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ABSTRACT

Virtual Reality (VR) is a promising technology platform for immer-
sive visual analytics. However, the design space of VR analytics
interface design is vast and difficult to explore using traditional
A/B comparisons in formal or informal controlled experiments—
a fundamental part of an iterative design process. A key factor
that complicates such comparisons is the dataset. Exposing partici-
pants to the same dataset in all conditions introduces an unavoidable
learning effect. On the other hand, using different datasets for all
experimental conditions introduces the dataset itself as an uncon-
trolled variable, which reduces internal validity to an unacceptable
degree. In this paper, we propose to rectify this problem by intro-
ducing a generative process for synthesizing clustered datasets for
VR analytics experiments. This process generates datasets that are
distinct while simultaneously allowing systematic comparisons in
experiments. A key advantage is that these datasets can then be used
in iterative design processes. In a two-part experiment, we show the
validity of the generative process and demonstrate how new insights
in VR-based visual analytics can be gained using synthetic datasets.

Index Terms: Virtual Reality, Immersive Visual Analytics, Evalua-
tion

1 INTRODUCTION

The ability of Virtual Reality (VR) to immerse the user within a
3D world unlocks the potential of VR amplifying users’ ability to
understand and gain insights about complex spatial datasets. A
key factor to drive such development is the ability to carry out
iterative design and evaluation of new interaction techniques and
novel visualization representations with users.

However, a current obstacle for iterative design and evaluation
of immersive analytics is the fact the datasets involved form an
uncontrolled variable in any empirical evaluation. This is because
the assessment of how well users can manipulate, understand and
gain insights about datasets in a VR environment is intrinsically
linked to users’ exposure and learning of the datasets. At the same
time, it is not realistic to expect a large quantity of natural datasets
to be available—and even if they are—to be statistically equivalent
in terms of complexity, data density and other factors that may
influence user performance.

The central contribution in this paper is a solution to this problem
in the form of a generative process for synthesizing datasets that
allow designers and researchers to carry out iterative design and eval-
uation using successive A/B testing with the same set of participants.
This is otherwise problematic as the participants are going to learn
the intricacies the dataset and thus the (unavoidable) learning of the
dataset becomes an uncontrolled variable.
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There are currently two methods to mitigate this problem. The
first method is to use different datasets. However, if these datasets
are natural datasets then there is a high risk the characteristics of the
individual datasets will inadvertently become a variable that risks
explaining a large proportion of the variability between different
conditions. The second method is to change to a between-subjects
design and recruit new participants for each successive iteration,
which is expensive, reduces statistical power (as the variability of
each individual is no longer controlled across all conditions and/or
iterations), and prevents studying longer-term learning effects of the
interaction techniques or VR tools themselves.

In this paper we present a solution, which synthesizes 3D datasets
using a robust underlying process. This paper demonstrates that this
approach leads to datasets that still allow researchers to detect signif-
icant differences for different tasks over a variety of metrics, while at
the same time minimizing the influences of the datasets themselves
on the results. The process therefore allows repeated measures
designs in which, for example, the parameters of an interaction
technique can be manipulated, and the effects of such manipulation
quantified, without having to be overly concerned of the influence
of either participants learning a dataset or the intrinsic differences of
individual datasets dominating as explanatory variables.

Prior work [2, 22, 56] has introduced a form of synthetic data
generation. However, we note that none of these papers actually
check whether the dataset is itself an explanatory variable. This
introduces a risk of a systematic methodological error in the litera-
ture as failing to control for the dataset reduces internal validity. To
ensure rigorous findings from controlled experiments it is vital to
validate the instrument, in this case, the dataset. This requires devel-
oping a specific replicable and transparent mechanism for generating
synthetic datasets and carrying out specific controlled experiments
that ensure the dataset is indeed not an explanatory variable.

We address this gap in the literature by presenting a generative
method that allows the designer or researcher to quickly generate a
sample of color-coded clustered 3D data points of any desired size
(number of clusters and number of data points in clusters). Further,
the process allows parameter modifications to facilitate particular
needs for an individual study. While this generative process specif-
ically addresses clustering concerns, Bach et al. [2] reflect on the
fact that 3D point-clouds can represent a number of different 3D
visualizations, including, but not limited to, “3D-scatterplots, spe-
cific spacetime cubes, as well as biomedical images” [2] and thus
exhibit rich applicability. Importantly we validate that the dataset is
not an explanatory variable in two experiments specifically designed
to check this important property.

In summary, this paper makes the following contributions: (1)
We present a generative process for synthesizing surrogate clustered
datasets for use in virtual reality analytics design and evaluation. (2)
We show the validity of the approach in a two-part evaluation that
also demonstrates how new insights in VR analytics can be gained
using surrogate clustered datasets.

2 RELATED WORK

Evaluating visualizations in general is acknowledged to be challeng-
ing [51]. A systematic overview of these issues can be found in



task: Find and select all the clusters.

Double tap the [A] on the Controller when gazing cver
the data point to select entire cluster. Please note that
cluster colours may change between the tasks

Look here and hold [ A ]

@)

(©)

Figure 1: Interaction occurs through gaze-tracking and double tapping the [A] button on the Xbox controller. (a) shows a screenshot of the dialogue
scene with instructions of Task 1 as they are presented to the user in VR. (b) shows a gaze-operated orange cross-hair hovering over a data point
in a cluster (violet), which automatically highlights the gaze-acquired object, thus informing the user that it can be interacted with. (c) shows the
same cluster selected (semitransparent) once the user has double tapped the [A] button on the controller while gazing over an interactive object.

Isenberg et al. [17]. In general, the 3D world data category identified
by Shneiderman et al. [41] is a visualization category which “is
still controversial” [41] and brings additional challenges, echoed by
many others [5, 10,24, 40].

Comparing different three-dimensional information visualization
designs is a difficult problem, as pointed out by for example Wiss et
al. [54]. Certain designs are not suitable for some datasets and not
every interface can support all the fundamental user tasks as listed
by Shneiderman [39, 54].

Using artificial data as part of the experimental design is a prac-
tice that has been used before (e.g. [2, 13,22, 56]). However, no
prior study has considered the dataset itself as an explanatory vari-
able. In contrast, the objective of this work is to present an easy-to-
understand well-motivated non-data driven mechanism that allows
generating different clustered datasets while avoiding introducing
the dataset as an uncontrolled variable.

Holten et al. [13] used Gaussian distributions to generate point
clouds and background noise to evaluate different design variants of
parallel coordinate plots shown on a computer monitor. Holten et
al. [13] remark that to further generalize their findings they would
have to evaluate their visualizations on larger datasets and that the
selection of the data type is a potentially limiting factor [13]. The
dataset itself was not an explanatory variable.

In general, several prior studies have relied on generative ap-
proaches using Gaussian distributions [2,22,32,38]. Sedlmair et
al. [38] investigated separation factors for clustered data using real
and synthetically generated datasets. The specific synthetically gen-
erated datasets used in the research were selected based on the
authors’ prior experience. Bach et al. [2] and Prouzeau et al. [32]
prepared a number of clustered datasets for evaluating immersive
interfaces using Gaussian distributions. Bach et al. [2] studied the
impact of an augmented reality head-mounted display, a tablet and
a desktop computer on users’ understanding of 3D visualizations
while Prouzeau et al. [32] explored scatterplots in VR. None of these
studies controlled for the dataset itself.

Kraus et al. [22] studied the impact of immersion on cluster
identification tasks in scatterplot visualizations. Kraus et al. [22]
generated datasets by manually creating data points, which were
subsequently transformed into clusters using a clustering algorithm.
Additional noise was inserted by randomly inserting data points.
Kraus et al. [22] did not explicitly control for the impact of the
dataset itself.

Further examples of synthesizing datasets with various charac-
teristics can be found in Theodoridis et al. [44], Matejka et al. [28]
and Manniono et al. [27]. These datasets were not considered in
immersive environments and only Manniono et al. [27] carried out a
user study, which did not control for the impact of the dataset itself.

Clusters represent an important class of features [2, 13,22, 38].

However, they are not the only ones encountered in real-world data
[27,28]. For example, the scaganostics approach that describes
various methods of interpreting appearance of data on the scatterplots
or graphs [45] catalogues and reasons about data traits, such as
trends, outliers, smears or other possible anomalies [45,52,53].

Some of these features can be easily incorporated to aid a gen-
erative process. For example, outliers can be randomly added to a
particular cluster or to the dataset as a whole by randomly generating
data points outside of clusters or their bounding volumes.

Another approach to data generation was proposed by Yang et
al. [56], which used the MINST dataset of handwritten digits [26]
as well as the t-SNE dimensionality reduction technique [47] to
synthesize point clouds. Filho et al. [9,48] relied in their experiments
on a dataset constructed out of real-world voting data. Furthermore,
Bach et al. [3] proposed a method of generating random graph data.

3 APPROACH

The difficulty in evaluating visualization techniques is exacerbated
in VR. All problems identified by, for example, Isenberg et al. [17]
still apply. These concerns, among others, include validation, verifi-
cation, and concerns about reproducibility, as well as approaches for
rigorous evaluation of effectiveness, efficiency and aesthetics of a
given visualization tool.

In addition, VR in itself introduces several additional design
variables, such as the navigation strategy, means of supporting spatial
awareness, and effective direct and indirect manipulation techniques.
Other classes of well-known problems include overplotting and
occlusion [33]. Yet, to successfully navigate this design space, it will
be necessary to empirically compare different interaction solutions.
However, this raises a methodological problem in that the dataset
itself is an important explanatory variable of user behavior.

This paper proposes a solution to this problem, which is relying
on generating datasets based on a model. The generated datasets
share similar fundamental characteristics and virtually any number
of them can be generated in a matter of seconds. Depending on
their needs, designers and researchers can change design parameters,
such as the number of clusters or their densities. To decide upon
the clusters’ placements in 3D space, the process adopts a random
walk (Brownian motion [8,42] or Wiener process [50]). This model
is widely used in physical chemistry, computational physics, stock
market models and crystallography [29,49]. A random walk is by its
nature self-similar [6,12], which is in itself a beneficial characteristic
as many datasets also have some sort of fractal structure.

4 GENERATING SYNTHETIC CLUSTERS

The generative process can be split into four steps: (1) determine
the position of the central point of each cluster in 3D space; (2)



Require:
Number of clusters N
Set of K distinguished colors

Ensure:
N>0
K>0

1: clusters < GETEMPTYLIST(void)

2: Dy < GETEMPTYMATRIX (void)

3: i1

4: while i <N do

5: cluster < GENERATECLUSTER(N, clusters)

6: APPENDCLUSTER(cluster, clusters)

7: i+—i+1

8: ASSIGNCOLORS(clusters,K)

9:
10: procedure GENERATECLUSTER(N, clusters)
11: brownian <+ DRAWBROWNIANTRAIL(2N)
12: while True do
13: s <~ DRAWFROMPOISSON(void)
14: if s <N then
15: > Append current trail with s — N samples.
16: brownian <— APPENDBROWNIANTRAIL(N + s)
17: N=N+s
18: P < brownian|s|
19: if P was not drawn before then
20: size <~ DRAWSIZEFROMPOWER (void)
21: cluster < GENERATE3DPOINTCLOUD (P, size)
22: S < SETBOUNDINGSPHERE(cluster,r,0)
23: if S overlap acceptable with others then
24: UPDATEDMATRIX (D, )
25: return cluster
26:
27: procedure GENERATE3DPOINTCLOUD(P, n)
28: > Generate cluster of size n using A (2, 11).
29: s < SETSIGMA (void)
30: points < GETEMPTYLIST(void)
31: while i < n do
32: Py, ¢ GETCOORDNORMDIST(62 = 5,1t = Py ;)
33: APPENDPOINT(p, points)
34: i—i+1
35: return points
36:

37: procedure SETBOUNDINGSPHERE(C, 1, O)

38: > Set bounding sphere surrounding entire cluster C.

39: S < SETSPHERE(C, 1, 0)
40: return S

Algorithm 1: An algorithm describing in pseudocode the surrogate
dataset generation method. For clarity, the color-coding function is
presented in detail in separate Algorithm 2.

determine the size of each individual cluster; (3) generate samples
of data around each clusters’ central points; and (4) color-code all
individual clusters. Pseudocode for both the generation process and

color-coding are shown in Algorithm 1 and Algorithm 2 respectively.

The cluster’s size and, indirectly, its spatial spread of individual data
points influence if a newly generated cluster will be included within
the dataset or regenerated again if it overlaps with other clusters
above a certain threshold. As the last, non-mandatory step, all points
are translated so the bounding sphere spanning along the entire
dataset has its center at the axes-origin, which is also where our
testing framework described later in this paper initially places the
user. We will now describe steps 14 in detail.

4.1 Cluster Placement in the 3D Space

We first generate a 3D Brownian motion trail, which results in
a set of 2N candidate points for possible cluster placements (see
DrawBrownianTrail () in Algorithm 1). We then draw cluster
placements Py, P, ..., Py from this set of candidate points by succes-
sively sampling from a Poisson distribution with the rate parameter
A = N (see DrawFromPoisson() in Algorithm 1). If the candidate
P; was drawn previously, a new cluster is generated about this point.
This cluster is either added to the dataset or it is disregarded due to
it exceeding the overlapping threshold with pre-existing clusters. In
the case when the newly generated cluster is discarded, the candidate
point necessitating this new cluster is disregarded as an optimization
step as it may provoke repeated overlap. Instead, once the candidate
is disregarded, a new candidate P; is generated in its place.

4.2 Cluster Size

To determine the cluster’s size in terms of its total number of data
points we sample from a power-law probability distribution f(x,a) =
ax*~!, with a = 123, x € [0,1] (see DrawSizeFromPower() in
Algorithm 1). The choice of a power-law is motivated by its scale-
invariance and by how frequently many physical, biological and
artificial systems generate this relationship.

Once a cluster size is determined, we successively generate the
desired number of points by sampling from a multivariate normal
distribution .4 (1 = P;, 6°) (see GetCoordFromNormDist () in
Algorithm 1)

4.3 Maximally Acceptable Overlap

There are many ways to define an overlap. For example, it can be
determined by the total number of individual volumetric markers
that occupy the same space. Another possibility is to consider a
cluster as a chunk of space that is occupied by all its elements. Such
a slice can be obtained by encapsulating it within a bounding body.
Although not very precise, this method is not only conceptually
and computationally simple but also commonly used in computer
graphics [25] and it is the approach taken here. This approach does
not generate clusters within the spheres but is using the bounding
volumes calculated on top of the pre-generated set of 3D volumetric
points. Such clusters can take on any shape due to their pseudo-
random generation process. Using a bounding body may also be
convenient when managing dynamic datasets where the overlap may
have to be quickly recalculated during program execution.

We first calculate bounding spheres using Ritter’s algorithm. [34]
(see SetBoundingSphere () in Algorithm 1). We then define an
overlap level o; j of two clusters x; and x; as a function of the
Euclidean distance between the centers of their respective bounding
spheres w; ; = d(x;,x;) and the sum of their respective radii:

Wi j

oy =201 = (ri+rj)”

()]

If w; j = ri +r; (that is, 0; j = 0), the clusters overlap in a single
point, that is. their respective bounding spheres touch each other. If
0;,j < 0, the spheres are disjoint and if 0; ; > 0, the clusters overlap.

The values of o; ; are compared with thresholds #; ; to decide
if the overlap is acceptable or not. Each ¢ ; is sampled from a
power-law probability distribution with density a = 12/3, x € [0, 1]
(see DrawSizeFromPower () in Algorithm 1). If any of the thresh-
olds are exceeded, the cluster is disregarded. Optionally, the algo-
rithm’s decision can be assessed independently either by inspection
or by automatically using any of the well known clustering algo-
rithms [35,55]. Since the data points are generated in clusters this
information can be overlaid with clusters determined separately by
a clustering algorithm to automatically estimate the percentage of
points overlapping with the other clusters.
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Figure 2: The figure shows the synthetic datasets A, B and C respectively, each containing N = 15 clusters. The datasets are presented from
different angles, selected to emphasize the spatial distribution of each individual cluster. The figure also shows the bounding spheres of all
individual clusters (in green) and the overall bounding sphere (in black) with its center (green dot).

4.4 Cluster Coloring

Coloring clusters is a non-trivial task as factors, such as distance
between clusters, their spatial distribution and the limited number of
perceptually distinct colors, have to be considered. In addition, a fur-
ther design constraint is the desire to reduce the risk of overlapping
clusters with the same color. We color code the clusters according to
a heuristic method that is independent from the generation method,
and incorporates all of the above factors (see AssignColors() in
Algorithm 2). The algorithm starts by assigning a color Qg to the
first cluster located at xy. Next, in each step, by using a greedy opti-
mization procedure, we choose the color for one cluster located at
x;. First, for all colors cy,c3,...,cx we calculate quality coefficients
A(cy) (see GetCoeff() in Algorithm 2) defined as

i—1
Alcr) = Y wi [ K —g(Qj,e0), @)
Jj=1

where the weights wj, ; are inverse and squared to ensure that the
further away the clusters are, the smaller impact this distance will
have on their color assignment, K is the number of available colors
and g is a minimal color distance between the clusters defined as:

g(ci,c;) =min(|c; — cj|,M — |c; — ¢j|). 3)

In our case, c is an integer index that can be easily mapped to the
respective color from a set of K = 12 different colors downloaded
from the ColorBrewer2.0 [7]. The coefficient M is either equal to
M = K when K is even, or M = K + 1 otherwise. Subsequently,
we pick argmin(A(c;)) as the desired color. The whole operation
has O(N2K) time complexity. For a reasonably small number of
clusters, the weights w and color distances g are calculated when
needed. However, the method can be optimized by pre-computing
all of w; j and g(c;,c;). The symmetric matrix containing all pre-
computed distances w; ; between all pairs of clusters would look as
follows:

0 w2 o wi,
war 0 e wpy,
4)
Wni Wnp2 - 0

5 IMMERSIVE ANALYICS ENVIRONMENT

We built a VR analytics environment to visualize the generated
clusters and to be able to interact with them using the Unity game
engine and additional freely available assets [1,46].

We used the Oculus Rift [1] supported by a high-end laptop
computer. Hardware included the GeForce GTX 1080, Intel Core i7
6700K 4GHz and 16GB DDR4 RAM working under Windows 10
Pro 64bit.

An example of a visualization of a scatter plot can be seen in
Fig. 1, which features four distinctive clusters, with the violet clus-
ters presented before (b) and after selection (c). Each cluster is
constructed from a set of points visualized as volumetric objects.

Clusters are visualized by grouping points together in terms of
their respective attributes, such as colors and placements in 3D
space. However, the final assessment on whether a point belongs to
a particular cluster or not is left to the user, and only once the point
is selected the whole cluster instantly becomes translucent.

Movement in any direction in 3D space is achieved using an Xbox
controller. Movement occurs with respect to the user’s gaze and
current position within the VR environment. To move within the
horizontal plane the user tilts the joystick. To move along the vertical
plane the user presses one of the controller triggers (right to go up
1t and left to go down |}). These actions can occur simultaneously,
thus allowing any movement trajectory.

When the user hovers over a data point (see Fig. 1) with the
cross-hair, the system automatically highlights the data point by
instantly changing its color to white. Once a user is gazing over any
of the data points in a cluster, the cluster can be selected by double
tapping the [A] button. This makes all the elements belonging to the
selected cluster translucent, as suggested by Rekimoto et al. [20] (see
Fig. 1). Choosing this selection method helps to decrease occlusion,
as pointed out by Shneiderman [40].

The environment partially supports six of Shneiderman’s et al.
[41] seven basic information visualization tasks (details-on-demand
task is not implemented). Among the remaining six, the overview
task and the zoom task are supported by the user’s movement ca-
pabilities in 3D space. The relate task is part of the visualization
itself through a mixture of cluster elements’ color-coding and their
placement in space. To a limited extent, the filter and history tasks
are supported by keeping previously selected clusters translucent.



Table 1: The 2" and 41" columns list indexes of selected colors and overlapping clusters respectively, whereas the 3™ one denotes their sizes.

Dataset Selected colors Sizes (the largest and smallest are in bold) Overlapping
A {0,6,0,7,7,1,8,2,9,2,8,1,7,0,6} {66,99,69,32,30,62,94,94,64,92,88,42,44,14,98} {0,3,12,13}
B {0,6,0,7,1,8,2,9,6,0,7,0,1,6,11} {87,78,85,85,18,62,15,73,99,73,62,32,95,20,74} {3,4,9,10,13}
C {0,6,7,1,0,7,0,7,1,8,1,2,8,9,2} {66,30,50,33,75,95,45,71,97,75,39,77,86,27,80} {10,9,2,3}
D {0,6,7,0,7,6,0,11,1,0,5,1,8,2,9} {37,92,46,22,58,19,22,73,96,71,94,94,65,84,18} {9,13,4,12}
E 10,6,0,7,1,8,6,2,11,4,9,10,11, 4,11} | {73,43,21,55,10,86,065,15,4,92,76,62,74,97,91} | {3,4,9,11,12,13, 14}
F {0,6,11,4,10,4,3,10,9,3,10,4,11,10,4} | {86,72,88,84,54,92,55,83,63,58,30,606,54,96,24} {9,10,4,6}

(D)

(F)

Figure 3: Surrogate datasets D, E and F. The main characteristics of the datasets are the same as for A, B and C.

6 VALIDATION

We validated the generative process in two experiments with identi-
cal designs. The validation had two objectives. First, to investigate
whether the generative process resulted in suitable clusters for an-
alytics design and evaluation. Second, to assess how much of the
variability that can be explained by treating the dataset as an inde-
pendent variable in a typical analytics experimental task.

Ideally the dataset variable can be treated as a controlled variable
across several A/B studies, which then allows iterative A/B test-
ing and fine-tuning of VR analytics interaction techniques without
worrying about 1) the learning effect of using a specific dataset in
every single condition; or 2) an undue noise effect arising from using
datasets with widely different characteristics in every condition.

We find that, overall, the dataset does not result in significant
differences at a weak significance level of o = 0.05, which suggests
designers and researchers can use the generative process described in
this paper to keep generating new datasets for every within-subject
condition and thereby eliminate the learning effect of using a specific
dataset in every condition.

As we wanted to validate the generation method, we investigated
the strength of the null hypothesis that there will be no noticeable
significant performance differences between users for both the task
type and dataset. While accepting the null hypothesis does not form
conclusive evidence that it is true, failing to reject the null hypothesis
at a significance level of @ = 0.05 (which is a weak significance level
and therefore conservative in this case), indicates that for practical
purposes of standard A/B testing, the dataset itself is unlikely to
be the dominant explanatory variable of any experimental results.
In addition, we also report effect sizes which help quantify how
much of the variability is explained by treating the dataset as an
independent variable.

To examine the sensitivity of the participant groups and datasets
themselves, we split the study into two independent experiments car-
ried out as within-subjects designs that were later analyzed together.

6.1 Participants

For the first experiment we recruited 18 participants using
opportunity-sampling. All of them were pre-screened with a short
version of the Ishihara’s [18] color deficiency test before commenc-
ing the experiment. Participants were within the age of 2247, with
the majority being under 30 years of age. Four of them were female
and 14 were male.

For the second experiment we recruited 21 participants using
opportunity-sampling. Half were female and half were male. The
youngest participant was 22 years old and only three participants
were above the age of 30.

6.2 Procedure

We used the generative process presented in this paper to generate six
datasets for two identically designed experiments. Fig. 2 and Fig. 3
show Matplotlib [15] visualizations of the datasets A, B, C and D, E,
F used in both experiments, respectively. The main characteristics
of these datasets are listed in Tab. 1.

The two experiments were carried out in an identical fashion.
Both were split into three series of three tasks and each series had a
balanced order of the three tasks and used its own generated dataset
(see Tab. 2).

After each cycle we asked participants to fill out a set of question-
naires, the NASA Task Load Index (NASA TLX) [11], the Simulator
Sickness Questionnaire (SSQ) by Bouchard et al. [4] and originally
developed by Kennedy et al. [21], and an English version of the
Igroup Presence Questionnaire (IPQ) [16] administered through a
web-based interface. We decided not to ask participants to fill out the
forms after each individual task as this would significantly extend
the time required to finish the experiment, which in turn would have
an effect on a participant’s levels of fatigue and overall performance.
An analysis of these forms revealed slight increase in nausea and/or
oculo-motor effects in the majority of the participants (13 in the first
and 10 in the second study, respectively). However, in no case did



Require:
List of clusters
Set of K indexed colors
Ensure:
K>0
1: procedure ASSIGNCOLORS(clusters,K)
2 N = LEN(clusters)
3 if N < K then > If we have less clusters than colors.
4 COLORCLUSTERS (K, clusters)
5: EXIT(SUCCESS)
6: picked <+ GETEMPTYLIST(N)
7
8

picked|0] = colors[0] > Set color of first cluster.

: i+ 0

9: while i <N do

10: A < GETEMPTYLIST(K)
11: j<0

12: while j < ido

13: ifw,-yj # (0 then

14: Ali] = GETCOEFE(colors, i, j,K,A)
15: j—Jj+1

16: picked|i] = colors]MAPTOINDEX (A[i])]
17: i—i+1

18: COLORCLUSTERS (picked, clusters)

19:
20: procedure GETCOEFF(colors,i, j,K,A)
21: k<0
22: while k < K do
23: d = |colors[i] — colors]j]|
24: if K is even th2en
25: Alk] =w; 7 (K —MIN(d,K —d))
26: else 5
27: Alk]=w; (K —MIN(d,K +1—d))
28: k—k+1
29: return ARGMIN(A)

Algorithm 2: The color coding procedure. The pseudocode assumes
that all vectors starts with an index O.

a participant decide to stop the experiment or to directly report any
moderate or severe symptoms.

Participants were orally briefed before the experiment and task-
specific instructions and a written repetition of the oral brief were
provided through the HMD before a participant begun a new task, as
shown in Fig. 1. Participants were instructed to carry out the tasks
as quickly and as accurately as possible.

6.3 Tasks

Participants were instructed to perform three tasks for all three
datasets in each experiment. 7/: Find and select all the clusters;
T2: Find the smallest cluster and the largest cluster in terms of
the total number of data points. Pick them in either order. There
may be more clusters of the same size; 73: Find and select all the
overlapping clusters. The tasks required the users to visually inspect
the individual clusters and understand their spatial (7/ and 73) or
quantitative (72) relation to other clusters, rather than any detailed
knowledge of their specific parameters, such as the exact number of
data points in a cluster.

There are many tasks that can be considered here (e.g. [37,48]).
However, as remarked by Wijk [51], such low-level tasks as T/-T3
are often a subject of consideration in the information visualization
community. We chose tasks that are widely used and representa-
tive at large. Further work can study other tasks, if necessary, as
method development is an organic process that requires an active
research community willing to investigate different effects, variants
and tweaks.

Table 2: The order of the tasks (7'1 — 7'3) and accompanying datasets
(A — F) was repeated for each consecutive group of six participants.
We chose this ordering as balancing of the datasets was deemed
more important as we were primarily interested in the differences
between the datasets rather than the particular tasks.

Tasks execution order Datasets order
A(T1,T2,T3) | B(T2,T3,T1) | C(T3,T1,T2) ABC
A(T2,T3,T1) | C(T3,T1,T2) | B(T1,T2,T3) ACB
B(T3,T1,T2) | A(T1,T2,T3) | C(T2,T3,T1) BAC
C(T1,T2,T3) | A(T2,T3,T1) | B(T3,T1,T2) CAB
B(T2,T3,T1) | C(T3,T1,T2) | A(T1,T2,T3) BCA
C(T3,T1,T2) | B(T1,T2,T3) | A(T2,T3,T1) CBA
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Figure 4: Task completion times with standard error. As expected, task
T1 took the least amount of time to complete across all the datasets.
The colors indicate the datasets (see Table 2). The statistically signifi-
cant differences (p < 0.001) between the tasks are marked with three
asterisks. “ns” denotes no difference (p > 0.05).

The system automatically marked the tasks as completed and
displayed a completion message to the participant as soon as all the
clusters were selected. Participant were not given information of
any errors in their responses.

6.4 Results

A General Linear Model three-way mixed repeated measures anal-
ysis of variance (ANOVA) was used to analyze task completion
times, rotation and travelled distance measurements. Time durations
were log-transformed prior to analysis. Error counts were analyzed
using a Generalized Linear Model using a log-Poisson kernel. All
statistical analyses were carried out at an initial significance level
of a = 0.05, which was adjusted for multiple comparisons with
Holm-Bonferroni correction, where applicable.

The NASA TLX, IPQ and SSQ scores were analyzed using Fried-
man’s test. However, no significant differences were detected so for
brevity we omit these results in the analysis.

6.4.1 Task Completion Times

The first timestamp of each task was taken the moment the task
scene was loaded. Each participant’s selection, including subse-
quent repeated selections, were also timestamped and recorded in
sequence. The difference between the first timestamp and the last
timestamp that fulfilled the task’s requirements was calculated as
task completion time. Fig. 4 summarizes task completion times.
No statistically significant effects were detected between the
two experiments (Fy 34 = .487, n; =.012, p = .527) with respect to
task completion times. All the possible interaction combinations



Table 3: Total counts of the two kinds of errors: “repeated selection”
and the “wrong identification” for each task (77, T2 and T3) and
dataset (4, B, C and D, E, F) separated by backslash (\).

A B C D E F
TI | 76\76 | 72\72 | 55\55 | 33\33 | 50\50 | 31\31
T2 | 40\85 | 22\95 | 13\78 | 19\66 | 17\69 | 7\73
T3 | 20\53 | 31\93 | 35\85 | 5\73 | 18\27 | 64\71

were also insignificant. However, there were statistically significant
differences between tasks (I3 63 = 36.267,n,% = .516,p < .001).
Pairwise comparisons of the tasks revealed, as expected, that there
were also significant differences (p < .001) between 77 and both
T2 and T3. The difference between 72 and 73 was not significant
(p = .205).

In other words, the differences between the datasets were insignif-
icant, but the tasks did indeed result in significant differences. This
demonstrates that the process of synthesizing datasets does result
in comparable datasets that can still be used to detect significant
differences across tasks.

6.4.2 Errors

For all tasks, an error will occur if the participant repetitively selects
any of the previously selected clusters (see Fig. 3). In the case of
task 72, an additional type of error happens if the participant selects
neither the smallest, nor the largest, cluster. The same happens if
a non-overlapping cluster is selected in task 73. To reduce the risk
that the analysis model is overdispersed, we discarded outliers three
standard deviations away from the mean.

An analysis using a general linearized model with a log-Poisson
kernel revealed that only tasks (y2 = 9.454,df = 2, p = .009) are
significant predictors of errors whereas the datasets are not. The
interaction was insignificant. Linearly independent pairwise compar-
isons of estimated marginal means revealed a statistically significant
difference between 71 and 72 (d f = 1, p = .016). This outcome was
to be expected, as tasks 7/ and 72 required selection of the largest
(N = 15) and the smallest number (N = 2) of clusters respectively
(see Tab. 1).

The same analysis was repeated for task-specific errors labeled
as “incorrect identification” (see Tab. 3). Specifically, this included
repeated selections in task 77, failing to select the largest or the
smallest cluster in task 72, or selecting a non-overlapping cluster
in task 73. The differences were not statistically significant for the
datasets. However, both tasks (y2 = 11.678,df = 2, p = .003) and
the interaction (y2 = 9.588,df = 4, p = .048) of the factors were
statistically significant. Further analysis of linearly independent
pairwise comparisons of estimated marginal means revealed sta-
tistically significant differences between task 7/ and both task 72
df=1,p=.002) and T3 (df = 1, p = .018) respectively. There
were also statistically significant differences in the interaction ob-
served between B(T'1) & B(T3) (df =1,p=.019), B(T3) & C(T1)
df=1,p<.001)and C(T1) & C(T3) (df =1,p =.036).

For the second study, the tasks were significant predictors of
errors (y% = 14.269,df = 2, p < .001) whereas the datasets were
not. An interaction analysis also revealed no statistically significant
results. Pairwise comparisons of estimated marginal means revealed
statistically significant differences between task 77 and task 72
df=1,p=.011)and 73 (df = 1, p = .004). In addition, pairwise
comparisons also revealed statistically significant results between
the interaction of dataset/task D(T'1) & D(T3) (df = 1,p = .009)
and D(T'1) & F(T2) (df = 1,p = .037). As before, only the tasks
(x* =8.836,df =2, p = .012) were significant predictors of errors,
whereas the interaction of tasks and the datasets were not. As in
the first study, pairwise comparisons of estimated marginal means
revealed a statistically significant difference between task 7/ and
task 72 (df = 1, p = .008). Pairwise comparisons of interactions
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Figure 5: Cumulative head rotation data in degrees with the T-bars
denoting the standard error. The statistically significant differences
between the tasks are marked with asterisks (two and three asterisks
for p <0.01 and p < 0.001 respectively).

between dataset/task revealed that D(T'3) & E(T'3) were statistically
significant (df =1, p = .038).

6.4.3 Head Rotation and Traveled Distance

To calculate an approximation of the user’s head rotation we cap-
tured the forward vector extending from the middle of camera’s
frustum together with changes in the camera position. The angles
between successive records of the forward vectors were summed
to provide an estimation of total change in the user’s head rotation.
The analysis of this measurement yielded statistically significant
differences between tasks (F> 63 = 34.312,113 =.502,p < .001)
and of the interaction between the experiments and the datasets
(F268 = 3.714, ng =.098, p = .029), which appears to be driven by
datasets B and C (see Fig. 5). No statistically significant effects were
observed between the two experiments with respect to head rotation.
As expected, pairwise comparisons of the estimated marginal means
revealed significant differences between all three tasks, 7/ and 72
(p <.001), TI and T3 (p < .001) and 72 and 73 (p = .004).

The Euclidean distance between consecutive points were used to
compute the length of the user’s trajectory in the VR environment;
the results are shown in Fig. 6. Statistically significant differences
were found between tasks (F3 g3 = 19.447, "71% =.364,p <.001) and

between datasets (F> g3 = 4.85771112, =.125,p = .011). However,
there was no significant difference between the experiments. As
expected, a pairwise comparison revealed statistically significant
differences between 77 and 72 (p < .001) and 71 and 73 (p < .001).
Again, the difference between the datasets appear to be driven by
datasets B and C (see Fig. 6).

We conjecture the differences between the datasets is due to the
variation in vertical organization of the clusters in relation to the
natural gaze patterns of the users. In other words, users are more
likely to scan the scene laterally than looking up and down. This
effect is likely a good indicator of how to place data in the VR
environment and to study solutions for mitigating the problem when
this is not possible, such as navigation or spatial awareness aids that
can assist the user in fully exploiting the VR visualization.

7 DiscussSION

This paper has presented a generative process for synthesizing sur-
rogate clustered datasets that allow iterative design and evaluation
of interaction techniques and visualization representations in VR
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Figure 6: Total traveled distance in Unity3D’s native units with the
T-bars denoting the standard error. As expected, the least amount
of movement was observed in task T7 across all the datasets. The
statistically significant differences (p < 0.001) between the tasks are
marked with three asterisks. “ns” denotes no difference (p > 0.05).

that avoids having to account for the datasets themselves forming an
explanatory variable.

The validation provides evidence that the generative process for
synthesizing clustered datasets did indeed result in datasets that can
be used in experiments without the datasets themselves being the
dominant contributor of the variability between conditions. Overall,
the tasks revealed significant differences, which was to be expected,
while the influences of the datasets as an independent variable in the
experimental design did not result in significant differences—even
though we used statistical significance tests with as high statistical
power as possible and a weak significance level of o = 0.05 to err
on the conservative side. Further, effect sizes have been reported
throughout, which help quantify the proportion of the explained
variability. In combination, this supports the hypothesis that the
generative process described in this paper is suitable for iterative
A/B testing-based design and experimentation.

The generative process can greatly simplify such testing by elimi-
nating the learning effect of using a single dataset by instead intro-
ducing participants to series of generated synthetic datasets that are
unlikely to be dominant causal variables explaining differences in
performance across conditions. The differences observed between
the tasks were to be expected, specifically as tasks 72 and 73 re-
quired a deeper understanding of the relation between the individual
clusters, especially compared to task 7/. Further, all of the tasks
required participants to gain some understanding of the spatial distri-
bution of the clusters, which, as the participant is fully immersed in
the data and retains only a first-person perspective, can only become
apparent to the user over time.

Finally, another factor that may impact the overall differences
in task completion times is the user’s selection strategy. The most
obvious tactic, which would yield the fastest execution times while
simultaneously causing, on average, the most errors, would be to se-
lect all clusters as quickly as possible under any and all experimental
conditions. However, the recorded data indicates that no participant
used this approach.

7.1 Limitations and Future Work

This paper used the frequentist statistical analysis paradigm [30]
when analyzing the results. However, the generative method ad-
dresses a general experimental design problem and the solution is
therefore readily applicable to other types of statistical inference,
such as Bayesian inference [19].

We have here focused on generating clustered datasets, as cluster
analysis is a fundamental visual analytics task, which we feel is a par-
ticularly promising research application for VR analytics. However,
a potential fruitful avenue of future work is to explore systematic
generation processes for different types of datasets suitable for VR
analytics, such as spatiotemporal traces [23] or graphs [3]. Such
approaches must be carefully motivated and evaluated to ensure
relevance and validity and are therefore out-of-scope for this paper.

In line with prior work, this paper studied clustered data in a
clean virtual environment. It is an open research question how
well the approach advocated in this paper would apply to more
complex virtual environments, which may encompass non-abstract
data (e.g. terrain, urban, or nature) synthesized using a variety of
procedural generation methods [14,36].

Another compelling research question is whether it is possible
to generate datasets equivalent on higher-level metrics such as, for
example, presence, task load, cyber-sickness or aesthetics. Such
investigations can be carried out using both clustered datasets, as in
this paper, and for other types of data, such as spatiotemporal data
or graphs. Related, it would be worthwhile to explore more complex
tasks, such as the users having to learn the intricacies of the virtual
environment, finding objects within it or evading targets. We hope
this paper will stimulate fruitful research in these directions.

Finally, the generative method has the potential to be general-
ized to synthesize multidimensional data. This involves replacing
the 3D trail with an n-dimensional Brownian motion trail to de-
termine the clusters’ placements within the n-dimensional space.
As a consequence, the color-coding scheme is then no longer vi-
able, as the data is now unsuitable for visualization as a 3D point
cloud. One alternative is parallel coordinates [13,43]. Further, a
high-dimensional clustering algorithm [55] needs to be applied to
determine the range of overlaps between the individual clusters. We
leave further exploration of such an extension as future work.

8 CONCLUSIONS

A barrier towards increased virtual reality analytics design and eval-
uation is the difficulty to iteratively evaluate new interaction tech-
niques and visualization representations as the datasets themselves
become an explanatory variable.

This paper has presented a solution that simplifies iterative A/B
testing of cluster-based VR analytics tasks. By robustly generating
synthetic clustered datasets that give rise to similar user behavior
but are still perceived as different by participants, it is possible
to A/B test successive interactions of interaction techniques and
VR analytics tools without being overly concerned of the learning
effect of using a single natural dataset, or the heterogeneity induced
by using several natural datasets, whose underpinning properties
are uncontrollable. The process can be further enhanced if the
algorithms are tailored to facilitate individual needs.

This paper has demonstrated that artificially generating datasets
is a viable method and a two-part evaluation has shown the validity
of the approach. However, we urge caution when implementing
this method as part of an empirical study. Similar to how repeated
measures designs should always be checked for asymmetrical skill-
transfer effects [31], as a precaution we recommend analyzing the
dataset as an independent variable to reaffirm that the dataset was
not a significant contributor in a particular study.

Currently, controlling for the dataset has been a major stumbling
block for widespread in-depth empirical evaluation in VR analytics.
‘We hope this work will stimulate increased activity in this area.

OPEN SCIENCE

The Python source code used to generate the datasets and datasets
A-F are available as supplemental materials.
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