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Evaluation of Text Selection Techniques in Virtual
Reality Head-Mounted Displays

Category: Research

Figure 1: The six text selection techniques explored in this research, grouped by three pointing
mechanisms: (a) Controller-based: Controller+Click and Controller+Dwell, (b) Head-based:
Head+Click and Head+Dwell, and (c) Hand-based: Hand+Pinch and Hand+Dwell.

Abstract

Text selection is an essential activity in interactive systems, including virtual reality (VR) head-

mounted displays (HMDs). It is useful for: sharing information across apps or platforms, highlighting

and making notes while reading articles, and text editing tasks. Despite its usefulness, the space of

text selection interaction is underexplored in VR HMDs. In this research, we performed a user study

with 24 participants to investigate the performance and user preference of six text selection techniques

(Controller+Dwell, Controller+Click, Head+Dwell, Head+Click, Hand+Dwell, Hand+Pinch). Results

reveal that Head+Click is ranked first since it has excellent speed-accuracy performance (2nd fastest task

completion speed with 3rd lowest total error rate), provides the best user experience, and produces a very

low workload—followed by Controller+Click, which has the fastest speed and comparable experience

with Head+Click, but much higher total error rate. Other methods can also be useful depending on the

goals of the system or the users. As a first systematic evaluation of pointing×selection techniques for
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text selection in VR, the results of this work provide a strong foundation for further research in this area

of growing importance to the future of VR to help it become a more ubiquitous and pervasive platform.
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Virtual reality; Human-centered computing—Human computer interaction (HCI)—interaction techniques;

Human-centered computing—Interaction design—Empirical studies in interaction design

1 INTRODUCTION

Text selection is essential when reading text content such as newspapers, magazines, and academic papers to

highlight important elements for later reference or to copy/cut and transfer the content to another document,

application, or platform. Text selection has been well-researched for PCs (e.g., using the mouse [4,26]) and,

to a lesser extent, for touchscreen devices (e.g., using a touch-based text handler in smartphones or tablets).

More recently, there have been some initial explorations with augmented reality (AR) head-mounted

displays (HMDs) (e.g., using a smartphone for text selection in AR HMDs [6]). However, these methods

are not suitable for virtual reality (VR) HMDs because (1) traditional input devices like the mouse require

a flat surface to operate on [39], which is not accessible or natural to VR users, (2) using a touchscreen

device or smartphone as a dedicated input device for VR HMDs is not practical and may not lead to good

performance and usability, (3) these external devices are not visible for VR users.

Today’s VR HMDs enable users to chat with friends (e.g., via VR Facebook Messenger), watch

movies/TV shows, read text-based content (e.g., news, blogs, papers), and even work in a virtual office

(e.g., Horizon Workrooms by Facebook) [12, 32]. These activities typically involve selecting text fragments

frequently. For instance, people use text selection for (1) sharing information across platforms or applica-

tions (newspaper apps, Tripadvisor, IMDB) with their friends when exchanging instant text messages, (2)

searching a movie review on IMDB before watching it, (3) making notes while reading academic papers or

books, and (4) text editing [6]. Despite the increasing need for text selection tasks in VR HMDs, to our

knowledge, there has been no study that has explored text selection techniques for these devices, especially

based on common pointing and selection mechanisms available in current commercial VR HMDs.
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There is some research on standard mid-air pointing tasks (e.g., object acquisition task [3, 21] and

virtual keyboard-based text entry task [38, 45]). However, text selection is very different from these tasks

because (1) it requires users to hold the selection mechanism until they finish hovering over the target

sentence (more precise control); (2) the density of text information is always high during the task: letters

and sentences tend to be close to one another; (3) the size of the letters are very small for selection compared

to objects in other typical selection tasks. Nevertheless, like other mid-air pointing tasks, text selection in

VR HMDs requires (1) a mechanism for the identification of the objects to be selected, and (2) some signal

or command to indicate their selection [29].

At present, Controller-based pointing (see Fig. 1a) [18, 35] and Head-based pointing (see Fig. 1b)

[47, 49] are the most commonly used pointing methods in commercial VR HMDs for identifying a target

object that needs to be selected. Controller-based pointing has become the dominant interaction method

because it (1) offers the highest throughput and best accuracy, and is often preferred by most users [19], (2)

does not cause serious hand/arm fatigue, (3) provides rich functionalities when operating with the pointing

device’s built-in buttons. Head-based pointing (1) is important when controllers cannot be tracked, are not

around, or has no power [27, 47], and (2) represents a fitting alternative for people with hand mobility or

stability issues. With recent developments of high accuracy and low latency hand tracking techniques, a

third pointing method—Hand-based (palm) ray-casting pointing has gained rapid attention and has been

integrated into several VR HMDs (such as the Quest and HTC VIVE series). For instance, Quest 2 renders

a ray cast from the point between the user’s thumb and index finger to the virtual environment to serve as a

pointing mechanism (see Fig. 1c).

There are three primary selection mechanisms in VR HMDs to allow users to express selection—(1)

Dwell: using a dwell time on the target, (2) Click: clicking a button on the controller, and (3) Pinch:

using one hand to perform a pinch gesture [30, 46]. In this research, we conduct a study with 24 partic-

ipants to evaluate the performance and usability of 6 text selection techniques (i.e., Controller+Dwell,

Controller+Click, Head+Dwell, Head+Click, Hand+Dwell, Hand+Pinch) 1 for VR HMDs based on the

3 standard pointing methods (Controller, Head, Hand) and the 3 primary selection mechanisms (Dwell,

Click, Pinch). Our results suggest that Head+Click and Controller+Click are the leading candidates where

1The reasons for excluding the other 3 possible combinations are provided in Sect. 3.4.
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Head+Click should be considered first since it has excellent performance (2nd in speed with a relatively low

total error rate), provides the best user experience, and produces a very low workload. Controller+Click has

the best speed and a comparable workload as Head+Click, but because it has slightly lower user experience

scores and a worse total error rate, it should be considered as a second option.

The main contributions of this work include: (1) A first evaluation of six standard text selection tech-

niques for VR HMDs regarding performance and user preference; and (2) a set of usage recommendations

that are derived from our experiment results and observations during the experiment.

2 RELATED WORK

2.1 Text Selection in AR/VR HMDs

To the best of our knowledge, text selection has only been done for AR HMDs. For instance, EYEditor [10]

uses a ring mouse for cursor navigation and text selection, where a button is used for placing the cursor

before and after the text fragment to be selected while the selection is made via a touchpad. Lee et

al. [25] have employed a force-sensitive smartphone as their input device, where users exert a force on a

thumb-sized circular button to select the desired text fragment. Similarly, Darbar et al. [6] have explored the

use of a smartphone as the input mechanism for text selection in AR HMDs. They found that continuous

touch is more efficient than discrete touch, spatial movement, and ray casting. This prior research focusing

on AR all employed an external input device (such as a ring mouse or smartphone) for accomplishing text

selection, which is not feasible or practical for commercial VR HMDs.

Text selection in VR differs from AR in several aspects. (1) VR is less problematic and complex: text

selection in VR is less of a problematic task than in AR, as there are no layer interference, color blending,

and layout foreground-background issues [45]. As such, text can be presented in a legible and readable

manner to users [22]. (2) VR has more input possibilities to choose from: the primary pointing methods

such as Controller-based pointing, Head-based pointing, and Hand-based pointing are more accessible for

VR users than AR users. For instance, today’s VR HMDs often come with a dedicated controller for input,

while this is not always the case for AR HMDs (in fact, only the Magic Leap 1 comes with a hand-held

controller). Finally, (3) VR as the future work/office space: based on current developments of AR/VR

technology, text selection in text editing and document preparation scenarios is more practical and feasible
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in VR for possible future office settings (e.g., VR office environments based on immersive HMDs [12, 32]).

Given the above, this study explores accessible interaction techniques that are available in commercial VR

HMDs for text selection.

Our work mainly focuses on user-driven text selection, where users have to indicate both the start

and the end of the text fragment. We did not focus on automatic text selection, such as the double-click

technique for word selection and the triple-click technique for the whole paragraph text selection derived

from desktop computers with a mouse. Instead, we decided to explore user-driven text selection because it

is a more suitable starting point for text selection studies, as it covers all types of text selection levels (e.g.,

character, word, sub-word [6]). On the other hand, automatic text selections are limited to word-, sentence-,

or paragraph-level selection. This is in line with early text entry studies where character-level input is first

explored then the swipe-/gestural-based (i.e., word-level) input followed after.

2.2 Mid-air Pointing-based Interaction in HMDs

There are three main interaction approaches in VR HMDs to allow users to identify virtual objects—Controller-

based, Head-based, and Hand-based. Below, we present a review of these pointing methods and potential

selection mechanisms that can be used to complete a mid-air interaction [29].

Controller-based. Like the mouse in desktop systems, the controller has become a standard input device

for most HMDs (e.g., Quest series, HTC VIVE series, Magic Leap series) [18, 35]. In this method, a ray is

cast from the controller to the virtual environment to serve as a pointing mechanism. The end of the ray is

akin to a cursor to assist in the object’s identification. Users need to point to the target object by rotating or

moving the controller mid-air and, once the cursor is on the desired object, the selection is often achieved

by clicking a button on the controller [18]. When clicking the button becomes a problem (e.g., for very

small objects or an object located in very close proximity to other objects), a dwell time can be used as the

selection mechanism [45].

Head-based. Head-based interaction has been actively studied in HMDs [1, 18, 46]. It has been

widely adopted as a standard way for pointing at virtual objects without using hands or hand-held pointing

devices [23]. Selection for head-based pointing often relies on a dwell time [27, 30, 49], a second modality

such as clicking a button on a controller [23, 49], or making a gesture using bare hands [30, 46]. One prior
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study in AR that empirically compares selection methods shows that Dwell causes a lower error rate than

clicking a button on a keyboard and a hand-held button device, voice (verbally confirming) [28]. A recent

study in VR also shows that Dwell leads to a significantly lower error rate than button clicking and hand

gesture (i.e., pinch) [30].

Hand-based. Hand-based interaction is now possible in several VR HMDs (e.g., Quest series, HTC

VIVE series). To select a nearby object [29], users first hover their hand over the target object and then

make a selection by performing a hand gesture—e.g., a pinch in the Oculus Quest 2. For a distant object

(e.g., keys on a keyboard or items on a menu), users use hand-based pointing to point at the object followed

by a hand gesture for selection. For instance, the Quest 2 renders a ray cast from the point between the

user’s thumb and index finger to the virtual environment, and the selection of the object can be made via a

pinch gesture. In scenarios when performing gestures can lead to errors, users can use dwell to prevent

these errors.

Although these three mid-air interaction methods have been widely studied in HMD systems [30, 45,

46, 49], their performance and usability for text selection tasks are underexplored. Due to the increasing

importance of these tasks, understanding how these methods affect user performance and usability is crucial

to the development of efficient and usable techniques for text selection. Therefore, this research aims to fill

this gap and has conducted the first systematic study of these pointing mechanisms in combination with

their suitable selection mechanisms for text selection in VR HMDs.

There are some other novel selection mechanisms such as eye blinking–intentionally blinking the

eye [27], voice input–verbally issuing a command [48], and sound volume–increasing the sound volume [15]

can also be used, please refer to our recent paper [?] for the exploration.

3 EVALUATED METHODS

This section describes how the final six combinations from the three Pointing Methods (Controller, Head,

Hand) and three Input Mechanisms (Dwell, Pinch, Click) are implemented and operationalized in our study

and why Hand+Click, Head+Pinch, and Controller+Pinch are not considered. Table 1 summarizes the

advantages and disadvantages of our six text selection methods. All six techniques were developed and

run in Unity3D (Unity v2019.4.10f1) with default pointing methods and input functions provided by the
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Oculus Unity Plugin (OVRPlugin v1.61.0).

3.1 Controller-based Pointing

A ray is rendered from the controller to the virtual environment to serve as a pointing mechanism.

Controller+Dwell (ConD). The user starts the selection of the desired text fragment by dwelling (staying

on an area for 1s) at the beginning of the first letter and ends the selection by dwelling again at the end of

the text. The dwell duration was decided through a series of pilot studies testing a range of thresholds from

400ms to 1s (from text entry studies [13, 33, 47]).

Controller+Click (ConC). The user needs to press and hold the main button in the controller at the

beginning of the target letter to start the selection and then release the button after the cursor reaches the

end of the target text to complete the selection.

3.2 Hand-based Pointing

A ray is rendered from the point between the user’s thumb and index finger to the virtual environment

to serve as a pointing mechanism. For this research, we upgraded the tracking rate to 60Hz to improve

the hand tracking performance (i.e., lower latency for hand-based pointing and higher accuracy for pinch

gesture recognition). In addition, we controlled the lighting of the physical environment to ensure the hand

tracking was reliable and consistent during the study.

Hand+Dwell (HandD). HandD is analogous to ConD, but the pointing is done through Hand-based

pointing.

Hand+Pinch (HandP). The user needs to use their hand to point at the beginning of the target text,

perform the “pinch and drag” gesture to start the selection, and then release the pinch gesture at the end of

the target text fragment to end the selection.

3.3 Head-based Pointing

A ray is extended from the HMD towards the viewing direction into the virtual environment.

Head+Dwell (HeadD). HeadD is analogous to ConD, with the pointing achieved by Head-based

pointing.
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Head+Click (HeadC). Selection is analogous to ConC, but the pointing is done through Head-based

pointing.

3.4 Other Possible Combinations that Are Not Used

We did not include Hand+Click and Controller+Pinch because the existing literature suggests that one-

handed interaction is often preferred by VR users over using two hands for interacting with objects in

VR [31]. This is especially the case for tasks that can be done with one hand, as one-handed interaction is

less physically and mentally demanding [42] and it offers numerous benefits (e.g., allowing the other hand

to hold other items or performing other tasks [9, 20]). As such, this research has focused primarily on using

one-hand.

Head+Pinch is excluded because: (1) our pilot study suggests that users are more likely to make errors

as they frequently move their hand unintentionally outside the ideal hand interaction area of the device

when their hand is used as a peripheral input modality [44], (2) it leads to higher fatigue compared to

Head+Click, which is already included as one of the evaluated techniques, and (3) it is disliked by users

when it is used as a selection mechanism compared to Click and Dwell [30].

3.5 Testbed Environment

Figure 2 shows the test environment. An ‘instruction panel’ is located on the left side where the participant

could see the text that needed to be selected. The ‘interaction panel’ is located at the center, where the

participant needed to use each technique to select text fragments. In addition, two buttons are provided:

‘Delete’ for deleting the wrong selection and ‘Next’ for moving to the next trial.

The following parameters are set based on the recommendations from previous studies and then further

tested and agreed upon by 5 users from a pilot study. We controlled the length of the materials to be between

9-12 lines, with each line having around 40 characters with spaces [41], in both panels. The plane is set as

2.6m which was tested and agreed by target users, 2.6m also falls in the recommended reading distance

suggested by [7]. For the text style, we used Sans-serif Arial with a light color [7]. Angular size was set as

1.8◦, which was within the recommended range suggested by [7].

Visual support and feedback were provided in three ways: (1) The end of the ray is akin to a cursor,

(2) changing the color of the selected text to yellow, (3) changing the color of the cursor when a selection

8



Online Submission ID: 0

was started/stopped, (4) a visual indicator is provided for showing dwell progress. We did not visualize the

ray because users from our pilot studies suggest the cursor alone is more effective than a combination of

visualizing the ray and the cursor in helping them understand where they are pointing.

Figure 2: A) We used the same experiment environment for all conditions. An ‘instruction panel’ is located

on the left side, slightly tilted towards the user. The ‘interaction panel’ is located in the center, slightly tilted

towards the user. B) A picture of the experiment setting showing how a participant is performing a text

selection task.

4 EXPERIMENT

4.1 Participants and Apparatus

We recruited 24 unpaid participants (12 males; 12 females) between the ages of 18-30 (M=21, SD=2.06)

from a local university campus through a database of participants. They all had no issues reading the

content clearly within the VR environment and no difficulties moving their arms, hand, and heads. 23

participants were right-handed. 17 participants had previous experience with VR HMDs, but only 3 were

regular VR users (weekly) and none of them had interacted with the Oculus Quest 2—the device used in

this experiment. Participants were seated on the office chair during the experiment and were allowed to rest

their hands on the chair handles if needed (see Fig. 2B).
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4.2 Design

The experiment followed a one-way within-subjects design with Interaction Techniques (HandD, HandP,

HeadD, HeadC, ConD, and ConC) as the independent variable. For each condition, participants needed to

complete 3 training trials (1 short, 1 medium, and 1 long text fragments) and 27 trials (9 short, 9 medium,

and 9 long text fragments following a randomized order of appearance) which were randomly sampled from

a corpus of standardized English reading assessment [34]. Each selection target would only appear once in

a specific condition. The order of the conditions was counterbalanced across participants to avoid learning

effects with Sentence Lengths also randomized. Excluding the training texts, we collected 3888 trials

(24 participants × 6 interaction techniques × 27 texts). Although the local area had no local COVID-19

cases for 12 months before the experiment, we cleaned and sanitized the device before and after each

participant’s turn and followed extra safety measures to ensure the safety of the participants and researchers

(e.g., wearing a mask and staying at a safe distance).

For assessing the text selection performance and experience, we collected the following measurements:

• Objective: (1) Task-completion time: in line with the previous studies in pointing experiments,

we only report task completion time where there were no errors during the trials to handle the

speed-accuracy trade-off. The task completion time for each trial is defined as the time from when

the cursor first hovers over the first target letter to the time they complete the correct selection. By

recording in this way, the time spent on clicking the button, performing the pinch, and dwelling are

included for analysis. (2) Total error rate: (the number of wrong sentences + the number of deletions)

/ total number of attempts, (3) Not corrected error rate: the number of wrong sentences / total number

of sentences.

• Subjective: NASA-TLX questionnaire [14] to measure workload, User Experience Questionnaire

(UEQ) [24] to measure user experience, and comments on advantages and disadvantages of each

technique plus users’ ranking of the text selection techniques.

4.3 Procedure

Before the experiment began, participants were told the goal of the research and the experimental procedure.

Then, they needed to fill out a demographic questionnaire (e.g., age, gender, and experience with VR) and
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signed the consent to participate in the experiment. In addition, they were told to finish the trials as fast and

as accurately as they could. Error correction was allowed by using the delete button in the VR scene.

Before each condition started, the corresponding text selection method was explained to the participants,

who then had a practice session with three warm-up selections before the experiment stage (27 text

selections). After each condition, participants needed to fill out a post-condition questionnaire (NASA-

TLX and UEQ). They proceeded to the next condition when they felt rested to avoid any fatigue. Once

they completed all conditions, they needed to complete a post-experiment questionnaire and a structured

interview. The whole experiment lasted around 70 minutes for each participant.

4.4 Results

We used Shapiro-Wilks tests and Q-Q plots to check if the data had a normal distribution. All tests are

with two-tailed p values. Effect sizes were reported whenever feasible (η2
p). Performance analysis. For

normally distributed data, we employed two-way repeated-measures ANOVAs with Interaction Techniques

(six techniques) and Sentence Lengths (short, medium, long) as the within-subjects variables. For data

that were not normally distributed, we processed the data through Aligned Rank Transform (ART) [43]

before using repeated-measure ANOVAs with the transformed data. Bonferroni corrections were used for

all pairwise comparisons.

Experience analysis. For normally distributed data, we employed one-way repeated-measures ANOVAs

with Interaction Techniques as the within-subjects variable. For data that were not normally distributed,

we conducted non-parametric Friedman tests for the ranking. Bonferroni correction was used for pairwise

comparisons and Greenhouse-Geisser adjustment was used for degrees of freedom if there were violations

of sphericity.

4.4.1 Performance

Task Completion Time. To handle the speed-accuracy trade-off for task completion time, we followed the

analysis process from pointing experiments where trials with errors are excluded [40, 51, 52]. In total,

we collected 3888 trials (24 participants × 6 interaction techniques × 27 texts) besides training trials.

To analyze selection time, we discarded trials in which participants made a wrong selection (709 error

trials, 18.2%), and removed outliers (65 trials, 1.7%), in which the selection time was above three standard
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deviations from the mean (mean + 3std.) in each condition. In total, there were 3179 success trials used for

analyzing the task completion time.

There was a statistically significant main effect of Interaction Techniques on task completion time

(F5,391 = 145.464, p < .001,η2
p = .590). Post-hoc analysis with Bonferroni correction suggested that (1)

ConC outperformed all other techniques (all p < .001), (2) HeadC outperformed all techniques except

ConC (all p < .001), (3) ConD outperformed HandD, HandP, HeadD (all p < .001). Table 2 shows the

mean task completion time among the 6 Interaction Techniques across 3 Sentence Lengths.

There was a significant main effect of Sentence Lengths on Task Completion Time (F2,391 = 68.972, p <

.001,η2
p = .222). Post-hoc analysis with Bonferroni correction suggested that (1) participants completed

Small faster than Medium and Long (both p < .001), and (2) participants also completed Medium faster

than Long (p < .001). We did not find any interaction effect of Sentence Lengths × Interaction Techniques

(F10,391 = 0.981, p = .459,η2
p = .019).

Total Error Rate (TER). There was a statistically significant main effect of Interaction Techniques

on TER (F5,391 = 34.391, p < .001,η2
p = .270). Post-hoc analysis with Bonferroni correction suggested

that (1) ConC outperformed HandP (p < .05), (2) ConD outperformed ConC, HandD, and HandP (all

p < .001), (3) HeadC outperformed ConC, HandD, and HandP (all p < .001), (4) HeadD outperformed

ConC, HandD, HandP (all p < .001). There was no significant main effect of Sentence Lengths (F5,391 =

2.367, p = .095,η2
p = .010) and the interaction effect of Interaction Techniques times Sentence Lengths

(F10,391 = 0.406, p = .944,η2
p = .008). Details of TER data can be found in Table 2.

Not Corrected Error Rate (NCER). Table 2 presents the NCER data for each Interaction Technique.

There were significant effects of Interaction Techniques (F5,391 = 8.217, p < .001,η2
p = .073), Sentence

Lengths (F5,391 = 6.455, p < .01,η2
p = .024), and Interaction Techniques times Sentence Lengths (F10,391 =

2.524, p < .01,η2
p = .046). Post-hoc analysis with Bonferroni corrections was conducted based on the

interaction effect, however, we could not find any significant difference.

4.4.2 User Preference

UEQ. For the average UEQ scores, HeadC was rated the best (M=1.89, SD=0.77) and HandD (M=0.72,

SD=1.26) the worst. ANOVA tests showed a significant main effect of Interaction Techniques (F3.388,77.935 =
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Figure 3: UEQ subscale ratings of the tested methods with respect to comparison benchmarks.

8.622, p < .001,η2
p = .273) on the UEQ mean score. Post-hoc pairwise comparisons suggested that (1)

HeadC had a significantly higher average UEQ score than HandD (p < .01), HandP (p < .001), and ConD

(p < .01), (2) ConC had a significantly higher average UEQ score than HandD (p < .01) and HandP

(p < .05).

Regarding the UEQ subscales, ANOVA tests yielded significant main effects of Interaction Techniques

on all UEQ subscales. Table 3 shows the detailed results of the ANOVA tests. Details of each UEQ subscale

score can be found in Figure 3. HeadC was rated above average to excellent (mainly good to excellent

except for only one participant who rated it above average), ConC was rated below average to excellent

(mainly good to excellent except for one participant who rated it below average). At the same time, ConD

and HeadD were comparable with the benchmark, and HandD, and HandP had worse scores than the

benchmark.

Workload. For overall task workload, ConC was rated the best (M=23.64, SD=19.32) and HandP

(M=54.43, SD=20.72) the worst.An ANOVA test showed a significant main effect of Interaction Techniques

(F3.168,72.871 = 12.352, p < .001,η2
p = .349) on the overall task workload ratings. Post-hoc pairwise

comparisons indicated that (1) users experienced less workload when use HeadC than HandD (p < .05)

and HandP (p < .001), (2) users experienced less workload in ConC than HandD (p < .01) and HandP
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Figure 4: The mean responses for the 6 components of the NASA TLX questionnaire. Error bars indicate

95% confidence interval.

(p < .001), (3) users experienced more workload in HandP than HeadD (p < .01) and ConD (p < .05).

Regarding each NASA-TLX workload subscale, ANOVA tests yielded significant main effects of Interaction

Techniques among all subscales. Details of the results of the ANOVA tests can be seen in Table 4 and of

the workload subscales in Fig. 4.

Ranking. The ranking of conditions shows a preference for HeadC (11 ranked it first while 9 ranked it

second) and ConC (11 ranked it first and 7 ranked it second) among the techniques. They were followed by

ConD (10 ranked it third while 8 ranked it fourth) and HeadD (5 votes for third and 8 for fourth) as their

backup. Hand-based techniques were generally the worst, being either in the fifth place (HandD with 14

votes and HandP with 5 votes) or the final option (HandP with 13 votes and HandD with 6 votes).

4.4.3 Qualitative Feedback

In general, most participants stated positive comments for HeadC: ”simple/easy” (N=7), ”fast” (N=6),

“accurate” (N=9), and “creative/innovative and practical” (N=3), or simply stated, ”the best” (N=2). The

only negative comments were ”slightly dizzy because of the head movements” (N=2). Similarly, most

participants left positive feedback for ConC: ”easy/simple and practical” (N= 17). The reasons given

were that ”it just like how we interact with PC with a mouse” (N=5). However, we also observed negative
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comments ”tiredness/mobility of the hand lead to selection error during the selection” (N=11), with others

stating that this technique was ”somewhat boring” (N=3).

In general, participants felt positive about HeadD and ConD. They were perceived to be ”fast, easy,

easy to learn” (N=11), ”creative” (N=3). The disadvantage of these methods was related to dwell-based

selection ”difficult to hold the pose for dwell” (N=10), ”often suffer the last sec movement which made me

have to dwell again” for Controller users (N=10), and ”dizzy/eye tiredness” for Head users (N=2).

Although HandD and HandP were perceived to be ”creative/innovative and fun” (N=8), it suffers from

”tiredness” (N=10) and sometimes are very ”inaccurate (because of the difficulty in holding/performing

gestures” (N=3).

5 DISCUSSION

5.1 Task Performance

In line with a previous study on text entry [38] and supported by the bandwidth of the human muscle

groups [5], we found that the default VR Interaction Techniques ConC (i.e., Controller+Click) is the best

candidate regarding the task completion speed, followed by HeadC (i.e., Head+Click), and then ConD (i.e.,

Controller+Dwell). Despite being the fastest option, ConC led to a very high TER (21.5%, in line with

previous results in AR HMDs with a similar interaction style [6]) and NCER (1.5%) while HeadC had a

much more acceptable TER (11.4%) and NCER (0.8%). Consistent with a previous study that compares

selection techniques [8, 30], Dwell-based techniques, as expected, made the least error during selection,

ConD had the lowest total error rate while HeadD had the second lowest total error rate.

Hand-based interaction has been implemented in several VR HMDs (e.g., in the VIVE and Quest

series). Users can now use it for system control tasks such as changing the home scene, opening/closing an

application, adjusting the brightness setting, or entering texts. However, this type of interaction does not

seem suitable for long-term fast-paced pointing tasks for selecting small objects. In line with the results

from text entry studies (e.g., [45]), we found that hand-based methods (HandD [i.e., Hand+Dwell] and

HandP [i.e., Hand+Pinch]) not only had the worst task completion speed but also caused the highest number

of errors. A possible reason could be due to their hand’s stability; it is generally challenging to hold their

hands in mid-air on a consistent and stable basis [45], even if they could use the chair handles or a table
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to support their hands. Another reason is that the accuracy of hand-based interaction is just not sufficient

enough in today’s HMDs [36].

In addition, we observed that the Sentence Lengths could affect the task completion time, which is as

expected because participants need to move more distance across the paragraphs.

5.2 User Experience

Overall, HeadC and ConC are the leading options based on user experience. HeadC provided a better

user experience than HandD, HandP, and ConD (e.g., average UEQ, attractiveness, perspicuity, efficiency,

and dependability). In addition, HeadC was rated better than HeadD (i.e., Head+Dwell) and ConD

on stimulation. ConC provided a better user experience than HandD and HandP (i.e., average UEQ,

attractiveness, perspicuity, efficiency, and dependability). However, this method was considered less novel

compared to HeadD and HeadC because it mimics how the mouse works for desktop and laptop computers.

When we compared these 6 text selection methods with the benchmark scores provided in [37], HeadC

and ConC were rated mostly good to excellent, except for the Stimulation subscale, which was only above

average for HeadC and below average for ConC. HeadD and ConD were mostly rated with average scores,

with hand-based methods rated mostly bad to below average. A possible explanation for why hand-based

methods were rated with low user experience scores may be because they could cause hand/arm fatigue, a

common issue for mid-air interaction [45, 46]. Another good explanation would be that they are perceptibly

slower and had more errors than controller-based and head-based approaches.

5.3 Workload

In line with the UEQ results, ConC and HeadC are the leading options according to the NASA-TLX

workload scores. They were comparable across NASA-TLX subscales. ConC had a lower workload than

HandD and HandP in all NASA-TLX subscales, except for Temporal. We also found HeadC outperformed

HandP in the Mental, Performance, Effort, and Frustration scales. In addition, HeadC outperformed HandD

on both Mental and Frustration scales. As mentioned by participants, the workload is high for hand-based

methods because the need to hold their hands mid-air on a consistent and stable basis is difficult, which is

in line with previous observations [45]. It is worth noting that the Quest 2 already provides an overall stable

hand tracking at a 60HZ refreshing rate. We also made sure that the light condition was consistent and in
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good condition during the experiment to ensure the tracking was stable. Therefore, we believe that the high

workload for hand-based methods might be due to arm/hand fatigue [16], which would have made the task

more complicated and unnecessarily cumbersome [2].

5.4 Recommendations for Text Selection in VR HMDs

The recommendations derived from our experiment are based on a set of considerations, which include

performance, experience, the workload of the interaction technique, the availability of the controller, and

users’ physical conditions, especially for hand/arm control. They can be divided into two groups based on

the goals of the system or the users:

Performance. If a controller is available, users could choose Head+Click since it can lead to the second

fastest task completion speed and has an acceptable total error rate. If rapid neck movement is an issue

for users to rotate their head for pointing, we suggest using Controller+Dwell and Controller+Click as

alternative options. Controller+Dwell should be considered before Controller+Click when accuracy is

needed since it has a significantly lower total error rate. If correcting errors during the session is not an

issue, users can use Controller+Click. However, users should be comfortable with a relatively higher total

error rate due to hand mobility limitations [16]. Head+Dwell should be considered as the first option in

both device-free and hands-free scenarios. As for hands-based interaction techniques (i.e., Hand+Dwell

and Hand+Pinch), they should be minimized due to poor performance (in both speed and accuracy).

User Preference. We suggest considering Head+Click and Controller+Click as the top options when

a controller is available. However, their usage should be based on the user’s preference for usability and

workload. If a low workload is preferred, Controller+Click can be chosen since it produces the lowest

workload and provides an excellent user experience score. When a good user experience is preferred and

users have no neck injuries or concerns about neck fatigue, Head+Click should be considered as the first

option because it provides the best user experience score and produces a very low workload.

Head+Dwell should be considered as the first option in device-free scenarios since it provides a better

overall user experience and produces a lower workload than hand-based techniques (i.e., Hand+Dwell and

Hand+Pinch). Hand+Dwell and Hand+Pinch should be minimized in rapid pointing-based text selection

tasks since they generate a high overall workload and low overall user experience, with the potential to lead
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to the gorilla arm syndrome [16]. However, they can be considered when the user has an issue with rotating

their neck.

The above recommendations are derived from our study where the text selection task is assumed to be

the primary task. Their inclusion in actual applications should be dependent on the context of use, target

users, and availability of equipment.

5.5 Limitations and Future Work

One limitation of this research is that the study only consists of a single session. It will be useful to

perform longer experimental sessions (e.g., 1 or 2 sessions over consecutive 4-5 days like text entry

studies [11, 47, 50]). Nevertheless, our study, as the first one to explore text selection in HMDs and to

evaluate 6 interaction techniques from 3 common pointing methods (Controller, Head, Hand) and 3 selection

mechanisms (Dwell, Click, Pinch), provides a valuable starting pointing for future studies on text selection

in VR HMDs.

This work has focused primarily on user-driven text selection where the text is displayed outside users’

hand reach area (i.e., far-field interaction). There are situations where (1) the text may be presented closer

to users’ view and within the reach of their arms, which requires near-field interaction to manipulate the

text, or (2) a user wants to select a single word or a whole sentence or paragraph akin to a double-clicking

of the mouse in desktop systems (see Sect. 2.1). Because we want to make text selection as fast and usable

as possible and in line with how users do this on their desktops, we plan to expand our work and explore

new techniques and approaches that are suitable for near-field text manipulation and also can be used for

automatic text selection of words, sentences, and paragraphs in the future.

Some design considerations, such as dwell duration, visualization of the ray, and interaction distance,

that have been determined via pilot studies could also be revisited to allow their fine-tuning and customiza-

tion by users in actual application scenarios. In addition, we considered text selection as the primary

task during the interaction with VR HMDs and future work will explore techniques to support a seamless

experience on text selection to avoid the need for users to switch between techniques and interaction

platforms.

We did not consider dual-hand text selection methods, given our focus on available pointing and
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selection mechanisms of current VR HMDs. However, they are worth exploring in the future because,

when designed appropriately to minimize workload and maximize efficiency, they can extend the range of

possibilities for users. For instance, researchers could consider: (1) Hand+Hand: users use their dominant

hand for pointing and the other hand for selection, or vice-versa; (2) Controller+Controller: One controller

is used for pointing and the other one for selection; (3) Hand+Controller: users can use their dominant hand

for pointing and the controller for selection; (4) Controller+Hand: users can use a controller with their

dominant hand for pointing and their non-dominant hand for selection [17]. This exploration will produce

additional results and help develop VR systems that are more usable and will take us one step closer to a

practical immersive office of the future.

6 CONCLUSION

In this work, we have implemented six text selection techniques that resulted from the combination of

three pointing methods (Controller, Head, Hand) and three selection mechanisms (Dwell, Click, Pinch)

that are widely available and frequently used in commercial virtual reality (VR) head-mounted displays

(HMDs). Then, we empirically evaluated these six techniques through a user study with 24 participants

to assess their performance and user experience. In general, our results suggest that Head+Click and

Controller+Click are the leading candidates among the 6 techniques. Head+Click should be considered as

the first option since it has an excellent performance, provides the best user experience, and produces a very

low workload—followed by Controller+Click, which has comparable results with Head+Click, except for

having a higher total error rate. Controller+Dwell has the lowest total error rate and should be preferred if a

low error rate is a plus for the user. Our results also show that current hand-based techniques should be the

last possible options for rapid text selection tasks, except when users have difficulties with neck motions.

.
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Table 1: Summary of the advantages and disadvantages of the six text selection methods used in our study.

Technique Advantages Disadvantages

Controller+Dwell(1) easy to control, (2) minimal hand fa-

tigue, (3) less error-prone [30]

(1) not device-free, (2) slow due to dwell

time and making users feel ’pushed’ [27]

Controller+Click (1) easy to control, (2) minimal hand fa-

tigue, (3) user familiarity (mouse-like in-

teraction), (4) tactile feedback

(1) not device-free

Hand+Dwell (1) device-free, (2) less error-prone [30],

(3) natural interaction

(1) slow due to dwell time and making

users feel ’pushed’ [27], (2) hand fatigue,

(3) limited hand-interaction area as a result

of a limited hand tracking area that can be

captured via the front-facing cameras [44]

Hand+Pinch (1) device-free, (2) natural interaction (1) hand fatigue, (2) limited hand-

interaction area [44]

Head+Dwell (1) device-free, (2) hands-free, (3) less

error-prone [30]

(1) slow due to dwell time and making

users feel ’pushed’ [27], (2) potential cy-

bersickness [50]

Head+Click (1) hand mobility does not affect the selec-

tion, (2) minimal hand fatigue, (3) tactile

feedback

(1) potential cybersickness [50], (2) not

device-free
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Table 2: Performance data for each Interaction Technique among three Sentence Lengths, mean (SD). The

top 3 techniques of each condition are presented by Roman numerals (I: light green ; II: darker light green ;

and III: blue-green ).

Performance

Metrics

Sentence

Lengths

ConC ConD HandP HandD HeadC HeadD

Task- Small I: 1.44

(0.51)

III: 3.08

(1.75)

4.49 (3.79) 3.86 (1.23) II: 1.69 (0.35) 3.2 (0.87)

completionMediumI: 2.11

(0.65)

III: 3.28

(0.71)

5.20 (2.64) 4.96 (1.65) II: 2.52 (0.66) 4.38 (1.87)

time Long I: 2.39

(0.63)

III: 3.71

(0.70)

5.22 (2.25) 5.20 (1.94) II: 2.92 (0.72) 4.98 (1.47)

TER Small 25.7%

(18.1%)

I: 9.4%

(9.3%)

32.9%

(19.0%)

25.5%

(17.8%)

II: 11.5%

(13.8%)

III: 12.3%

(13.3%)

Medium18.1%

(13.3%)

I: 8.3%

(13.0%)

28.2%

(17.8%)

22.3%(14.4%)III: 10.8%

(10.9%)

II: 8.7%

(10.3%)

Long 20.7%

(13.4%)

I: 6.1%

(9.9%)

30.7%

(15.7%)

21.9%

(14.3%)

III: 12.0%

(13.1%)

II: 10.8%

(9.3%)

NCER Small 1.6% (4.9%) II: 1.2%

(3.3%)

3.4%

(7.7%)

1.9%

(4.6%)

I: 0.0%

(0.0%)

II: 1.2%

(3.4%)

MediumIII: 1.3%

(3.9%)

1.6%

(4.5%)

3.7%

(8.2%)

1.4%

(3.2%)

I: 0.4%

(2.0%)

II: 0.9%

(4.4%)

Long I: 1.6%

(3.3%)

2.4%

(6.0%)

4.2%

(9.4%)

3.6%

(7.1%)

II: 2.0%

(4.8%)

III: 2.2%

(5.8%)
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Table 3: ANOVA test results for the UEQ subscales. Significant results where p < .05 are highlighted

with light green and p < .001 with dark green.

Interaction Technique Post-hoc

Attractiveness F3.307,76.066 =

8.405, p < .001,η2
p =

.268

HandD<HeadC (p < .01), HandD<ConC (p < .01),

HandP<HeadC (p < .01), HandP<ConC (p < .05),

ConD<HeadC (p < .01)

Perspicuity F5,115 = 12.631, p <

.001,η2
p = .354

HandD<HeadC (p < .01), HandD<ConC (p < .001),

HandP<HeadC (p < .001), HandP<ConC (p < .001),

HeadD<HeadC (p< .05), ConD<HeadC (p< .05), ConD<ConC

(p < .05)

Efficiency F5,115 = 15.801, p <

.001,η2
p = .407

HandD<HeadC (p < .001), HandD<ConC (p < .001),

HandP<HeadC (p < .001), HandP<ConC (p < .001),

HeadD<HeadC (p < .05), ConD<HeadC (p < .01) ConD<ConC

(p < .05)

Dependability F3.728,85.746 =

11.077, p < .001,η2
p =

.325

HandD<HeadC (p < .01), HandD<ConC (p < .01),

HandP<HeadC (p < .001), HandP<ConC (p < .01),

ConD<HeadC (p < .01)

Stimulation F3.132,72.036 =

2.817, p < .05,η2
p =

.109

HeadD<HeadC (p < .05), ConD<HeadC (p < .01)

Novelty F3.525,81.073 =

5.835, p < .001,η2
p =

.202

ConC<HeadD (p < .01), ConC<HeadC (p < .05)
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Table 4: ANOVA test results for NASA-TLX subscales. Significant results where p < .05 are shown in

light green and p < .001 in dark green.

Interaction Technique Post-hoc

Mental F5,115 = 11.740, p <

.001,η2
p = .338

HeadC<HandD (p < .05), ConD<HandD (p < .01),

ConC<HandD (p < .001), HeadC<HandP (p < .01),

ConD<HandP (p < .01), ConC<HandP (p < .001)

Physical F2.657,61.121 = 7.990, p <

.001,η2
p = .258

ConC<HandD (p < .05), HeadC<HandP (p < .05),

ConC<HandP (p < .01)

Temporal F5,115 = 2.919, p <

.05,η2
p = .113

N/A

Effort F2.739,63.006 =

11.701, p < .001,η2
p =

.337

ConC<HandD (p < .05), HeadD<HandP (p < .01),

HeadC<HandP (p < .01), ConD<HandP (p < .05),

ConC<HandP (p < .001)

Frustration F3.210,73.833 = 8.730, p <

.001,η2
p = .275

HeadC<HandD (p < .05), ConC<HandD (p < .05),

HeadC<HandP (p < .01), ConC<HandP (p < .01)

PerformanceF5,115 = 5.474, p <

.001,η2
p = .192

ConC<HandD (p < .05), HeadC<HandP (p < .05),

ConC<HandP (p < .05)
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