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Figure 1: System diagram of our simulator sickness estimation solution, illustrating data capture from a user study, analysis of
recorded user data, extraction of motion-flow data, training of the neural network, and the estimation of simulator sickness scores.

ABSTRACT

This paper presents a novel solution for estimating simulator sick-
ness in HMDs using machine learning and 3D motion data, informed
by user-labeled simulator sickness data and user analysis. We con-
ducted a novel VR user study, which decomposed motion data and
used an instant dial-based sickness scoring mechanism. We were
able to emulate typical VR usage and collect user simulator sick-
ness scores. Our user analysis shows that translation and rotation
differently impact user simulator sickness in HMDs. In addition,
users’ demographic information and self-assessed simulator sick-
ness susceptibility data are collected and show some indication of
potential simulator sickness. Guided by the findings from the user
study, we developed a novel deep learning-based solution to better
estimate simulator sickness with decomposed 3D motion features
and user profile information. The model was trained and tested
using the 3D motion dataset with user-labeled simulator sickness
and profiles collected from the user study. The results show higher
estimation accuracy when using the 3D motion data compared with
methods based on optical flow extracted from the recorded video, as
well as improved accuracy when decomposing the motion data and
incorporating user profile information.

Index Terms: Virtual reality, machine learning, simulator sickness,
estimation, user study, motion analysis

1 INTRODUCTION

Virtual reality (VR) users in head-mounted displays (HMDs) may
feel simulator sickness during or after use. The after-effects can
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influence their driving, equipment operation, and other real-life ac-
tivities. Simulator sickness using HMDs is theoretically caused by a
conflict between the human visual system perceiving the informa-
tion from the virtual environment and the vestibular system reacting
to the movements in their physical environment. Researchers have
studied the causes of simulator sickness, including content-based fac-
tors, individual characteristics, and hardware conditions [3,5,45,50].
From a hardware and software design perspective, there is a trade-
off between higher immersion and lower simulator sickness in VR
applications. By knowing the amount of simulator sickness in a
VR application, and its causes, VR developers can optimize their
solutions for an improved experience.

Properties of motion within the virtual environment are prominent
factors in determining the degree of simulator sickness [14, 22, 42].
Previous studies investigated how movement characteristics in VR
content, such as movement frequency and amplitude, axial rotation,
and navigation speed, contribute to simulator sickness [1, 4, 22,
29, 36, 37, 48]. However, these prior works focus either solely on
translational motion [48], or only rotational motion [1, 2, 21, 22, 37].
Many previous studies [14, 42] evaluate simulator sickness in a
constrained setup (passive viewing without sufficient interaction or
head movement), which is not representative of how VR users often
interact in VR.

Recent research has started to utilize machine learning and user
simulator sickness labels to predict simulator sickness from visual
content [7, 19, 25, 32, 34, 43]. In these approaches, identifying the
right features that cause simulator sickness is critical since machine
learning prediction highly depends on the features to learn. Many
prior approaches use optical flow [25, 34, 43] to obtain motion fea-
tures from the video projected on HMDs when estimating simulator
sickness. Optical flow provides the overall movement frequency
and amplitude from the 2D projected plane [7, 34, 43], but it has
limitations in accurately representing 3D motion features inherited
from movements in the 3D environment. 3D motion flow has an



explicit representation of the x, y, and z axes, while optical flow
projects those motions onto a 2D image plane, struggling to capture
forward-axis motion (changes in depth). The 3D motion flow is
also well-suited for rotation and translation decomposition, while
the optical flow is not.

In this paper, we present a novel deep neural network capable of
interpreting 3D motion and learning to predict user-specific simula-
tor sickness levels when moving through 3D virtual environments
in HMDs. We specifically focus on decomposing the 3D motion
features into translation and rotation components to improve the
prediction of simulator sickness. In addition, our network is able
to take into account user profile information, such as personal sus-
ceptibility to simulator sickness and demographic information, to
improve simulator sickness estimation accuracy further.

To this end, we designed a gamelike VR task with enough interac-
tions and decomposed motion guidance, which allowed us to assess
the effects of different motion types on simulator sickness (Figure 1).
We conducted user studies to identify correlations between simulator
sickness and the decomposed 3D movement in translation and rota-
tion, as well as build a user-labeled 3D motion dataset for machine
learning to learn from. Our user study results showed that translation
and rotation have different severities of simulator sickness in HMDs.
We also conducted further analyses to find correlations between in-
dividual user profiles and simulator sickness levels. Based on these
findings, we then developed a novel deep neural network architecture
to better estimate simulator sickness with decomposed motion and
user profile information. Our results show that the deep simulator
sickness estimation model based on decomposed 3D motion features
and user profiles outperforms methods based on optical flow and
undecomposed motion.

Our contributions are summarized as follows:

• We propose a novel deep learning-based simulator sickness es-
timation solution, introducing decomposed 3D motion features,
which proved to outperform traditional 2D motion features.

• We design and perform a user study with variations on de-
composed movement, including translation and rotation, to
explore the effects that different motion features have on simu-
lator sickness in HMDs. The user study also provides a large
3D motion dataset paired with user-labeled simulator sickness
scores for our network to train with.

• Our simulator sickness estimator is able to adapt personalized
user profile information (e.g., individual simulator sickness
susceptibility, demographic information) to improve simulator
sickness estimation accuracy for a given user.

2 RELATED WORK

2.1 Movement and simulator sickness
User movement in VR often causes users to experience illusory self-
motion, inducing simulator sickness. Hu et al. [14] found that virtual
camera movement including translational acceleration and rotational
velocity contributes to perceived simulator sickness. Nakamura et
al. [39,40] suggest that the motion of the background induces vection
while the motion of the foreground objects reduces the vection
induced by the background because of the “inverted vection” they
generate. Jeong [17] found that violent up and down camera motions,
fast background transitions, and unintended camera movements are
important factors contributing to simulator sickness.

Some studies have investigated the impact of the speed of the
movement on simulator sickness, and mostly report that faster move-
ment will induce more severe simulator sickness [4, 36]. So et
al. [48] investigated what effects navigation speed have on the level
of simulator sickness in the fore-and-aft axis during and after an
exposure time in one virtual environment, and found that navigation
speeds significantly impacted the onset times of simulator sickness.

Some studies have investigated movement frequencies and ampli-
tudes and their effects on simulator sickness [8, 9, 11, 12, 47] and
tried to find the significant motion patterns and ranges that arouse
simulator sickness. Some other works [1, 22, 29, 37] investigate the
relative importance of different rotational axes on simulator sickness
and the dual- and tri-axis combination effects. They demonstrated
that the presence of rotational motions in the scene in any of the roll,
pitch, and yaw axes consistently cause simulator sickness, and that
dual-axis rotational movement will evoke greater feelings of nausea
than single axis, but found no significant difference when comparing
dual-axis and tri-axis rotations.

Although prior user studies have investigated either translation or
rotation movement, no work has done a comparative study between
these two different movement patterns. In our work, we try to
decompose the rotation and translation in the user study to research
the different effects they may have on simulator sickness.

2.2 Data Collection and Simulator Sickness Labelling

Some prior work used stereo 360° videos selected from YouTube as
a raw stimulus [34,43]. Padmanaban et al. [43] collected a set of 19
one-minute 360° videos from 96 participants. During simulator sick-
ness labeling, the participant’s head motion was constrained using
a headrest to ensure that all users saw the same scene. So, strictly
speaking, their data is not 360°, but regular video instead, although
with a very wide field of view. In addition, passive video-watching
made it quite different from normal VR usage. Jin et al. [19] focused
on VR gameplay, which has more frequent viewpoint changes and
interactions. They recorded the eye-screen video displayed in HMD.
Head motion and some body movement (while sitting) were allowed
during the experiments. Although their stimulus was a VR game,
the simulator sickness estimation was still based on the 2D recorded
video. Also, an off-the-shelf VR game lacks the ability to control
movement styles.

Here, we designed a game-like VR environment and added vari-
ous strategies of player control and movement guidance. Noteworthy,
we decomposed different movement styles in our game-task design
to study their difference in contributions to simulator sickness.

For simulator sickness labeling, Padmanaban et al. [43] asked
users to fill out the Kennedy Simulator Sickness Questionnaire (SSQ)
and the simulator sickness susceptibility questionnaire short-form
(MSSQ-short) after watching the video as the measurement of sim-
ulator sickness. Porcino et al. [44] used a Virtual Reality Sickness
Questionnaire (VRSQ) both before and after the user study to gauge
the participant’s simulator sickness. Participants played VR games
for five minutes whilst rating when there was a simulator-sickness
level change. The simulator-sickness level changes would be used to
label the data, with the VRSQ used to validate any inconsistencies.
Jin et al. [19] measured the simulator sickness in a “ranking-rating”
(RR) measure that combined the relative comparisons (rankings)
and ratings (based on an 11-point scale). The MSSQ was also filled
out for each test as a measurement of individual features. The main
limitation of these approaches is that they either break continuity or
delay the reporting of momentary feelings during the game, which
will impact the validity of the simulator sickness feedback. To fill
this gap, recent work by Islam [15] started to use a Fast Motion
Sickness Scale (FMS), a verbal rating scale (ranging from 0-20)
method to capture user data during exposure quickly.

In our user study, we capture users’ ratings based on a 0-10 points
scale as simulator sickness labels. Unlike the verbal FMS, we follow
the improved work by McHugh et al. [20, 38] to integrate a physical
dial interface to periodically collect users’ ratings of simulator sick-
ness. This allows continuous measurement of the user’s momentary
simulator sickness feelings during VR immersion, while not break-
ing presence, and thus achieves more practical and precise user study
data. We also take into account the users’ subjective susceptibility
and as well as their Visually Induced Motion Sickness Susceptibility



Questionnaire (VIMSSQ) [24] score, which has been proven to be a
useful tool for measuring simulator sickness sensitivity [13, 23].

2.3 Learning Based Simulator Sickness Estimation
Recently, more and more machine learning-based methods have
emerged due to the advancement of artificial intelligence. Some
methods focused on visually-induced simulator sickness predic-
tions [25–27, 34, 43] while others investigate physiological sig-
nals, including postural sway, gait motion, heart rate, breathing
rate, galvanic skin response, and electroencephalogram (EEG)
data [10, 16, 18, 30, 32, 35, 51], or the combination of visual content
information and physiological signals [28, 31, 33]. For visual-based
machine learning methods, gameplay video will always be ana-
lyzed first to extract the raw features of depth and optical flow,
and then input them into the deployed machine learning method
to regress simulator sickness level or classify simulator sickness
arousal. Padmanaban et al. [43] trained a bagged decision tree model
on hand-crafted features (quantifying speed, direction, and depth)
from video content. Their model generally outperformed a naı̈ve
estimate, but was limited by the size of the dataset. Lee et al. [34]
improved the neural network structure with a 3D CNN followed
by several fully connected layers. And Du et al. [7] made further
improvements by introducing an attention mechanism to realize the
adaptive fusion of different inputs. Jin et al. [19] used long-short
term memory recurrent neural networks (LSTM-RNN) models with
many visual-based features and head movement. Instead of predict-
ing a general simulator sickness score, some works [26, 31] have
tried to advance the machine learning model to assess more specific
symptoms (such as nausea, disorientation, and oculomotor), using
either visual content [26] or a combination of visual content and
physiological information [31].

In this work, we also focus on visual-induced simulator sickness
estimation. But unlike previous work studying 2D motion or general
appearance features, we focus on investigating more effective 3D
motion features, studying different movement and their effect on
predicting simulator sickness.

3 USER STUDY

We had two main goals for the design of our user study. One goal
was to encourage two types of motion, translation and rotation, to
facilitate simulator sickness induced by these movement components.
Another goal was to construct a large and varied user-labeled dataset
for the machine learning model to train with. We designed a game-
like environment that mimicked common choices game developers
make in terms of player control, and allowed players to play using
various strategies, so that the data set would cover a large range of
play styles. Participants were presented with two alternating tasks
that were triggered automatically during each trial:
Task 1 - Coin Collecting (translational focus).
Task 2 - Paintball Shooting (rotational focus).

Note that we will interchangeably use the terms Task 1/Coin Col-
lecting and Task 2/Paintball Shooting. Each task was designed to
focus on one motion type: translation or rotation. For translation,
participants moved along a fixed path collecting coins laid out along
the path with an emphasis on moving forward with occasional turns
(Figure 2, top right). For rotation, the participant would be inter-
rupted during the trial to perform a point-and-shoot task at a fixed
location. While Task 1 is designed to focus on translation, we opted
not to lock the user’s head rotation to avoid undesirable vection and
to also better mimic common VR experiences. Since Task 1 can
include some rotation, we introduce independent variables within
Task 1 to help analyze the differences caused by translation and
rotation. Task 2 is then compared against Task 1 to gain further
insight between these two motion types.

In total, our user study had 124 de-identified participants (70
males, 48 females, four others, and two chose not to say). The mean

Figure 2: Task 1: Coin collecting (top left). Task 2: Paintball
shooting (bottom left). The coins in Task 1 were placed in different
patterns (top right). The participant used a Microsoft Surface dial to
select their level of simulator sickness score (bottom right).

age was 24.2 years with a standard deviation of 6.62. There were 51
participants who had no previous VR experience, 68 used VR a few
times per year, 4 used VR weekly, and 1 used VR daily.

3.1 Conditions and Data collection

The study used a 2×2 design. The first independent variable was
Movement Speed, consisting of two levels: Walking (1.7m/s) and
Running (2.8m/s). The second independent variable was Number
of Turns, again with two levels: Low (3 turns) and High (6 turns).
We will refer to the combination of the variables as conditions WL,
WH, RL and RH (where W, R, L and H refer to Walking, Running,
Low number of turns, and High number of turns, respectively).
To add more variability to the data, we made three different paths
for each of the four variations of Movement-Speed × Number-of-
Turns combinations. This resulted in a total of 12 possible paths.
These conditions vary for Task 1 (Coin Collecting), while Task
2 (Paintball Shooting) does not have any independent variables.
The dependent variables are described later, but include the user
simulator sickness score, objective game performance, and other
subjective self-reporting items.

We considered several threats to the validity of our study. Since
we were studying simulator sickness, it was reasonable to assume
the longer someone participated, the worse their symptoms may
become. In order to limit this accumulation effect, we exposed each
participant to only four paths (Latin Square), rather than all 12. Our
reasoning is that by capturing data from enough participants (in our
case, 124), we would be able to satisfactorily cover all conditions,
while still collecting reliable data. We conducted an incomplete
within-subjects design with a Latin square counterbalancing tech-
nique. For the first set of 12 paths, the first participant was assigned
paths 1, 2, 3, and 4, and this same sequence was applied to the re-
maining three participants. For the second set of the same 12 paths,
the first participant was assigned paths 2, 3, 4, and 5, while the last
participant was assigned paths 10, 11, 12, and 1. This sequence
was continued for the remaining participants. The counterbalancing
and optional self-reported scores will slightly alter the degrees of
freedom in our statistical analysis.

The participant sat in a swivel chair for the entire session and
had 10 minutes to rest between sessions, undergoing a total of four
sessions. We collected demographic information (asking for age,
gender, VR experience, and normal or corrected-to-normal vision),
simulator sickness susceptibility (with the VIMSSQ questionnaire),
the simulator sickness scores during the trial, and their performance
data (Collected Coins and Correct Color Hits).



3.2 Game Environment and Tasks

The game was developed with Unreal Engine 4.26, running at ap-
proximately 90 FPS. The map was 200m × 200m in size and used
an urban-style landscape to minimize the impact on vection [46]
(see supplementary materials). We employed a heads-up display
(HUD) at 86cm from the participant [41], which included in-game
progress. We used free sound for the audio content of the game and
more digital assets from our in-house 3D artist.

We used the Meta Quest HMD for participants to experience VR
with a Quest Link cable to connect with a desktop computer (Intel®
Core™ i7-12700F, 32GB RAM, and RTX 3060Ti). The participants
sat on swivel chairs with armrests for placing a Microsoft Surface
Dial [20, 38] for reporting their simulator sickness.

3.2.1 Task 1: Coin Collecting

The participants needed to collect as many coins as they could
(Figure 2, top left). The number of collected coins was updated on
the HUD and saved to a file. The participant navigated around in
“Tank mode,” which allowed them to move forward while also being
free to look around [41]. The participant used a Quest controller in
their dominant hand to control movement and body rotation. We
combined both movement and rotation control onto just one joystick,
where any forward-back movement of the stick moved them at a
constant speed along the fixed path at either 1.7m/s (W) or 2.8m/s
(R). For rotation, we added a “dead zone,” so body rotation would
only be triggered if the stick was moved at least 60% of the way
from center to the left or right. The rotation rate was fixed at 180
degrees-per-second. The paths were manually designed where paths
had an appropriate length (based on the character’s speed) and the
number of turns in mind. We aimed to provide participants with
as many straight segments as possible. Coin placement was done
to encourage turning (L vs. H) and moving straight. Coins could
be “collected” by moving through them. Each segment was 50m in
length, with 10 coins per segment. Based on the moving speed, we
had seven segments (70 coins) for conditions WL and WH, and 11
segments (110 coins) for RL and RH.

3.2.2 Task 2: Paintball Shooting

When the second task was triggered, movement using the joystick
was disabled, but participants were still able to look around and
point the paintball gun (the controller). A cabin with four brick
walls suddenly appeared and surrounded the participant. On each of
the front, left, and right walls, a colored rectangle with a randomized
color (red, green, or blue) was displayed (Figure 2, bottom left).
The task here was to pick the matching paintball color for the gun
to shoot on the rectangles on each wall. The participant used the
controller with the A/B (X/Y if left-handed) buttons to switch the
color of the ball, as shown on an indicator on the barrel of the
paintball gun. Then, the participant aimed the controller and fired at
the rectangle using the trigger button.

If the color of the paintball and target matched, a correct hit was
counted, the score was updated on the HUD, and the data was also
recorded for later analysis. In the design of the environment, we
chose to use simple textures to induce a sense of rotation while
reducing the risk of simulator sickness that more complex textures
may cause. We also used different sounds for the gunfire, indicating
whether it was a correct hit or not, and provided haptic feedback
through the controller when the participant pulled the trigger. When
a target was hit, it turned to a default color of grey. After all three tar-
gets were properly hit, a new round with a random color placement
was initialized. The participant continued this task for 1 minute be-
fore coming back to the Coin Collecting task. While in the Paintball
shooting task, we encouraged the participant to keep their body still
and only turn their head to the target on the left and right-hand sides.
This task was identical for all the conditions.

Walking & Low Turns
                                      （WL）

Running & Low Turns
                                      （RL）

Walking & High Turns
                                      （WH）

Running & High Turns
                                      （RH）

Si
ck

ne
ss

 S
co

re

Figure 3: Boxplots of the user study results for each of the 12 paths
during Task 1 (Coin Collecting), color-coded for each of the four
conditions. Each path is further broken down into four sub-boxplots,
representing each session the path was taken in.

3.2.3 Reporting User Simulator Sickness
A prompt reading “Please give your sickness a rating between 0-10”
every minute for the participant to report their momentary simulator
sickness level using a Microsoft Surface Dial (Figure 2, bottom
right). The reporting interface had 11 levels (0 = comfortable, 10
= not comfortable), two emoji icons (happy and vomiting), and a
ruler with marked ticks. At the bottom of the meter, there was a
movable arrow for referencing/indicating a simulator sickness level.
The interface initially started with a default value of 5. During a
trial, the reporting interface was hidden and showed up with the last
submitted score. The meter stayed visible for 7 seconds and faded
out. The dial was located on the non-dominant hand’s armrest. The
participant rotated it to move the arrow along the meter for selecting
a level and clicked (pushed) the dial to submit their score. Both the
score and a time stamp were saved as subjective simulator sickness
score data. The Dial provided haptic feedback for the participant’s
interactive actions. There was another option for reporting their
momentary simulator sickness level. At any point, the participant
could click (press) the Dial to call up the reporting interface. When
answering and in the self-report mode, the participant also stopped
moving and was released after completing the report.

3.3 Experimental Procedure and Flow
Experimental Procedure. We followed national COVID-19 guide-
lines when the experiment was conducted. The participant answered
a demographic questionnaire and a VIMSSQ first. Afterward, the
experimenter helped the participant put on their HMD, gave them
the controller, and reminded the person of the dial before starting.
Trial Flow. In each trial, the participant had six minutes of VR
gameplay. In order to provide a more realistic game scenario, we
had participants start out by moving to a location, performing a
task, then moving to another location, and performing another task.
This is similar to the behaviour required in many games, where
travel and other interactions are carried out. In our trial, participants
started by doing Task 1 (Coin Collecting) for one minute, then
reported their simulator sickness rating. After this, the participant
was locked (could not perform translational movement using the
joystick but was still able to look around) in the cabin to perform
Task 2 (Paintball Shooting) for another minute. At the end of Task
2, the participant did another simulator sickness rating based on
their recent experience before being released to continue with the
next task (Coin Collecting). The participant could also invoke self-
reporting at any point. The sequence of Task 1→Simulator Sickness
Reporting→Task 2→Simulator Sickness Reporting was repeated
twice more to make a six-minute VR gameplay. At the end of
the session, the game displayed a “Game Over” message and then



allowed users to take a 10-minute break. The amount of break
time was empirically determined and flexible depending on the
participant’s request. After the break, the participant put the HMD
back on and held the controller to get ready to start their next session.
This sequence of Session→Break was repeated three more times, for
a total of four sessions. Our surface dial kept participants engaged
for 6-minute sessions, with a total exposure time of 24 minutes for
participant safety. Note that previous work [7, 19] used 1-minute
exposure times.

3.4 User Study Motion Analysis
From the user study, we were able to analyze the user-labeled sim-
ulator sickness scores with respect to the underlying 3D motion
dataset. Additional analysis, including task performance, is pro-
vided in the supplementary. The simulator sickness scores for each
path are shown in Figure 3, and each individual score is shown in the
supplementary. The following results that include statistical analysis
were tested for data normality using the D’Agostino-Pearson Test,
which all indicated a positive result unless specified otherwise.

3.4.1 Translation and Rotation Comparison
We directly compared Task 1 (Coin Collecting) and Task 2 (Paintball
Shooting) to understand the influence of translation and rotation
motion data on simulator sickness. Note that the conditions were
varied during Task 1 to introduce variability into the experiment.
Therefore we will show results focusing on the conditions with
respect to Task 1. However, we will also show the results of the
conditions for both tasks as a point of comparison for Task 1.

The simulator sickness scores for each task, split into each con-
dition, are visualized in Figure 4. While the conditions primarily
affect Task 1, we still show the Task 2 results alongside it in case
there is some carry-over influence between tasks. We can observe
that both tasks cause a range of simulator sickness values, while
Task 1 (translation) skews higher than Task 2 (rotation). A paired
samples t-test between the two tasks under each condition indicated
there was a statistically significant difference in WL, RL, WH, and
no statistical significance in RH, the results are shown in Table 1.
In general, translation-focused motion patterns tend to cause higher
rates of simulator sickness than rotation-focused motion patterns,
with variance in its significance among users.

Table 1: Comparing the two tasks under each condition (p-values in
bold indicate statistical significance with Bonferroni correction).

µ σ t p df

WL Task 1 3.28 2.56 2.83 0.0046 244Task 2 2.41 2.23

WH Task 1 3.56 2.58 2.79 0.0052 250Task 2 2.69 2.31

RL Task 1 3.22 2.67 2.58 0.0100 246Task 2 2.42 2.16

RH Task 1 3.58 2.81 1.78 0.0750 244Task 2 2.97 2.53

3.4.2 Evaluating Translation and Rotation Variation
We analyze the effect of varying translation and varying rotation
separately. We analyze this under the four conditions (WL, WH, RL,
RH) with respect to Task 1 (Coin Collecting), since the variables
were strongly linked to this task. We ran a paired t-test between
each pair and show the result in Table 2. We found no statistical
significance in movement speed and number of turns.

3.4.3 User Profile
We looked at the self-reported profile, including the participants’
VIMSSQ score and gender, to see if there was any correlation with
simulator sickness using the Pearson correlation coefficient. Age
and VR experience were also considered, but our sample size for

Table 2: Comparing pairs of conditions for Task 1 (p-values in bold
indicate statistical significance with Bonferroni correction).

µ σ t p df
WL 3.28 2.56 0.22 0.8275 244RL 3.21 2.68
WH 3.54 2.56 -0.12 0.9061 244RH 3.58 2.81
WL 3.28 2.56 -0.77 0.4419 244WH 3.54 2.56
RL 3.21 2.68 -1.04 0.2988 244RH 3.58 2.81

each was not varied enough. For each user, we used their mean
simulator sickness score in this analysis.

For simulator sickness and VIMSSQ, there was a very weak posi-
tive correlation in both Task 1 [r(124) = 0.13, p = 0.153] and Task 2
[r(124) = 0.19, p = 0.037], where Task 2 has statistical significance.
We used a paired t-test between females and males regarding their
simulator sickness scores; in Task 1, we found statistical significance
between females (µ = 4.33;σ = 2.83) and males (µ = 2.80;σ =
2.31); [t(382) = 5.79847, p < 0.001], and in Task 2, we also found
statistical significance between females (µ = 3.30;σ = 2.55) and
males (µ = 2.17;σ = 2.03); [t(382) = 4.77523, p < 0.001].

3.4.4 Analysis Discussion

While coin collecting focused on the translational effects of simu-
lator sickness, it still also contained rotations from both the HMD
(active rotation) and controller (passive rotation) to include vari-
ability in the data and emulate typical VR experiences. Paintball
shooting acts as a point of comparison with coin collecting, help-
ing to identify the simulator sickness effects caused by translation,
where we found statistical differences (Table 1). While collecting
coins, participants tended to experience vection as their body was
physically fixed in place versus having visual cues of translation
in the virtual space. Regarding paintball shooting, their head rota-
tion corresponded to what they saw. Thus, participants may have
felt more comfortable during Paintball Shooting. The independent
passive rotation variables (low, high) isolate their effects from trans-
lation. We found that there was no significant difference between
moving speeds (Table 2), so the simulator sickness effects in coin
collecting were most likely caused by the translation.

In this study, participants repeatedly performed Task 1 alternating
with Task 2, always starting with Task 1. Building up sickness is
a typical effect of VR, so it may be expected that earlier tasks can
increase sickness levels in later tasks. However, we see that Task
1 always has higher average sickness scores than Task 2 (Table 1).
Future work could explore passive rotation tasks to act as a baseline,
similar to the paintball shooting task. Higher rotation speeds can
also be investigated. Similarly, no statistical difference was found
in the number of turns users took. Using the surface dial, we can
keep participants engaged for four 6-minute sessions. While this
is an improvement on prior work [7, 19], future work can consider
adapting the game exposure time to be more comparable with typical
VR gaming experiences.

We found that there are some slight differences between individ-
ual profiles and demographics. There is a weak positive relationship
between the self-reported VIMSSQ scores and their sickness scores
in both tasks. We also found that females reported higher sickness
compared to males, which was more pronounced in Task 1. We did
not have enough diversity in our samples for age or VR experience
to make any conclusive results. We also asked about normal or
corrected-to-normal vision, with 100% affirmation.

Based on the analysis, the machine learning model could benefit
from separating the translational and rotational components as they
each impact simulator sickness with varying severities. User profiles
showed minor impact but with statistical significance.
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Figure 4: Violin plots visualizing the distribution of user simulator sickness scores for each condition, comparing both tasks - Coin Collecting
and Paintball Shooting - which emphasize translation and rotation motion, respectively.

4 SIMULATOR SICKNESS ESTIMATION

We developed our simulator sickness estimator using a deep neural
network based on the 3D motion dataset collected from our user
study. Our aim was to explore 3D motion in VR that intrinsically
existed within the 3D environment, and its relationship with simu-
lator sickness. We train the network to learn the complex mapping
between the 3D motion features and the user’s simulator sickness
level. The pipeline of our proposed method is shown in Figure 5.
We extracted decomposed motion flow, including the translational
velocity/acceleration and the rotational velocity, with the depth to
provide distance information. We fed these pixel-wise motion and
depth maps into the network as the input. Moreover, individual
demographic details and VIMSSQ scores serve as supplementary
inputs for characterizing user profiles. The projected outcome is a
personalized simulator sickness score prediction.

4.1 3D Motion Flow Extraction

We developed our 3D motion flow extraction functionality within
a game engine (Unreal Engine) so that we have full access to the
3D scene and intrinsic motion data. We extracted different motion
features from the simulation for the input of our network, including
(1) translational velocity and acceleration with respect to the camera,
and (2) rotational velocity (See Figure 6). In addition to the motion
data, we extract the depth map of the scene. The data is extracted
and saved into high dynamic range images. We refer to the images
from (1) and (2) as motion maps.
Gameplay Recording: Extracting the motion data while the user is
playing the game during the user study runs the risk of reducing the
framerate. This is critical to avoid due to simulator sickness induced
by a low framerate. As such, we opted to first record the user’s
playthrough (running at approximately 90 FPS) within the game
engine, allowing us to replay their session offline for data extraction.
Recording their playthrough has the added benefit for researchers
to replay, inspect, and analyse individual playthroughs. To record
the gameplay, the cartesian positions and rotations of the virtual
character, dynamic objects, and the camera (x, y, z, yaw, pitch, and
roll) were recorded for each participant during the user study.
Shader Processing: The recorded gameplay from the user study was
replayed to generate pixel-level motion maps for (1) translational
velocity and acceleration with respect to the camera, (2) rotational
velocity, (3) depth. Before playback of the recorded gameplay, the
default shader of all scene objects was changed to our motion-flow
shader. The shader extracted pixel-level 3D motion features based
on the camera’s viewport, which were then saved as high dynamic
range images. These images are the input to the network.
Motion flow - Translation: The translation velocity was calculated
based on the position (translational) difference of an object relative to
the camera from the previous frame (see supplementary for equation,
where T is the unnormalized direction vector from the camera to
a point on the object and t is the frame number). The translational
velocity was decomposed into (x,y,z). The transitional acceleration
was calculated as the first order difference of translational velocity.
Motion flow - Rotation: The rotational velocity was calculated
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Figure 5: Neural network structure for simulator sickness estimation.

based on the angular difference of an object relative to the camera
from the previous frame, as shown in Equation ??, where N is
normalized direction vectors from the camera to a point on an object.
We are able to track the position of each vertex from one frame to
the next, enabling us to measure the velocity of the vertex. This is
evaluated per pixel in a fragment shader. The rotational velocity (see
supplementary for schematic and equations) is then decomposed
into (γ(yaw): rotation on the z-axis, β (pitch): rotation on the y-axis,
α(roll): rotation on the x-axis). Compared to a single aggregated
rotational velocity, these decomposed rotational velocities provided
an additional analytical dimension to isolate contributors to simulator
sickness arising from the individual axial rotations.
Depth: The depth maps were calculated based on the shortest Eu-
clidean distance of every visible rendered pixel of an object relative
to the camera for every frame t.

4.2 Neural Network for Simulator Sickness Estimation

In this work, we used a 3D CNN network module to model the mo-
tion maps to obtain compact motion representations. Different from
previous work (e.g., [7, 34]) that used optical flow, we used motion
flow with decomposition to provide a more distinguishable motion
interpretation of the scene. Since it is infeasible to conduct the sim-
ulator sickness estimation without considering a user’s individual
characteristics, we also treat the users’ susceptibility as one condi-
tion of the simulator sickness estimation. The user’s demographic
information and past experience on digital devices (collected by
VIMSSQ) were encoded in a one-hot vector and were projected into
compact latent representations by a multi-layer perceptron (MLP)
module. The depth, translation, rotation, and the users’ suscepti-
bility representations were then concatenated and fed into a fusion
MLP module to regress the simulator sickness score, allowing us to
obtain user-specific estimated simulator sickness scores. We didn’t
use RGB images as one input for simulator sickness estimation
as the prior work had done [7, 34] because motion attributes are a
more dominant factor for simulator sickness than general appear-
ance information. Focusing on motion features can alleviate the data



demand for network training, which is critical when labelled data is
challenging to collect.

Details of the network setups are listed in the supplementary mate-
rials. The 3D CNN module for the motion representation extraction
had an input size of (171, 90, 160) (temporal length, height, width).
It has four submodules stacked with each other, each including a 3D
convolution layer, a batch normalization, and a ReLU non-linear ac-
tivation function followed by a max-pooling layer. The max-pooling
layers had a kernel size of (3, 3, 3) and stride of (2, 2, 2). The latent
space had 32 channels for depth and 64 for rotation and translation,
with feature maps of the size (6, 2, 2). The latent vector was flattened
before feeding into the following fusion MLP module.

The MLP module for the user susceptibility representation ex-
traction had an input dimension of 341 (275 for VIMSSQ and 66
for demography), and consisted of two linear fully-connected layers
followed by a ReLU activation function. The fusion MLP module
had an input dimension of 3,904 (1,280 for depth, rotation, and
translation latent space and 64 for user susceptibility). It was com-
posed of three fully-connected layers, of which a ReLU projection
followed the first two linear layers, and a sigmoid activation function
followed the last linear layer as the output.

Figure 6: The extracted motion data, including depth, translational
and rotational velocities (normalized for display). In the rotational
velocity images, the GREEN and RED show positive and negative
angular values, respectively. Here, the camera was moving forward.

4.3 Data Processing and Augmentation
From the user study, we collected a total of 2,976 minutes (124 par-
ticipants, 24 minutes per person) of recorded gameplay and simulator
sickness labeling with sufficient data variations regarding motion
patterns (see supplementary Table). We treated each 1-minute clip
as one data sample for model training. The simulator sickness score
at each minute was chosen as the ground truth label. If there were
voluntary reports of simulator sickness scores (in addition to that
collected at every minute) that were larger, the maximum score was
chosen as the ground truth instead. The gameplay was downsampled
to 3fps, yielding 180 frames per sample (3fps x 60 seconds). Before
feeding the motion maps into the network, we applied max-min
scaling to each scene feature to normalize the data into [0,1]. For
the user’s simulator sickness labels, we re-scaled them into [0,1] by
dividing the score by 10 and then centralizing them into [−1,1].

Data augmentation was applied to enlarge the training dataset. We
followed prior work [7, 34] to perturb the dataset with a frameshift.
We assumed the simulator sickness level remained unchanged when
there was just a subtle time shift in the visual content (e.g., 1 out of
60 seconds). In our implementation, we shift each video clip three
times for 1 second each (augmented 4 times).

4.4 Loss functions and Training Process
The Mean Square Error (MSE) loss functions L were applied to
optimize the network parameter by minimizing the distance between
the predicted simulator sickness score and user-labeled ground truth
score Sgt . To address model overfitting and help with feature se-
lection, the L2 and L1 regularization are used as the penalty terms
on all trainable weights (β ). λL1 was chosen 0.0003 and λL2 was
chosen 0.003 in our experiments. We used Adam Optimizer to train

the model, with a learning rate of 0.0001 and batch size of 16. An
early stopping strategy was applied to stop the training procedure
when the loss on the validation dataset started to increase.

L =
N

∑
n=1

(Sgt −Spred)
2 +λL2

p

∑
j=1

(β( j))2 +λL1

p

∑
j=1

|β( j)| (1)

5 EVALUATION

Dataset: We randomly chose the data from 30 participants as testing
data, and another 94 participants’ data as training data, bringing the
total of 720 testing samples and 9,024 training samples after data
augmentation (94 participants x 24 samples x 4 times augmentation).

Metrics: We do both regression and binary classification of
simulator sickness levels in our experiments. We used two metrics to
measure the model performance. For regression, we used MSE and
output a range of 0−10 as the simulator sickness score. In addition,
since in some scenarios people just want to know if there was an
occurrence of simulator sickness, we also show the accuracy of the
binary classification as another metric. We applied a threshold to the
ground truth and predicted simulator sickness scores (6 for ground
truth and 4.5 for predictions in our implementation) to quantify them
into binary sick/not-sick categories and calculate the classification
accuracy. The threshold was chosen based on the performance of
validation data, and then applied as a hyperparameter to other cases.

Runtime: All the tests were done on one GeForce RTX A6000 card
with a runtime of 0.0167s (average across 100 samples).

5.1 Optical Flow vs. Motion Flow
Previous work [7,34,43] used optical flow extracted from 2D videos
as motion features. For comparison purposes, we extracted optical
flow from our dataset and compared it with our motion flow. We
first simulated the RGB data from our replay recordings and used
the state-of-the-art RAFT [49] method to extract optical flow, which
works in consecutive frames. Following the RAFT implementation,
we store the optical flow vectors in an RGB representation, where the
displacement (large or small) scales the saturation of the RGB values.
This RGB mapping is then fed into the neural network. Besides,
we used the ground-truth depth to go along with it as part of the
input to obtain the final estimation. It’s noteworthy that RAFT has
been reported to be more accurate for optical flow extraction than
FlowNet [6] that the prior works had used. The ground-truth depth
extracted from the engine is also more accurate than the estimated
depth based on RGB images that previous work used.

We swapped out optical flow with motion flow, including the
translation velocity and acceleration maps (divided by depth, to-
gether denoted as “Motion flow - Translation” in Table 3), and the
rotation velocity maps (divided by depth, denoted as “Motion flow -
Rotation”), to see if the motion flow features achieved more accurate
predictions. Since our user study analysis indicated decomposing
rotation from translation could be beneficial, we also experimented
with and without rotation features.

Our results on testing dataset show that motion flow performed
better than optical flow when predicting simulator sickness, im-
proving the MSE from 8.50 to 6.50 and the binary classification
from 77.82% to 80.65%. Adding rotation features further improves
the estimation performance. Compared with optical flow extracted
from rendered 2D images, motion flow extracted from the original
3D scene has a better capability of encoding motion cues in the
experienced 3D space. Additionally, including more specific decom-
posed rotational motion features allows the neural network better
to learn the relationship between motion and simulator sickness.
Similar conclusions can be obtained on 5-fold cross-validation (See
supplementary Table.).



Table 3: Optical flow and motion flow comparison.

Input feature MSE↓ Binary classification
(Acc (%)) ↑

Optical flow 8.50 77.82
Motion Flow - Translation 6.50 80.65
Motion flow - Translation & Rotation 6.08 84.07

5.2 Ablation Study

In order to see how the model performs on different motion patterns,
we evaluated our model on data from Task 1 and Task 2 separately,
allowing us to see how our model performs on translation-dominant
and rotation-dominant motions.

Using 360 samples for each condition, the results are shown in
Table 4. This shows that simulator sickness prediction for rotational
motion data (Task 2) is more reliable than translational motion data
(Task 1), with a lower MSE and higher classification accuracy for all
input feature conditions. One possible reason is that the translation-
focused motion data from Task 1 has a higher variation of simulator
sickness levels than rotation-focused motion data from Task 2 (see
Figure 4 and Table 1), increasing the prediction’s uncertainty. While
Task 1 is focused on translation, it still contains a few occasional
rotations. This increases complexity compared with Task 2, thus
more challenging for machine learning to interpret.

Compared with optical flow, motion flow can improve the simula-
tor sickness prediction performance on both tasks. Adding rotation
features also aids not only rotation-induced but also translation-
induced sickness predictions This is possibly because the neural
network can better discriminate different types of motions.

Table 4: Ablation evaluation for translation and rotation data.

Input Feature Testing data MSE ↓ Binary classification
(accuracy (%)) ↑

Optical flow Task 1 (translation) 9.57 74.19
Task 2 (rotation) 7.47 81.45

Motion flow - Task 1 (translation) 7.96 70.50
Translation Task 2 (rotation) 5.03 91.90
Motion flow - Task 1 (translation) 6.35 75.81
Translation & Rotation Task 2 (rotation) 5.81 92.30

5.3 Impact of User Profiles

To investigate the impact of users’ profiles on simulator sickness
prediction, we experimented with switching ON and OFF the user
susceptibility features on top of the motion flow features with rota-
tion. We chose different lengths of the latent feature vector (32 & 64)
to evaluate how compactness impacts the final prediction accuracy.
As shown in Table 5, adding user-profile features can generally im-
prove the performance of simulator sickness estimation, although not
as significant as motion decomposition. It aligns with the analysis
results 3.4.3 in which only minor correlations were found between
user variables and reported simulator sickness. The performance
is also partially limited by the number of participants we can have.
Providing user profile information can improve rotation-induced
simulator sickness prediction by a larger margin in both 32- and
64-dimensional cases. In terms of latent vector dimension, the model
slightly prefers a more compact latent feature space, which may be
due to the training dataset size limitation.

Table 5: Simulator sickness estimation with and without user sus-
ceptibility feature (“User”) in 32 and 64 dimensions.

Input Feature MSE ↓ MSE
(Task 1)↓

MSE
(Task 2)↓

Binary classification
(Acc (%)) ↑

(A) Motion flow 6.08 6.35 5.81 84.07
(A) + User f ea,32 5.67 6.77 4.52 86.49
(A) +User f ea,64 5.77 7.04 4.50 85.08

5.4 Comparison with prior work

We compare our method with state-of-the-art deep learning-based
simulator sickness estimation methods. For this, we chose the work
by Lee et al. [34], and Du et al. [7](each denoted as [Lee et.al 19]
and [Du et.al. 23]). They primarily use optical flow, in addition to
disparity and saliency maps as the input, and use a 3DCNN [34] or
an enhanced version using attention [7] to model their relationship
with the simulator sickness. We re-implemented the two methods
and apply the model to our dataset. From the results shown in
Table 6 - our method with motion flow features including both
rotation and translation, together with another branch of MLP for
profile information aggregation, performed better in both MSE and
binary classification accuracy metrics.

Table 6: Comparisons with other works.
Prior Works Input feature Network MSE↓ Binary classification

(Acc (%)) ↑

[Lee et.al 19] [34]
Optical flow 3DCNN 8.67 78.31
Disparity map
Saliency map

[Du et.al. 23] [7]
Optical flow 3DCNN 7.72 79.94
Disparity map + attention
Saliency map

Ours
3D Motion flow 3DCNN 5.67 86.49
Depth map + MLP fusion
User Profiles

6 DISCUSSION

From our user study, we were able to collect a diverse 3D motion
dataset paired with simulator sickness labels that our deep learning
model was able to train on. In our analysis, we were able to observe
that translational and rotational movement cause simulator sickness
with different severities. Correspondingly, we were able to observe a
noticeable increase in simulator sickness estimation accuracy when
decomposing translation and rotation features into the deep neural
network. User profiles showed a slight correlation with simulator
sickness, and we observed a proportional increase in the model’s
accuracy when feeding the user profile as part of the input feature.

Our user study mainly considered users’ movement through a
scene. Although some dynamic objects were included, they were not
the main focus of this work. Future research could study object-level
movement and its impact on simulator sickness, including object
size, movement, and placement. Texture, colour, and dynamic
lighting could be another interesting research direction. While we
introduced variability into our experiments with conditions on Task
1, future work could consider extending this with conditions on Task
2, introducing variability on rotation. Our current system provides a
good baseline for such research.

7 CONCLUSIONS

We have presented a deep simulator sickness estimation method
to estimate better the motion-induced simulator sickness level of
a user wearing an HMD. We use 3D motion flow extracted from
the original VR scene rather than optical flow extracted from 2D
images. We conducted a user study to identify the impact of different
movement styles on simulator sickness. Guided by findings from
the user study, we trained our deep model. The results showed the
benefits of using decomposed 3D motion for simulator sickness
estimation. Our estimator can provide VR developers and players
with a better tool to measure the likelihood of simulator sickness in
VR applications.
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[21] A. Kemeny, P. George, F. Mérienne, and F. Colombet. New vr
navigation techniques to reduce cybersickness. Electronic Imaging,
2017(3):48–53, 2017.

[22] B. Keshavarz and H. Hecht. Axis rotation and visually induced motion
sickness: the role of combined roll, pitch, and yaw motion. Aviation,
space, and environmental medicine, 82(11):1023–1029, 2011.

[23] B. Keshavarz, B. Murovec, N. Mohanathas, and J. F. Golding. The
visually induced motion sickness susceptibility questionnaire (vimssq):
Estimating individual susceptibility to motion sickness-like symptoms
when using visual devices. Human Factors, p. 00187208211008687,
2021.

[24] B. Keshavarz, R. Saryazdi, J. L. Campos, and J. F. Golding. Introduc-
ing the vimssq: Measuring susceptibility to visually induced motion
sickness. In Proceedings of the Human Factors and Ergonomics Soci-
ety Annual Meeting, vol. 63, pp. 2267–2271. SAGE Publications Sage
CA: Los Angeles, CA, 2019.

[25] H. G. Kim, W. J. Baddar, H.-t. Lim, H. Jeong, and Y. M. Ro. Mea-
surement of exceptional motion in vr video contents for vr sickness
assessment using deep convolutional autoencoder. In Proceedings of
the 23rd ACM Symposium on Virtual Reality Software and Technology,
pp. 1–7, 2017.

[26] H. G. Kim, S. Lee, S. Kim, H.-t. Lim, and Y. M. Ro. Towards a
better understanding of vr sickness: Physical symptom prediction for
vr contents. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 836–844, 2021.

[27] H. G. Kim, H.-T. Lim, S. Lee, and Y. M. Ro. Vrsa net: Vr sickness
assessment considering exceptional motion for 360 vr video. IEEE
transactions on image processing, 28(4):1646–1660, 2018.

[28] J. Kim, W. Kim, H. Oh, S. Lee, and S. Lee. A deep cybersickness
predictor based on brain signal analysis for virtual reality contents. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10580–10589, 2019.

[29] J. Kim and T. Park. The onset threshold of cybersickness in constant
and accelerating optical flow. Applied Sciences, 10(21):7808, 2020.

[30] R. K. Kundu, R. Islam, P. Calyam, and K. A. Hoque. Truvr: Trustwor-
thy cybersickness detection using explainable machine learning. arXiv
preprint arXiv:2209.05257, 2022.

[31] S. Lee, J. U. Kim, H. G. Kim, S. Kim, and Y. M. Ro. Saca net:
Cybersickness assessment of individual viewers for vr content via
graph-based symptom relation embedding. In European Conference
on Computer Vision, pp. 170–186. Springer, 2020.

[32] S. Lee, S. Kim, H. G. Kim, M. S. Kim, S. Yun, B. Jeong, and Y. M. Ro.
Physiological fusion net: Quantifying individual vr sickness with con-
tent stimulus and physiological response. In 2019 IEEE International
Conference on Image Processing (ICIP), pp. 440–444. IEEE, 2019.

[33] S. Lee, S. Kim, H. G. Kim, and Y. M. Ro. Assessing individual vr
sickness through deep feature fusion of vr video and physiological
response. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 32(5):2895–2907, 2021.

[34] T. M. Lee, J.-C. Yoon, and I.-K. Lee. Motion sickness prediction
in stereoscopic videos using 3d convolutional neural networks. IEEE
transactions on visualization and computer graphics, 25(5):1919–1927,
2019.

[35] C.-Y. Liao, S.-K. Tai, R.-C. Chen, and H. Hendry. Using eeg and
deep learning to predict motion sickness under wearing a virtual reality
device. IEEE Access, 8:126784–126796, 2020.

[36] C.-L. Liu and S.-T. Uang. A study of sickness induced within a 3d
virtual store and combated with fuzzy control in the elderly. In 2012 9th
International Conference on Fuzzy Systems and Knowledge Discovery,
pp. 334–338. IEEE, 2012.

[37] W. Lo and R. H. So. Cybersickness in the presence of scene rotational
movements along different axes. Applied ergonomics, 32(1):1–14,
2001.

[38] N. McHugh, S. Jung, S. Hoermann, and R. W. Lindeman. Investigating
a physical dial as a measurement tool for cybersickness in virtual reality.
Association for Computing Machinery, 11 2019. doi: 10.1145/3359996
.3364259

[39] S. Nakamura. Depth separation between foreground and background



on visually induced perception of self-motion. Perceptual and motor
skills, 102(3):871–877, 2006.

[40] S. Nakamura, S. Palmisano, and J. Kim. Relative visual oscillation
can facilitate visually induced self-motion perception. i-Perception,
7(4):2041669516661903, 2016.

[41] Oculus. Oculus best practices, 2017.
[42] H. Oh and W. Son. Cybersickness and its severity arising from virtual

reality content: A comprehensive study. Sensors, 22(4):1314, 2022.
[43] N. Padmanaban, T. Ruban, V. Sitzmann, A. M. Norcia, and G. Wet-

zstein. Towards a machine-learning approach for sickness prediction
in 360 stereoscopic videos. IEEE transactions on visualization and
computer graphics, 24(4):1594–1603, 2018.

[44] T. Porcino, E. O. Rodrigues, A. Silva, E. Clua, and D. Trevisan. Using
the gameplay and user data to predict and identify causes of cybersick-
ness manifestation in virtual reality games. In 2020 IEEE 8th Inter-
national Conference on Serious Games and Applications for Health
(SeGAH), pp. 1–8. IEEE, 2020.

[45] L. Rebenitsch and C. Owen. Estimating cybersickness from virtual
reality applications. Virtual Reality, 25(1):165–174, 2021.

[46] B. E. Riecke, J. Schulte-Pelkum, H. H. Bülthoff, and M. von der Heyde.
Cognitive factors can influence self-motion perception (vection) in
virtual reality. ACM Transactions on Applied Perception (TAP), 3:194–
216, 7 2006. doi: 10.1145/1166087.1166091

[47] H. Shigemasu, T. Morita, N. Matsuzaki, T. Sato, M. Harasawa, and
K. Aizawa. Effects of physical display size and amplitude of oscillation
on visually induced motion sickness. In Proceedings of the ACM
symposium on Virtual reality software and technology, pp. 372–375,
2006.

[48] R. H. So, W. Lo, and A. T. Ho. Effects of navigation speed on motion
sickness caused by an immersive virtual environment. Human factors,
43(3):452–461, 2001.

[49] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for
optical flow. In European conference on computer vision, pp. 402–419.
Springer, 2020.

[50] N. Tian, P. Lopes, and R. Boulic. A review of cybersickness in head-
mounted displays: raising attention to individual susceptibility. Virtual
Reality, pp. 1–33, 2022.

[51] Y. Wang, J.-R. Chardonnet, and F. Merienne. Vr sickness prediction
for navigation in immersive virtual environments using a deep long
short term memory model. In 2019 IEEE conference on virtual reality
and 3D user interfaces (VR), pp. 1874–1881. IEEE, 2019.


	Introduction
	Related work
	Movement and simulator sickness
	Data Collection and Simulator Sickness Labelling
	Learning Based Simulator Sickness Estimation

	User study 
	Conditions and Data collection
	Game Environment and Tasks
	Task 1: Coin Collecting
	Task 2: Paintball Shooting
	Reporting User Simulator Sickness

	Experimental Procedure and Flow
	User Study Motion Analysis
	Translation and Rotation Comparison
	Evaluating Translation and Rotation Variation
	User Profile
	Analysis Discussion


	Simulator Sickness Estimation
	3D Motion blackFlow Extraction
	Neural Network blackfor Simulator Sickness Estimation
	Data Processing and Augmentation
	Loss functions and Training Process

	Evaluation
	Optical Flow vs. Motion Flow
	Ablation Study
	Impact of User Profiles
	Comparison with prior work

	Discussion
	Conclusions

