose retargeting Strategy vs. a Naive Strategy on two
Manipulation scenarios: Gross Manipulation (i.e., large cube, left) and
Fine Manipulation (i.e., small cube, right).

The hand simulation works as follows. Its degrees of freedom are:
the positions and orientations of bones (gathered as the pose of the sim-
ulated hand, 6%), the nodes of a tetrahedral decomposition of the skin,
and the position and orientation of a grasped object (if it exists). These
degrees of freedom are computed jointly on each simulation frame, by
solving an optimization-like formulation of implicit integration of the
deformation dynamics [9, 18]. The formulation of dynamics gathers
multiple potential energy terms, which model the physical behavior of
the hand, its interaction with the grasped object, and also the command
provided by hand tracking. The energy terms are: soft-tissue deforma-
tion energy of the skin, including a nonlinear term for hyperelasticity;
soft-constraint formulations of skeletal joints plus joint limits; skin-
skeleton coupling; non-penetration and frictional contact constraints
with the grasped object; and quadratic energy terms to penalize the
deviation between the simulated pose 6% and the intermediate pose 6'.

In practice, to set up the hand simulation, we first generate the rest-
shape geometry of the hand surface and the skeleton based on particular
values of the shape parameters of the MANO model [25]. Then, we
tetrahedralize the volume of the hand, connect internal nodes of the
tetrahedral mesh to the bones, and pass this simulation model to the
CLAP library [34]. The simulation model consists of 16 bones and
2,291 tetrahedra. The cost of the physics-based simulation is 51 ms. on
average per frame. This adds some latency, but it did not seem to affect
the quality of interaction.

4 USER EXPERIMENT

To evaluate our hand pose retargeting strategy and compare it to naive
retargeting, we have designed a user experiment. In this experiment,
users must execute a manipulation task, and the results confirm that our
pose retargeting strategy enables more effective manipulation of virtual
objects when fine dexterity is needed. In this section, we describe the
experiment and discuss the results.

4.1 Methods

Participants. A total of 20 right-handed participants (age in years:
range = 18-34, M = 26.2, SD = 4.04; 15 male and 5 female) took part in
the user study. They received no compensation. In addition to age, we
documented their hand size (range = 15.9-20.5 cm, M = 18.80, SD =
1.23) and prior VR experience (10 participants had experience, 10 had
none), in order to test the influence of these variables. All participants
confirmed correct vision with the HMD. The study was conducted in
accordance with the 1964 Declaration of Helsinki and was granted
ethical approval by the local ethics committee at Universidad Rey Juan
Carlos. All participants provided informed written consent beforehand.

Materials and experimental design. We studied a manipulation
task where users were asked to pick a cube with their thumb and index
finger from position A, move it to position B, and drop it there, as shown
in Figure 4. The interaction between the user’s hand and the cube, as
well as the interaction of the cube with the floor, were simulated with
full physics-based contact, as described in Section 3.2. However, we
disabled contact between the simulated hand and the floor. In the
absence of haptic feedback, we found that the response of floor-hand
contact could be unintuitive and distort the experiment. The scenarios



were developed in Unreal Engine, and were displayed on an Oculus
Rift HMD, with head tracking, to optimize vision-motion correlation
and make the manipulation task very natural. The hand of the user was
tracked using a Leap Motion device, mounted frontally on the HMD for
optimal tracking accuracy of grasping and pinching poses. The HMD
was sanitized after each use, and soft components were covered with
disposable hygienic pads.

The simulated VR hand was the same throughout the experiment.
It was a large hand, 21.4 cm long, generated by adjusting the value of
the main component of the statistical MANO model [25]. Therefore,
the skeletal morphology of both the simulated and intermediate hands
corresponded to the MANO model. The skeletal morphology of the
tracked hand corresponded instead to the morphology of the Leap
Motion model. Moreover, the size of the tracked hand was adapted to
each user, thanks to the built-in functionality of the Leap Motion.

Two different strategies were compared in the study: the pose retar-
geting strategy described in Section 3.1, referred to as Ours, and a naive
retargeting strategy carried out by aligning the palms of the tracked and
intermediate hands and then directly copying the joint angles of the
tracked hand to the intermediate hand, referred to as Naive.

In addition to the retargeting strategy, two different manipulation sce-
narios were studied: manipulation of a large cube 6 cm wide (i.e. Gross
Manipulation) and a small cube 1 cm wide (i.e. Fine Manipulation), as
shown in Figure 4.

Hypothesis. The initial hypothesis of the study is that the retargeting
strategy may have an effect on the dexterity of manipulation; therefore,
it may affect task performance on the Fine Manipulation scenario in
which the small cube is manipulated, and to a lesser or no extent on the
Gross Manipulation scenario in which the large cube is manipulated.

Experimental procedure. In each experimental trial, users were
asked to execute the cube manipulation task. Each participant tested
both types of Manipulation (i.e. Gross vs. Fine) under both Strategy
conditions (i.e. Naive vs. Ours), a total of five trials per Manipulation
and Strategy. Having five repetitions of the condition allowed us to
evaluate the effect of task learning. Participants completed five experi-
mental blocks, each with four trials, one per experimental condition;
on each block, the order of the four combinations of Manipulation and
Strategy was randomized, to avoid potential bias due to task learning.
Each experimental block lasted on average six minutes, and the full
procedure lasted 30 minutes.

Measures and questionnaire. The time needed to complete the
manipulation task in each experimental condition was measured. In
addition, participants were asked to complete a questionnaire during
the last experimental block, after each trial, i.e., once per condition.
The questionnaire contained three items (5-point Likert-type), and was
used to assess participants’ subjective feelings of dexterity of manipu-
lation in each experimental condition, in terms of Precision (defined to
participants as “the movements of the virtual hand respond precisely to
the movements made in reality”, and ranging from “Not precise at all”
to “Very precise”), Ease (defined to participants as “repetitions needed
to achieve the objective”, and ranging from “A lot of effort” to “Very
little effort”), and Naturalness (defined to participants as “the way of
grasping virtual objects corresponds to the way of grasping objects in
the real world” and ranging from “Not at all natural” to “Very natural”).

Data analysis. Data were statistically analyzed using R software.
Time data was analyzed with repeated measures analyses of variance
(ANOVA) with 2x2x5 within-subject factors Manipulation, Strategy
and Repetition. In case of significant interactions between factors, these
were followed by t-tests comparing all conditions against each other
to understand if there were differences between them, with the p-value
adjusted with the recommended Tukey method for comparing a family
of estimates [36].

For questionnaire data, we conducted non-parametric Friedman tests
to assess significant differences between the four conditions (i.e., Gross
and Fine Manipulation under both Strategy conditions, i.e., Naive vs.
Ours). Significant results were followed by pairwise comparisons using
Wilcoxon signed-rank tests comparing all four conditions against each
other, with the p-value adjusted using the Bonferroni multiple testing
correction method.
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Fig. 5. Mean (£SE) time to complete the task for the four experimental
conditions. Asterisks denote significant differences between means
(** denotes p<0.01). n.s. denotes no significant differences between
means. Note that only the relevant comparisons are displayed in the
figure; results from all comparisons are described in the main text.

4.2 Results and Analysis

Time to complete the task. As shown in Figure 5, the Manipulation
condition influenced the time to complete the task, but this influence
was different depending on the Strategy. The ANOVA on the time
data showed a significant difference between Manipulation conditions
(F(1,19)=15.21, p<0.001), due to longer times needed to complete
the task for the Fine than for the Gross Manipulation. Critically,
there was a significant interaction between Manipulation and Strat-
egy (F(1,19)=8.78, p=0.008). T-tests comparing the four conditions
against each other showed the expected significant difference between
the Gross and Fine Manipulation for the Naive Strategy (t(19)=4.881,
p<0.001), but this difference did not reach significance for Our Strat-
egy (p=0.34). Importantly, t-tests also revealed that, while there were
no significant differences between Strategies for the Gross Manipula-
tion (p=0.85), the time to complete the task for the Fine Manipulation
was significantly smaller for Our Strategy than for the Naive Strategy
condition (t(19)=3.52, p=0.006). This result indicates that the Fine
Manipulation was easier to perform with Our Strategy. This is further
evidenced by the results showing a significant difference between the
Fine Manipulation with Naive Strategy vs. Gross Manipulation with
Our Strategy (t(19)=4.36, p=0.001), but not between the Gross Manip-
ulation with Naive Strategy vs. Fine Manipulation with Our Strategy
(p=0.11).

Regarding the effect of Repetition, there was a significant main
effect (F(4,76)=10.01, p<0.001), showing an effect of learning with
more repetitions. Further, a significant interaction of Repetition with
the factor Manipulation (F(4,76)=4.71, p=0.002) was found; as it can
be seen in Figure 6-left, the effect of learning with more repetitions
was larger for the Fine than for the Gross Manipulation, because of
the task being easier for the Gross Manipulation, which was expected.
Importantly, there was also a significant interaction of Repetition with
the factor Strategy (F(4,76)=3.69, p=0.008), showing that the effect
of learning with more repetitions was larger for the Naive Strategy
than for Our Strategy. As it can be seen in Figure 6-right, for the
very first trial it took less time to perform the task with Our Strategy
than with the Naive strategy (t(19)=3.82, p=0.01). This suggests that
Our Strategy makes the task easier and more natural than the Naive
Strategy. There was not a significant triple interaction between the
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conditions (left) and for the two Strategy conditions (right) according to
participant’s hand size.

factors Repetition, Manipulation and Strategy, accounting for different
effects of Repetition for the two types of Manipulation with the two
different Strategies.

To test the potential influence of the individual factors age, hand
size and prior VR experience on the observed effects, we ran additional
ANOVAs with factors Manipulation and Strategy in which we added
age and hand size as covariates, and prior VR experience as a between-
subjects factor. We observed a significant interaction of the factor
Manipulation only for the factor hand size (F(1,18)=8.38, p=0.01).
As shown in Figure 7, while overall it took less time for participants
with smaller hand sizes to complete the task, this facilitation effect
for smaller hand sizes was more evident for the Fine Manipulation
condition. Importantly, the factors hand size, VR experience and age
did not interact significantly with the factor Strategy (all ps>0.12),
which indicates that the results related to Strategy were not significantly
affected by these factors.

Self-report measures. Figure 8 shows the participants’ subjec-
tive feelings of dexterity of manipulation, in terms of Precision, Ease
and Naturalness, for each of the four experimental conditions. The
precision score was statistically significantly different across condi-
tions (X2(3)=14.43, p=0.002). This was also the case for the effort
score (X?(3)=15.36, p=0.001) and the naturalness score (X*(3)=12.34,
p=0.006).

In terms of precision, pairwise Wilcoxon signed rank tests comparing
the four conditions against each other showed that participants felt
more precise in the Fine Manipulation with Our Strategy than with the
Naive Strategy (p=0.017), as shown in Figure 8-left. Further, for the
Naive Strategy, the Fine Manipulation felt significantly less precise
than the Gross Manipulation (p=0.021), while this was not the case for
Our Strategy, for which there were not significant differences between
Manipulation conditions. Other comparisons between conditions were
not significant either.

In terms of effort, pairwise Wilcoxon signed rank tests comparing
the four conditions against each other showed that participants felt
they had applied significantly less effort in the Fine Manipulation
with Our Strategy than with the Naive Strategy (p=0.013), as shown
in Figure 8-middle. The Fine Manipulation with the Naive Strategy
required also more effort than the Gross Manipulation both with the
Naive Strategy (p=0.008) and with Our Strategy (p=0.016). Other
comparisons between conditions were not significant.

In terms of naturalness, pairwise Wilcoxon signed rank tests com-
paring the four conditions against each other showed that participants
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Fig. 8. Median (tRange) self-reported scores for Precision, Ease and
Naturalness. Asterisks denote significant differences between means
(* denotes p< 0.05); n.s. denotes no significant differences between
means. Note that only the relevant comparisons are displayed in the
figure; results from all comparisons are described in the main text.

reported higher naturalness of the Fine Manipulation with Our Strategy
than with the Naive Strategy (p=0.047), as shown in Figure 8-right.
Further, for the Naive Strategy, the Fine Manipulation felt significantly
less natural than the Gross Manipulation (p=0.019), while this was not
the case for Our Strategy, for which there were not significant differ-
ences between Manipulation conditions. Other comparisons between
conditions were not significant either.

4.3 Discussion

The analysis of task performance and self-reporting of the user ex-
periment suggests benefits of the proposed pose retargeting strategy.
Moreover, these benefits appear independent of hand size, VR expe-
rience or age. First and foremost, Our Strategy exhibits significantly
better performance than the Naive Strategy for Fine Manipulation.
In addition, the Naive Strategy performs significantly worse on Fine
Manipulation vs. Gross Manipulation, while Our Strategy does not
exhibit a significant performance difference on these two Manipulation
conditions.

Hand size has an effect on performance for Fine Manipulation re-
gardless of the retargeting Strategy, but Our Strategy performs better
than the Naive Strategy consistently across hand sizes.

The questionnaires suggest that Our pose retargeting Strategy feels
significantly more precise, easier, and more natural for Fine Manip-
ulation. For Gross Manipulation, Our Strategy scores slightly lower
than the Naive Strategy, but the difference is not significant. This is
likely due to the inherent easiness of the Gross Manipulation scenario,
which is confirmed when analyzing task performance across repetitions:
Fine Manipulation benefits from learning more significantly than Gross
Manipulation. Similarly, the analysis of task performance across repeti-
tions indicates that the performance gain of Our Strategy is even larger
initially, which again suggests that it is more natural, i.e., it requires
less training.

5 LIMITATIONS AND FUTURE WORK

In this paper, we have proposed a method to retarget hand poses between
hands with different size and skeletal morphology. The method serves
for connecting off-the-shelf solutions for hand tracking and physics-
based hand simulation, avoiding the need to share a common hand
representation. The results of the user study indicate that our method is
effective for fine manipulation, achieving performance and naturalness
comparable to gross manipulation. From an applied point-of-view, our
hand retargeting approach could accelerate the development of VR
training applications requiring high dexterity and fine manipulation.
The key technical insight of the method is to formulate pose retar-
geting as the optimization of finger tip positions. This approach is
motivated by maximizing the accuracy of pinch poses, which are key
for fine manipulation. One interesting avenue of future work would



be to explore more diverse feature vectors and/or objective functions,
including other points in the hand, pose likelihood, etc. Similarly, the
user study could be extended by covering more diverse interaction
tasks.

Our hand retargeting method assumes that the shape of the simulated
VR hand is given. This is the case when the VR application uses a
hand of a fixed size, but one interesting extension would be to allow
the simulation of personalized hands, which would require changing
the shape of the simulated hand. Our current approach approximates
this step by estimating a uniform scale, which could be extended to the
estimation of, e.g., statistical shape parameters [25].

Currently, the retargeting method is applicable only to hands with
similar skeletal topology, e.g, with five fingers. However, the approach
could be extended to connect hands with very diverse skeletons, e.g.,
with a different number of fingers. The technical challenge is to define
relevant feature metrics for such diverse hands.
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