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ABSTRACT

The need to support efficient text input in virtual reality continues to
attract significant research attention. However, much of this research
understandably focuses exclusively on core text input tasks involving
the entry of standard alphabetic characters. The less common though
still critical task of entering special characters is often ignored. In
this paper we focus on this niche use case as chiefly encountered
when entering passwords. Current commercial virtual keyboards
allow users to switch between different layers of the keyboard in
order to access capital letters, numerals and special characters by
pressing an explicit mode-switch button. We propose a new method
of switching between layers of a virtual keyboard using hand ges-
tures. Critically, these hand gestures are seamlessly performed in
conjunction with key selections to deliver an efficient and intuitive
interaction. We report on a user study with 16 participants entering
standard passwords comparing our gesture-based mode switching
approach to a conventional button-based baseline. We find that
with practice our proposed method results in significantly faster
entry rates without any deterioration in accuracy. Feedback from
users also indicates that our technique is considered efficient and
comfortable to use.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction techniques—Text input
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms—Virtual reality

1 INTRODUCTION

The Qwerty keyboard remains the default method for text input on
most modern computing devices and there is a significant body of
research examining how the Qwerty keyboard can be effectively
adapted to different interaction settings. A mid-air virtual Qwerty
keyboard for use in augmented reality (AR) or virtual reality (VR)
can be readily implemented by virtualizing the concept of a touch.
This means collisions between a virtual plane and the user’s fingertip
can be detected and treated in a similar way to physical touches on a
capacitive touchscreen.

The virtualization of touches has been shown to work well in AR
and VR (e.g. [6, 7]) and offers satisfactory entry rates for standard
text input. However, the vast majority of text entry research in
immersive settings focuses almost exclusively on entry of standard
alphabetic characters. This is entirely reasonable given that entry
of standard alphabetic characters is the most common use case for
text input. Nevertheless, a comprehensive text input system should
‘walk the last mile’ [14] and must ultimately support entry of a
complete set of numerals, symbols and punctuation to address less-
common ancillary use cases, such as password entry or even entry
of code syntax. In this paper we investigate this largely unaddressed
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requirement for extended character input on a mid-air virtual Qwerty
keyboard.

Specifically, we examine the following research question: How
can we support efficient special character input on a mid-air virtual
Qwerty keyboard? An obvious solution, and the method used in
modern AR and VR HMDs (e.g. Meta Quest 2 and Microsoft
HoloLens 2), is to provide alternative keyboard layers that can be
toggled by pressing a dedicated button on the keyboard. Indeed,
this is a relatively straightforward transplantation of the method
widely used on smartphone virtual keyboards (see e.g. Figure 1). A
detriment of this approach is that a minimum of two key presses is
required to access a secondary layer and a minimum of three key
presses is required to access a tertiary layer when the user starts from
the primary layer. An elementary analysis (i.e. the keystroke-level
model [2]) tells us that any additional key presses required as part
of an input process will incur an additional input time cost that may
ultimately negatively impact efficiency.

Another widely applied and complementary strategy (supported
on Gboard, and the system keyboards of Meta Quest 2 and Mi-
crosoft HoloLens 2) is overloading the primary layer with a subtle
visualization of the secondary layer. This secondary layer can then
be activated by means of a dwell interaction. This approach elim-
inates the need for an additional key press but with limited or no
performance gain given the requirement for the dwell time.

Both conventional strategies for special character layer switching
in AR or VR show limited evolution from their conceptual ancestors
on a smartphone. This observation prompted our investigation into
how the additional capabilities afforded by modern AR and VR
HMDs, such as hand tracking-based gesture interaction, could be ex-
ploited to better streamline the process of entering special characters
on a virtual Qwerty keyboard. To this end we propose and inves-
tigate the performance of a gesture-based layer switching method
that is seamlessly integrated within a standard virtual touch-based
interaction paradigm. This technique allows the user to perform
touches on the keyboard while controlling the active keyboard layer
using hand-gesture correspondence. Our evaluation shows that this
proposed technique allows users to enter special characters more
efficiently and is overwhelmingly preferred by the participants in
our study compared to a commonly used baseline.

In summary, this paper offers the following two main contribu-
tions:

• A gesture-based technique for seamless keyboard layer switch-
ing to support efficient special character entry.

• An empirical evaluation comparing the performance of the
gesture-based technique against a button-based layer switching
baseline, in which we found a significant 8.3% and 21.8%
increase in entry rate respectively for two password entry tasks.

2 RELATED WORK

Mid-air virtual keyboards continue to attract active research atten-
tion. A multitude of interaction techniques and keyboard designs
have been proposed and investigated (see Dube and Arif [5] for a
comprehensive review of text entry in VR). Widely explored interac-
tion methods for mid-air virtual Qwerty keyboards include controller



(a) Alphabetic character layer
(shown capitalized).

(b) Secondary layer with punctuation
and numerals.

(c) Tertiary layer with symbols and
punctuation.

Figure 1: The three main alternative character input layers of Google’s Gboard that provided the basis for the chosen character layout.

and hand-based input [6, 7, 22], gaze or head-based input [15, 26]
and novel device-based input [12]. Other efforts have focused on
improving the design of a virtual keyboard by optimizing its location
and orientation [10, 24]. Research has also examined different meth-
ods for improving entry rates, accuracy and user experience such
as by integrating speech recognition [1] and tactile feedback [13].
McGill et al. [16] introduce a toolkit for creating virtual keyboards
and augmenting physical keyboards in VR.

An illustrative example of the broad design space for mid-air
text input in VR is the investigation by Speicher et al. [22]. Spe-
icher et al. [22] investigated six alternative selection-based Qwerty
keyboard input methods for use in VR: head pointing; controller
pointing; controller tapping; freehand; discrete controller cursor and
continuous controller cursor. The general recommendation from
this paper was to use controller pointing where feasible. However, a
controller can encumber the user and, in instances where the user is
not already holding a controller when seeking to input text, it can be
highly disruptive to require the user to locate and pick up a controller.
There is therefore a clear need for controller-free text input methods
and indeed the native hand-tracking capability of modern HMDs
has improved significantly since the study by Speicher et al. [22].
Dudley et al. [7] investigated the performance potential of mid-air
controller-free text input using tracked index fingers and found that
entry rates of 30 to 50 words-per-minute (WPM) are feasible. En-
try rates in the context of special character input for passwords are
unlikely to reach this level given that users do not typically have a
strong memory of where, or on what layer, a desired non-alphabetic
character is located. Effective entry of passwords also demands that
the user takes care to avoid input errors and this typically leads to
lower entry rates. Nevertheless, users are still likely to benefit from
methods that streamline the process of transitioning between layers
and afford accurate selection of characters within a given layer. To
the best of our knowledge, there is no prior work that specifically
focuses on improving the performance of special character entry on
a mid-air virtual keyboard.

As noted by Dube and Arif [5], “most existing text entry tech-
niques for VR are adaptations of techniques that were designed and
optimized for different form factors.” This is particularly true for
special character entry where current implementations are straight-
forward adaptions of the approach taken on smartphone keyboards.
There has been limited work seeking to fully exploit the additional
input modalities and interaction space afforded by immersive HMDs
to improve the process of entering special characters. Nevertheless,
there is some conceptually relevant work that illustrates the more
general concept of leveraging additional information embedded in
text input interaction to improve performance. For example, Weir
et al. [25] measured touch pressure during typing on a physical
input surface to implicitly model touch uncertainty. Foy et al. [9]
similarly exploited an awareness of the finger used and dynamic
characteristics of the touch to probabilistically model the likelihood
of a spurious touch when typing on a mid-air VR keyboard. Both
of these examples illustrate how additional information already cap-

tured by the system in text input interaction can be exploited to
improve performance. Our gesture-based mode switching technique
extends this general concept by enabling the user to actively trig-
ger interface changes without interrupting the standard method of
interacting with the keyboard.

Prior work has also looked at mode-switching of VR user inter-
faces and interactions within different application contexts. Surale
et al. [23] evaluated a range of different actions, including some
static hand gestures, as a means to perform generic mode switching
in VR. Hand gesture-based interaction and mode selection is an
attractive choice for VR and AR applications given the growing
access to accurate hand tracking data and tools that streamline the
creation of gesture recognizers [17, 20]. To distinguish between
different possible actions resulting from the same gesture, Chen
et al. [3] explored secondary input for disambiguation by means
of head gaze, speech or foot taps. Pfeuffer et al. [18] investigated
how gaze can be integrated with controller input to streamline menu
interactions in a way that minimizes disruption of the main task. Shi
et al. [21] evaluated the use of deliberate head motions sensed by an
HMD as a means to toggle between tools in a controller-based 3D
painting application. In this paper, we explore gesture-based mode
switching for the specific task of transitioning between layers on a
virtual keyboard.

While there are some use cases where special characters are used
in communication (e.g. emojis or mathematical operations), we con-
sider authentication to be one of the most useful applications of
gesture-based mode switching. Schneider et al. [19] introduced vari-
ety to the physical keyboard interface to support creative use cases
in VR, one of which suggested shuffled keys to prevent shoulder-
surfing during authentication. Other previous works aim to address
the limitation of a text-based password by focusing on alternative
methods for authentication in VR. George et al. [11] suggested
authentication by connecting 3D objects in the virtual space as a
method to leverage all three dimensions. Evtimova and Nicholson
[8] proposed graphical passwords based on 2D images for users
who have difficulty reading and memorizing text. There has been
little research attention given to improving the typing experience of
text-based passwords, despite the fact that this still remains the most
common method of authentication.

3 SYSTEM DESIGN

There are three main components of the gesture-based mode switch-
ing method: 1) the keyboard design; 2) the design of the gestures
themselves; and 3) the method for performing rapid and accurate
gesture recognition.

3.1 Keyboard Design
The keyboard presented in Dudley et al. [7] was extended to include
secondary and tertiary input layers with numerals, symbols and
punctuation. The user can switch between these layers using either
our gesture-based switching method or a standard button-based
interaction. The interaction design of the button-based switching



(a) INDEXPOINT-0: Typing on the primary alphabetic character layer. (b) INDEXPOINT-90: Typing on the secondary layer with numerals.

(c) INDEXPOINT-180: Typing on the tertiary symbol and punctuation layer. (d) DOUBLEPOINT: Typing on the capitalized alphabetic character layer.

Figure 2: The four hand gestures used to switch between keyboard input layers.

method replicates the behavior of Gboard. The ⟨SHIFT⟩ key toggles
the capitalization of the primary layer. As illustrated in Figure 1, the
secondary input layer is accessed by pressing the ⟨?123⟩ key shown
in the bottom left of Figure 1a. After switching to the secondary
input layer, the ⟨SHIFT⟩ is replaced by the ⟨=\<⟩ key as shown
in Figure 1b. Pressing the ⟨=\<⟩ key brings up the tertiary input
layer shown in Figure 1c. The tertiary layer contains the least
commonly used special characters, hence the requirement for an
additional keystroke to activate it. The ⟨?123⟩ key on the primary
layer is replaced by an ⟨ABC⟩ key on the secondary and tertiary
layer, allowing the user to switch back to the primary layer.

The behavior of these mode switching keys was replicated in our
mid-air VR keyboard implementation to establish the button-based
baseline method subsequently evaluated. We also adopted Gboard’s
allocation of numerals and punctuation to the secondary and tertiary
layers, although the VR keyboard provides some additional key slots
which were filled with additional symbols (see Figure 2).

3.2 Gesture Design
The gesture-based switching method triggered layer changes in the
same way as the button-based approach. The frequency of use and
associated meaning of these different layers is reflected in the design
of these gestures.

We designed four gestures providing a one-to-one correspondence
with the four keyboard layers: lowercase alphabetical characters;
uppercase alphabetical characters; secondary numeral, symbol and
punctuation layer; and tertiary symbol and punctuation layer. The
philosophy behind the design of these gestures is to provide a method
that can reduce the time and effort needed for layer switching during
typing, while minimizing any disruption to the flow while typing.
Figure 2 illustrates each gesture, as well as the layer it activates on
the virtual keyboard. The four gestures are also summarized below:

1. INDEXPOINT-0: Typing with right index finger while palm
is facing downwards. This gesture corresponds to the default
alphabetic layer.

2. INDEXPOINT-90: Typing with right index finger while palm
is facing to the left. This corresponds to the secondary layer
with the punctuation, numerals and some special characters.

3. INDEXPOINT-180: Typing with right index finger while palm
is facing upwards. This corresponds to the tertiary layer with
punctuation and additional special characters.

4. DOUBLEPOINT: Typing with both right index finger and mid-
dle finger, while palm is facing downwards. This corresponds
to the capitalized alphabetical character layer.

Each gesture can be performed with small adjustments of the
hand while maintaining a pointing-forward form so that the typing
process is minimally affected. Significantly, the transition between
the primary, secondary and tertiary layers requires changing the
hand posture in one axis only, that is, by rotating the wrist. This
provides the user with a potential mental association between ro-
tation degree and layer number. No wrist rotation (palm down)
is the default posture for using the primary layer and is consis-
tent with the wrist orientation when typing on a physical keyboard.
The INDEXPOINT-90 and INDEXPOINT-180 gestures are progres-
sively less comfortable postures and the least comfortable posture
(INDEXPOINT-180) is allocated to the least frequently used layer.
Similarly, the DOUBLEPOINT gesture provides the user with a po-
tential mental association with exerting larger force or being more
‘emphatic’ and thus provides a logical correspondence with capi-
talization. Alternative gestures could be used to achieve the same
function but our particular choices were based on the goal of offering
simple transformations of a typical mid-air typing posture, that is,
palm down and with all fingers retracted except the index finger.

3.3 Hand Gesture Recognizer
The recognition system is a single-frame spatial self-attention neural
network, directly simplified from Chen et al. [4] by removing the
temporal aspect of the model. The input format is a hand skeleton



graph of dimension (J,D), where J = 4 is the number of joints
that are used for the recognition and D = 7 describes the pose (3D
position and 4D quaternion) of each joint of interest. We used the
wrist, thumb, index and middle fingertips since these were the most
relevant joints for distinguishing between our proposed gestures.

The input hand graphs are first linearly mapped to 128-
dimensional vectors, which are then passed to a multi-head self-
attention layer. The attention layer effectively computes the spatial
relationship between each joint of the hand skeleton for that particu-
lar gesture. The output is a 128-dimensional attention representation
of the gesture, which is passed through a fully connected layer with
a softmax function to obtain the final classification results. Unlike
previous works on gesture recognition we simplified our model to
make single-frame predictions because all supported gestures are
static, which means we are not interested in the temporal association
between frames. Thus there is no need to provide the model with
more than one frame per prediction. The single-frame approach
also makes the model much more light-weight and permits faster
inference.

4 EVALUATION

We evaluate gesture-based layer switching by comparing it in a user
study with a button-based baseline method. The baseline method
works analogously to the conventional button-based switching mech-
anism that is commonly used on smartphones and tablets.

The design of the user study is a within-subjects experiment with
a single independent variable (the means of switching the keyboard
layer) with two levels: BUTTON and GESTURE. The dependent
variables are entry rate, keystrokes per character, average error count,
layer switching interkey interval, perceived workload (NASA-TLX)
and subjective user experience.

4.1 Participants

We recruited a total of 16 participants (mean age = 26.4 ± 3.2
standard deviation; min=21, max=35; 4 female, 12 male) for the
study via convenience sampling. Six participants stated they had no
prior experience with VR HMDs. All participants were right-handed.
We also asked our participants to report their self-rated speed when
typing on a smartphone. The average score was 3.2 ± 0.9 on a scale
from 1 – very slow to 5 – very fast.

4.2 Apparatus and Materials

The study was carried out using a Meta Quest 2 VR HMD and the
experimental application was built in Unity. The gesture recogni-
tion system was implemented using the Pytorch library and trained
with hand gesture data collected from the first two authors of this
paper. The training data consists of 20 clips of hand skeleton data
from each person for each gesture, and the final model achieves a
99% prediction accuracy on the test set with a 3:1 train-test split.
The trained model was then exported to the Open Neural Network
Exchange (ONNX) format and integrated into Unity using the Bar-
racuda package1. We built the system into an Android Package (apk)
that can be deployed onto the HMD and run on-device. However, the
actual study was run on a computer via Oculus Link as this provided
a more convenient setup for observing participant behavior. The
gesture recognizer was configured to run at 10 Hz during the study.
Selecting a suitable frequency for running the recognizer involves a
trade-off between recognition latency and processor consumption. In
our preliminary design work, we found that running the recognizer
at faster than 10 Hz delivered no detectable performance advantage.

1https://docs.unity3d.com/Packages/com.unity.

barracuda@0.7/manual/index.html

4.3 Familiarization Phase
At the beginning of the study, each participant completed a familiar-
ization task that introduced the gestures used in the gesture-based
layer-switching method. Participants were required to ‘touch’ targets
that would appear at a random position (but at a fixed depth) while
performing the gesture that was displayed on the target. There were
a total of 50 target selections in this phase.

4.4 Task
Thereafter the participant was asked to engage in the experimental
task in two conditions (BUTTON and GESTURE). The order of
the conditions was counterbalanced. In the task the participant
entered a set of passwords according to instructions presented in the
HMD display. Each password consisted of 12 characters that were
randomly generated using an online password generator2. Each
generated password contained at least one of the lower-case and
capitalized letters, numerals and special characters. These generated
passwords were therefore compliant with guidance from Google3

and Microsoft4, which both recommend a mixture of character types
and a minimum length of 12 characters. The task was split into two
distinct stages, and the participant was asked to complete both stages
in one condition before they proceeded to the alternative condition.
At the end of each stage the participant was asked to complete a
NASA-TLX questionnaire and provide additional feedback in the
form of ratings of speed, accuracy and comfort.

4.4.1 Stage 1
Stage 1 consisted of 20 distinct passwords. Participants were in-
structed to enter each password as quickly and as accurately as
possible. The 20 passwords were split equally into two blocks and
participants were given a short break between each block. To control
for difficulty of the passwords presented to participants, we compiled
two different sets of 20 passwords (40 passwords in total). These
password sets were balanced across the participant group both in
terms of the two conditions as well as the two possible orders of
exposure.

4.4.2 Stage 2
The purpose of Stage 2 was to assess the performance of the two
conditions (BUTTON and GESTURE) when the participant’s learning
has saturated by providing the participant with sufficient practice
for learning a single password. The protocol is intended to partially
replicate the circumstance in which a user is entering a password
that they know and have entered many times before. Participants
therefore repeatedly entered the same password 20 times, with these
entries again split equally into two blocks. The same password
(‘5+Roz7Wi$6dR’) was used throughout the study for both condi-
tions and for all participants.

5 RESULTS

5.1 Entry Rate
5.1.1 Stage 1: Distinct Passwords
We measure entry rate in words-per-minute (WPM) with a word de-
fined as five consecutive characters including space. The entry rates
for the BUTTON and GESTURE conditions are shown in Figure 3a.

In Block 1 (i.e. the first 10 passwords) the mean entry rate was 5.5
WPM for BUTTON and 5.7 WPM for GESTURE. In Block 2 the mean
entry rate was 6.5 WPM for BUTTON and 7.1 WPM for GESTURE.
Repeated measures analysis of variance at an initial significance level

2https://my.norton.com/extspa/passwordmanager?path=

pwd-gen
3https://support.google.com/accounts/answer/32040?hl=

en
4https://support.microsoft.com/en-us/windows/

create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb

https://docs.unity3d.com/Packages/com.unity.barracuda@0.7/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@0.7/manual/index.html
https://my.norton.com/extspa/passwordmanager?path=pwd-gen
https://my.norton.com/extspa/passwordmanager?path=pwd-gen
https://support.google.com/accounts/answer/32040?hl=en
https://support.google.com/accounts/answer/32040?hl=en
https://support.microsoft.com/en-us/windows/create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb
https://support.microsoft.com/en-us/windows/create-and-use-strong-passwords-c5cebb49-8c53-4f5e-2bc4-fe357ca048eb
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(a) Entry rate in words-per-minute (WPM).
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(b) Average error count.
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(c) Keystrokes per character (KSPC).

Figure 3: The entry rate, average error count and keystrokes per character for the distinct password entry task. The boxplots show the median
(the horizontal line), the first and third quartile (the box) and the minimum and maximum (the whiskers). The plus signs (‘+’) indicate outliers.
The mean is indicated by the ‘

⊗
’ symbol.
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(a) Entry Rate (WPM).
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(b) Average Error Count.
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(c) Keystrokes per Character (KSPC).

Figure 4: The entry rate, average error count and keystrokes per character for the repeated password entry task. The boxplots show the median
(the horizontal line), the first and third quartile (the box) and the minimum and maximum (the whiskers). The plus signs (‘+’) indicate outliers.
The mean is indicated by the ‘

⊗
’ symbol.

of α = 0.05 showed that the difference between the two conditions in
Block 1 was not significant (F1,15 = 0.180, η2

p = 0.012, p = 0.677)
while the difference in Block 2 was significant (F1,15 = 6.755, η2

p =
0.311, p = 0.020). In other words, after some practice, the gesture-
based method is significantly faster than the established button-based
approach and provides an 8.3% improvement in entry rate.

Figure 3c shows the mean Keystrokes Per Character (KSPC) for
both conditions, which reveals the underpinning mechanism explain-
ing the performance improvement. For the BUTTON condition the
average KSPC is more than 2 as often at least one keystroke is nec-
essary for layer switching and some special characters require two
keystrokes to reach their layer. For the GESTURE condition, the
participants can achieve a minimum KSPC of 1 if they execute the
task perfectly, thus saving time during text entry.

5.1.2 Stage 2: Repeated Password

The entry rates for the BUTTON and GESTURE conditions are show
in Figure 4a. The mean entry rate in Block 1 was 7.0 WPM for
BUTTON and 8.3 WPM for GESTURE. In Block 2 the mean entry
rates increased further to 7.9 WPM for BUTTON and 9.7 WPM
for GESTURE. Repeated measures analysis of variance with an
initial significance level of α = 0.05 revealed that the differences are
statistically significant for both Block 1 (F1,15 = 11.774, η2

p = 0.440,
p = 0.004), and Block 2 (F1,15 = 19.197, η2

p = 0.561, p = 0.001).
In other words, with more practice participants are able to type even
faster with the gesture-based method. As shown in Figure 4c, the

mean KSPC for the GESTURE condition approaches unity. This is
because participants become more proficient with the technique. In
contrast, the KSPC for the BUTTON condition remains above 2.

5.2 Average Error Count

5.2.1 Stage 1: Distinct Passwords

A higher entry rate does not necessarily show the benefit of the
gesture-based method if the accuracy of text entry is compromised.
Figure 3b plots the average error count during each block of Stage 1,
and shows an average error of approximately 0.2 characters per
password across all participants for both conditions. This is the
equivalent of making a single mistake every fifth password entry,
which we consider to be a reasonable level of error. Therefore, the
level of error is acceptable in both conditions. A Friedman test
revealed no significant difference between the two conditions. This
shows that there is no evidence that the gesture-based method would
be more error-prone compared to the baseline.

5.2.2 Stage 2: Repeated Password

We observe in Figure 4b that the average error counts for both
conditions drop below 0.2 errors per password as the participant
makes fewer mistakes at this stage of the study. A Friedman test
revealed no significant difference between the two conditions.



Table 1: Median and interquartile range (IQR) of the questionnaire responses to Questions 1 to 3. Responses were recorded on a five point
Likert scale from 1—strongly disagree to 5—strongly agree.

BUTTON GESTURE

Statement MEDIAN IQR MEDIAN IQR

Q1 The technique made it easy to switch layers quickly. 3 1 5 1
Q2 The technique made it easy to switch layers accurately. 3.5 1 4 0.25
Q3 The technique was comfortable to use. 3 2 4 0.25
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Figure 5: Boxplot of the mean interkey interval for key presses
involving a layer switch, grouped according to the target keyboard
layer. The mean is indicated by the ‘

⊗
’ symbol.

5.3 Layer Switching Interkey Interval

We also investigate the average time for consecutive key presses that
require a layer transition. This allows us to obtain a more detailed
understanding of where the performance advantage of the GESTURE
condition is realized. The time between consecutive key presses is
also referred to as the interkey interval (IKI). Here we define layer
switching IKI as the time between two consecutive key presses on
the main keyboard layout that result in a correct character selection
and where these two characters are on different layers. Note that in
the BUTTON condition there may be one or more intervening presses
of the mode switch buttons which are then ignored when computing
the layer switching IKI. We computed the average layer switching
IKI separately for each of the four possible layers to which the user
is transitioning. To ensure a representative amount of samples within
each layer group we combined the data from all blocks and stages.

Figure 5 shows a boxplot of the participant mean layer switching
IKI in both conditions and grouped by target layer on the x-axis. For
the BUTTON condition, the average IKI for a layer transition was
1.36 s (primary layer), 2.14 s (secondary layer), 2.88 s (tertiary layer),
and 1.84 s (capitalization layer). For the GESTURE condition, the av-
erage IKI for a layer transition was 1.47s (primary layer), 1.79s (sec-
ondary layer), 2.20s (tertiary layer), and 1.54s (capitalization layer).
The layer switching IKI was shorter in the GESTURE condition for
all target layers except the default layer. A repeated measures anal-
ysis of variance revealed that this reduction in layer switching IKI
was significant for the secondary layer (F1,15 = 10.244, η2

p = 0.406,
p = 0.006), tertiary layer (F1,15 = 14.126, η2

p = 0.485, p = 0.002)
and capitalization layer (F1,15 = 7.226, η2

p = 0.325, p = 0.017).
The difference was not significant for the primary (lower-case alpha)
layer. The negligible difference observed for switches to the primary
layer can be explained by the design of the BUTTON condition. The
BUTTON condition always allows returning to the primary layer with
a single key press regardless of which layer is before the transition.
The reduction in switching time for all other target layers, together
with the KSPC results, helps to explain the mechanism for the entry
rate increase observed for our gesture-based layer switching method.
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Figure 6: Mean NASA-TLX scale ratings. Error bars show ± 1
standard deviation. Note that a lower ‘Performance’ rating indicates
‘better’ perceived performance.

5.4 Perceived Workload

Figure 6 plots the mean raw NASA-TLX scale scores across all par-
ticipants. The GESTURE condition was considered by participants
to be less physically and temporally demanding, likely due to the
fewer keystrokes required and the higher entry rate. Participants also
perceived themselves to perform better, experience lower frustration,
and use less effort in the GESTURE condition. The gesture method
introduced slightly higher mental load, as users were required to
learn and adapt to a completely new text entry technique within a
relatively short period, whereas the button-based condition required
very little adaptation. This point was also reflected in qualitative
feedback from participants. A Friedman test revealed that none of
these measured differences were statistically significant.

5.5 Participant Feedback

Participants completed a final written questionnaire which included
a specific question eliciting their preference between the two condi-
tions. 15 out of the 16 participants indicated that they preferred the
gesture-based method overall. Participants were also asked to rate
each technique by answering the three questions shown in Table 1.
The results show that participants regarded the gesture method as
faster, slightly more accurate and more comfortable to use. A Fried-
man test revealed significant differences for Q1 (p < 0.001), but not
for Q2 (p = 0.206) or Q3 (p = 0.0578). For BUTTON condition, 11
participants commented that it was ‘familiar’. Nine participants said
they had to press multiple times to reach a wanted character and two
participants found this condition to be more error-prone. Meanwhile,
seven participants expressed that the gesture method was ‘fast’ or
‘efficient’ while seven participants described the method using the
words ‘easy’, ‘natural’ or ‘convenient’. However, four participants
expressed that the some gestures (DOUBLEPOINT, INDEXPOINT-
180) were less comfortable to use, and four participants mentioned
‘false activation’ and ‘inaccurate hand tracking’. Although infre-
quent, these tracking issues were most commonly observed to occur
when the native Quest 2 hand-tracking falsely reported the middle
finger as being extended when it was in fact retracted or vice versa.



6 DISCUSSION

The user study reveals that the gesture-based mode switching method
achieves a higher entry rate by reducing the KSPC close to a min-
imum and does not introduce additional errors. Furthermore, the
gesture-based method helps to reduce the time between consecutive
key presses that fall on different layers. After some practice, users
obtain an 8.3% increase in entry rate with the gesture-based method
on distinct and unfamiliar passwords. With additional practice on a
single password, the performance increased by a significant 21.8%
compared to the baseline. Further, users were able to learn the new
technique over a relatively short period of time and were thereafter
able to outperform the traditional button-based method. Despite no
prior familiarity, the gesture-based method was preferred by almost
all (15 out of 16) participants in the user study.

We observed occasional unwanted keyboard layer selections when
using the gesture-based method, which resulted in input errors.
There are three primary potential sources of errors causing this:
1) the participant performed an incorrect gesture; 2) the HMD hand
tracking was inaccurate; and 3) misrecognition by the recognizer.
The recognizer used in the study was trained on data from two peo-
ple. More training data from a wider pool of users would reduce the
risk of over-fitting and potentially improve recognition accuracy.

7 LIMITATIONS AND FUTURE WORK

We believe that our work examines a well-motivated operating point
in the design space for gesture-based keyboard layer switching but
we acknowledge that there are other operating points that can be
explored in the future. Other gesture choices, including the use of
bimanual gestures, could potentially be more comfortable or intuitive
for users and deliver better performance. We leave the examination
of the possible merits of alternative gesture sets as future work.

The efficacy of gesture-based keyboard layer switching is clearly
demonstrated by the results we obtained from our controlled user
study. Nevertheless, we recognize that our experiment necessarily
relies on a task formulation that is somewhat contrived and that our
participant pool is relatively small. Further studies are necessary to
understand how the technique may perform with a larger and more
diverse user group, both in controlled and in-the-wild settings. A
more detailed examination of the causes of errors in layer switching
would also be informative. However, this is difficult to perform
without interrupting participants during execution since intentional
switching and false activations are difficult to differentiate based on
logged data alone.

We also recognize that although we have examined the use case
of password entry, we have not considered broader security concerns.
Prior work (e.g. [19]) has studied the potential security concerns due
to shoulder-surfing when entering passwords on an immersive HMD
and proposed potential solutions to this form of attack. We leave
further such refinements as future work.

8 CONCLUSIONS

In this paper we have introduced a new technique for keyboard layer-
switching based on hand gestures in order to support a more efficient
method of special character entry. The method allows participants
to seamlessly switch between different layers on a virtual keyboard
without interrupting their typing.

Our evaluation with 16 participants typing passwords compared
the new gesture-based method with a commonly used approach that
uses dedicated buttons to switch between layers. This evaluation
showed that the gesture-based method allows users to type special
characters faster with the same level of accuracy. With practice, par-
ticipants achieved a significant 8.3% increase in entry rate compared
to the baseline and with additional practice with a single password
the increase in entry rate grew to a significant 21.8%. In addition, 15
out of 16 participants preferred the gesture-based method. Finally,
we also note that the gesture-based method can be integrated such

that it is compatible with the established button-based mechanism
for switching layers. This could provide an optional complementary
entry method for expert users to efficiently enter special charac-
ters. Given this, in combination with the encouraging empirical
results, we believe the gesture-based method can be a popular way
of supporting special character entry on virtual keyboards in VR.
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