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Figure 1: We propose a learning-based approach for generating novel views from pre-captured omnidirectional inputs, which can
adapt to the user’s eye height during playback, resulting in an improved perceptive and immersive experience.

ABSTRACT

Pre-captured immersive environments using omnidirectional cam-
eras provide a wide range of virtual reality applications. Previous
research has shown that manipulating the eye height in egocentric
virtual environments can significantly affect distance perception and
immersion. However, the influence of eye height in pre-captured
real environments has received less attention due to the difficulty
of altering the perspective after finishing the capture process. To
explore this influence, we first propose a pilot study that captures
real environments with multiple eye heights and asks participants
to judge the egocentric distances and immersion. If a significant
influence is confirmed, an effective image-based approach to adapt
pre-captured real-world environments to the user’s eye height would
be desirable. Motivated by the study, we propose a learning-based
approach for synthesizing novel views for omnidirectional images
with altered eye heights. This approach employs a multitask archi-
tecture that learns depth and semantic segmentation in two formats,
and generates high-quality depth and semantic segmentation to facil-
itate the inpainting stage. With the improved omnidirectional-aware
layered depth image, our approach synthesizes natural and realistic
visuals for eye height adaptation. Quantitative and qualitative evalu-
ation shows favorable results against state-of-the-art methods, and
an extensive user study verifies improved perception and immersion
for pre-captured real-world environments.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Com-
puting methodologies—Computer graphics—Image manipulation—
Image-based rendering

1 INTRODUCTION

Pre-captured immersive content for virtual reality (VR) has gained
increasing attention from the commercial and research communities
for its potential applications in fields such as medicine, education,
entertainment, and prototyping [61]. Omnidirectional cameras cap-
ture egocentric perspectives that provide greater immersion than
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traditional media, fostering more effective interactions between the
content and the user [12]. By directly recording the environment and
simulating real-world perceptions during playback, pre-captured con-
tent offers more photo-realistic cognitive stimuli than model-based
virtual environments. However, this also makes post-processing of
the visuals more challenging compared to traditional model-based
virtual environments.

Previous studies have shown that manipulating the visual eye
height within virtual environments can significantly affect distance
perception [35], and that virtual and real environments can elicit sim-
ilar visual responses [12]. However, the influence of eye height on
perception in pre-captured immersive content has not been studied,
due to the difficulty of freely altering the eye height after the footage
is captured. If a significant influence on perception and immersion
is found, an effective approach to adapt the eye height of the user for
existing pre-captured immersive content would be highly desirable.

Traditional image-based reconstruction methods often require
specific capture setups with a sufficient number of inputs for base-
lines [14, 16]. Novel view synthesis typically uses multi-layered
image representations combined with depth-based warping algo-
rithms [62, 76] to replicate parallax effects, resulting in holes in
occluded regions. To address missing information, recent convo-
lutional neural network (CNN)-based approaches use light field
data [26, 48], piece-wise planar images [20], or local inpainting [21].
These methods have shown great potential for manipulating the eye
height in our application, but most of them are designed for pinhole
cameras and do not perform well with 360-degree inputs due to ir-
regular distortions introduced by equirectangular projection [13, 78].

In this paper, we first propose a pilot study to verify whether
different eye heights have a significant influence on users’ perception
and immersion when viewing pre-captured real-world environments,
a hypothesis that has not previously been tested. Unlike virtual
environments where the eye height can be easily adjusted, we capture
identical scenes at multiple eye heights under controlled conditions
to optically simulate different eye levels in the real world using state-
of-the-art equipment. The results of the study show an improved
perception and immersion, providing the basis for the subsequent eye
height adaptation system. It contributes to both future application
designs and a better understanding of human perceptions.

Motivated by the pilot study, we propose a learning-based ap-



proach for adapting the eye height of pre-captured immersive content.
The system consists of a depth estimation stage and an inpainting
stage. We first introduce a novel omnidirectional-aware multitask
architecture that learns depth and semantic segmentation in two for-
mats, enabling the network to generate high-quality depth and seman-
tic segmentation that facilitates the inpainting stage for 360-degree
input. In the inpainting stage, we improve upon the existing layered
depth image (LDI) approach [60] by using the omnidirectional-aware
depth and semantic segmentation information to guide the synthesis
of natural and realistic textures for occluded regions, enabling eye
height adaptation for pre-captured real-world environments.

With quantitative and qualitative evaluation, our experimental re-
sults shows an improved performance over existing methods, show-
ing that the proposed method is able to generate eye height-adapted
results with satisfying quality and efficiency. An extensive user study
further verifies the effectiveness of our learning-based approach in
improving user perception and immersion for pre-captured immer-
sive content in VR. We believe that its application can benefit a wide
range of existing pre-captured media in 360-degree format for better
immersion and experience.

To summarize, our contributions are as follows:
1. We propose the first pilot study to show a significant influence

of altered eye heights on perception and immersion for pre-
captured immersive content with real environments;

2. We propose a two-stage approach for omnidirectional-aware
eye height adaptation. A novel network estimates accurate
depth and semantic segmentation, and the following inpainting
stage improves the layered depth image approach with guides
to synthesize high-quality visuals;

3. The implementation and the main user study validate the ef-
fectiveness of image-based eye height adaptation in improving
users’ perception and immersion in pre-captured real environ-
ments within VR.

2 RELATED WORK

2.1 Perception and Immersion in Virtual Reality
Perception and immersion. In recent years, a body of VR research
has sought to identify the factors that cause the distance compression
effect often observed in VR. This helps resolve egocentric perceptual
deficiencies and improve future VR designs. These studies typically
use verbal estimates [12, 35, 73], blind walking [22, 28], and per-
ceptual matching tasks [37] to assess distance perception. Verbal
estimates require participants to report the absolute distance of a
target numerically, while blind walking also involves participants’
perceptual-motor skills [45, 59]. Perceptual matching tasks typically
investigate the ordinal depth of multiple objects. Although different
tasks have their own advantages for investigating perception in VR,
verbal estimates are reported to remain consistent across a wide
range of distances [29, 43] and environments, regardless of whether
they are modeled virtual environments with lower visual fidelity or
photo-realistic captured scenes [12], which is crucial for this work.

Egocentric perception in VR is typically influenced by human,
technical, and environmental factors. In terms of human factors,
physical characteristics such as gender [5], age [50], and height [50]
do not significantly affect distance perception, and prior experience
with VR does not improve distance estimation accuracy [50]. How-
ever, the feeling of presence, or immersion in VR, has been found to
influence judgments [23, 25]. One possible reason is the poor fit of
the head-mounted display (HMD) during experiments. To address
this issue, we include a presence survey in our user studies to assess
perception in VR and evaluate the experienced immersion for eye
height adaptation.

Technical factors also play a role in influencing egocentric per-
ception in VR. For instance, newer hardware systems that provide
a larger Field of Views (FOVs) have been shown to improve accu-
racy in a range of tasks [3, 28, 75]. In addition, ergonomic design

can alleviate the distance compression effect [3, 24, 69, 70]. High
display resolution also contributes to better visibility and improved
presence and perception [12]. Stereoscopic vision provides depth
cues through disparity [6], but its effectiveness diminishes for distant
targets [33, 52]. For tasks beyond proximity, stereoscopic vision
does not offer a clear advantage over monocular vision [5, 71].

Environmental factors, such as the realism and composition of
the virtual environments, also play a role in influencing egocentric
perception in VR [50,63,65]. Highly realistic environments improve
accuracy compared to non-photorealistic renderings [65]. In non-
photorealistic environments, participants consistently underestimate
distances [53, 56, 59], whereas in real-world ones, estimations are
often accurate [56]. We therefore hypothesize that adapting the eye
height for captured real-world scenes would benefit perception and
immersion in VR. Further research also indicates that compositional
visual cues, such as linear perspective and ground textures, affect
performance. Considering indoor and outdoor scenes play an im-
portant role in perception [1], we prepared both types of scenes
to counteract compositional factors and study outdoor conditions,
which are under-researched.

Influence of eye heights. The eye height is a crucial source of in-
formation for egocentric distance and depth perception [35] [12] [46].
By observing the proportion of the horizon occluded by an object,
individuals can infer the height and distance of the target based
on either an explicit or implicit horizon in the environment [58].
Knowing their eye level allows individuals to estimate the distance
of an object based on its size. Previous research has shown that
manipulations of eye height have a significant impact on perceived
distance in virtual environments [35]. Increasing the virtual eye
height by 50 cm increases the distance compression effect [57],
while decreasing the virtual eye height does not have a significant
influence on perception [27] [35]. Investigating the perception of the
real world is more challenging, as it is not easy to manipulate eye
height for pre-captured environments [12]. Previous research mainly
focus on resolution [11], FOV [47], realism [12], and other HMD-
related factors [10] when investigating perception of pre-captured
environments. One study attempts manipulating height targets with
a constant eye height in real world, observing a compression of dis-
tance perception similar to virtual environment studies [51]. Recent
research also revealed that indoor/outdoor conditions affect distance
perception in real environments [9]. In this research, we use state-
of-the-art capture equipment to capture real-world environments at
different eye heights and a HMD to investigate the influence of eye
heights on perception.

2.2 Novel View Synthesis for Virtual Reality

Omnidirectional-aware novel view synthesis. Novel view synthe-
sis from pre-captured images is a persistent challenge in computer
vision and computer graphics. Traditionally, structure-from-motion
(SfM) and multi-view stereo are applied to a collection of images
to estimate point clouds and camera extrinsic through geometric
models [54]. However, it usually required sufficient baselines for
multiple viewpoints [39], and the computation is quite expensive
to generate and represent the entire scene with detailed meshes. To
address this challenge, researchers have proposed several represen-
tation methods that allow for the generation of novel views without
the need for a complete 3D model. These methods include multi-
plane images (MPI) [48, 62], layered depth images [36, 60], and
light fields [26, 34]. However, each of these methods has its own
limitations. For example, MPI representation is lightweight and can
capture specular surfaces, but its discretized representation can lead
to suboptimal performance for sloped surfaces [66]. In addition,
MPI representation with predetermined layer structures can suffer
from abrupt layer changes across discontinuities in depth, leading to
inferior preserved locality. LDI representation, on the other hand,
allows for arbitrary depth complexity with great efficiency thanks to



its sparsity. Recent work has proposed storing connectivity informa-
tion between layers in LDI representation [16, 17, 36], which allows
for the breakdown of the global inpainting problem into sub-areas
that can be solved iteratively. This representation is also well-suited
for omnidirectional images due to its extremely large field of view.

Figure 2: The configuration of the pilot study: (a) HMD (Meta Quest
2). (b) Omnidirectional camera (Insta360 Pro 2). (c) Study design.

Figure 3: An example of a pre-captured immersive environment with
different eye heights. The distances to the white spot (d) and the
angle of declination to the red spot (θ ) are kept constant across
each condition. As demonstrated, the different eye heights result in
discrepancies in the perception of d̃ in virtual environments.

Recently, CNN-based approaches have been used to generate
views from sparse light field data [26], piecewise planar images [41],
and neural radiance field (NeRF) [49]. Light-field photography
allows for photorealistic rendering of novel views, but generally
requires dense capture of the scene to achieve good results. Piece-
wise planar image-based approaches enable view synthesis from
monocular image input, but are restricted to specific scenarios [41].
Pathdreamer [30] uses 2D image-to-image translation to synthesize
novel views for omnidirectional RGB-D images, but it focuses on
a specific domain (indoor scenarios) with limited 3D consistency.
Recently, NeRF [49] shows great potential with high-quality and pho-
torealistic views for complex scenes, but it requires large amounts
of consistent input images with known relative positions. Later re-
search has proposed ways to alleviate the requirement of input [74]
and to reduce computational cost [18] [8]. For omnidirectional input,
OmniNeRF [19] learns from omnidirectional RGB-D images and
shows good performance for our application. However, it relies on
neighborhood interpolation to complete occluded regions, which
can result in visual artifacts. Combining with additional weakness

of fine details and lengthy per-frame training, we find image-based
methods to be a more practical choice for this application.

Image inpainting. Image inpainting is the process of filling in
missing regions of an image with plausible content. Traditional
methods for inpainting include example-based methods, which trans-
fer the texture of other regions to the missing pixels using non-
parametric patch synthesis [7, 20] or Markov Random Fields to
propagate from the boundaries [31]. More recent approaches have
employed convolutional neural networks (CNNs) to predict semanti-
cally meaningful results by learning from large training datasets [21].
Further improvements to network architectures have been proposed
to handle irregularly-shaped holes [42] with diffusion models [?].
Two-stage approaches have also been developed that predict the
structure of missing areas before completing them contextually [44].
For omnidirectional images, cubemap projection is used to represent
the spherical nature of the inputs [13]. Data-driven image com-
pletion for 360-degree images has shown promising results when
combined with OmniNeRF [19], but is limited to indoor scenarios
due to limited training data. In this paper, we extend the LDI-based
approach with cubemap representation and adopt the two-stage ap-
proach [60] for inpainting missing regions. By breaking down the
large field of view into non-distorted local regions, we can solve the
inpainting problem using a standard CNN.

Figure 4: Pilot study results in distance perception and immersion.

3 PILOT STUDY: EYE HEIGHT IN PRE-CAPTURED REAL
ENVIRONMENTS

Study concept. The aim of this pilot study is to examine the po-
tential influence of eye height on perception and immersion in pre-
captured immersive environments. It has been suggested that the
more closer the visuals in a virtual environment match real-world ex-
perience, the greater the sense of presence in that environment [12].
While the influence of altered eye height in model-based virtual
environment has been verified [35], it has yet to be confirmed for
pre-captured real environments.

Design and tools. We conducted experiments that consisted
of two stages: capture and playback. During the capture stage,
we used a state-of-the-art omnidirectional camera to record real-
world environments with high visual fidelity. In the playback stage,
participants used a HMD to view the pre-captured environments in
an immersive way. The HMD used in the experiment was the Oculus
Quest 2, which had a display resolution of 1832 × 1920 per eye and
a refresh rate of 90 Hz. The effective horizontal and vertical FOV of
the HMD was 90◦ ± 5◦ and 93◦ ± 5◦, respectively. This difference
was due to the varying distances between participants’ eyes and the
lens of the HMD (e.g., whether they were wearing glasses or not).
The interpupillary distance used during the experiments was 6.5 cm,
as suggested by previous studies [64]. During playback, we used a
basic omnidirectional video playback function in the HMD, which



allowed for 3-degrees-of-freedom (3DoF) interactions between the
participants and the environment.

To assess perception, participants were asked to provide verbal
estimates of the distance of a truncated cone-shaped target with a
height of 10cm in multiple pre-captured environments with vary-
ing eye heights. The dimensions of the target were not disclosed
to participants in order to prevent the use of prior experience in
determining distance [12]. To assess immersion, we incorporated
presence and embodiment questionnaires [72] and modified it with
a 5-point Likert scale ranging from ”totally agree” to ”totally dis-
agree”. It assesses participants’ subjective experiences of body
ownership in the virtual environment (e.g., whether they felt as if
their own body was located where the virtual body was seen to be).

In our study, the captured real environments include two outdoor
scenes (a park, a road) and two indoor scenes (a room, a corridor).
For each environment, we captured a range of perspectives at varying
eye heights from the lowest (140cm) to the highest (190cm) with
1cm increment based on the average eye height (165cm), revealed
by previous research [35]. We then determine a lower eye height
(−25cm) and a higher eye height (+25cm) based on the actual eye
heights of each participant in the experiment. Fig. 2 shows the
setup used during the pilot study, and Fig. 3 shows the captured real
environments used in the experiment. Since stereoscopic vision does
not significantly differ from monocular vision for perception beyond
proximity, and to streamline the capture process for various height
conditions, the captured environments were in monoscopic format.
To prevent participants from using the movement of the target to
guess the distance of the target, we prepared isolated clips of the real
environments with the target positioned at fixed distances of 4m, 5m,
and 6m for each condition.

Procedure. After providing instructions to the participants, they
were equipped with a HMD and underwent a brief calibration pro-
cess. To familiarize themselves with the HMD, participants were
given the opportunity to try it out before the start of the experiment.
Each experiment consisted of a sequence of 36 distance estimation
trials, during which participants were asked to view a pre-recorded
virtual environment through the HMD and estimate the distance of a
target object within the scene. The virtual environments consisted
of four different settings (i.e, a park, a road, a room, and a corri-
dor), and the target distances and virtual eye heights were varied
across trials. To ensure that participants understood the task and
to collect their distance estimates, the experimenter communicated
with them verbally throughout the experiment. Participants did not
receive feedback on the accuracy of their estimations during the
experiment. Upon completion of the distance estimation sequence,
participants removed the HMD and were instructed to complete the
accompanying questionnaires and provide their consent.

Results and findings. We recruited 20 volunteers from the uni-
versity, and the participants consisted of 14 males and 6 females.
The sample was relatively homogeneous with an average age of 23.7
years old (SD = 2.93, 19-28 years old) and an average height of
168.9 cm (SD = 9.72, 154-183 cm). We set the level of significance
to α = 0.05 and the power of the test to 1 - β = 0.8.

No estimate given by the participants was removed from the anal-
ysis for being three standard deviations apart from the mean estimate.
The analysis was conducted with a repeated-measures ANOVA with
distance as the within-subjects factor, eye height and environment as
between-subjects variables, and estimated distances as the dependent
measure. Confirming our hypothesis, the influence of eye height on
distance perception was significant (see Fig. 4). Across the lower
eye height (Mindoor = .98, SEindoor = .035, Moutdoor = .97, SEoutdoor
= .047), actual eye height (Mindoor = .94, SEindoor = .033, Moutdoor =
.94, SEoutdoor = .035), and higher eye height (Mindoor = .82, SEindoor
= .060, Moutdoor = .79, SEoutdoor = .050), estimated distances varied
significantly (p < .001). With Fisher’s LSD tests, we found that the
estimates given by the participants were different from the higher
eye height significantly (p < .001), while a significant difference
between the estimates under lower eye height and actual eye height
was absent (p = .25). Furthermore, a similar effect was verified
for body location ownership: a significant difference between the
higher eye height and the other two conditions (p < .001), but no
significant difference between the actual and the lower eye height
(p = .85). The actual and lower height conditions showed very high
responses of ownership, 4.3 and 4.2, on the 5-point Likert scales.

4 LEARNING-BASED EYE HEIGHT ADAPTATION

Motivated by the findings of the pilot study, we propose a novel
learning-based approach for synthesizing novel views with varying
eye heights from omnidirectional images. The pipeline is shown in
Fig. 5). The system consists of two stages: depth estimation and
image inpainting. After receiving the color input, the depth estima-
tion stage uses a novel multitask network to simultaneously provides
depth information and semantic segmentation guides from RGB
input. In the inpainting stage, we improve existing LDI represen-
tation to enable high-quality inpainting results for omnidirectional
images. By leveraging the semantic guides (see Fig. 7), we generate
visually convincing results at occluded regions. Finally, we merge
the inpainted results back into the original LDI representation to
render novel views with altered eye heights.

4.1 Depth estimation and semantic segmenatation
We present a novel multitask architecture that simultaneously learns
depth and semantic segmentation in two different formats (Fig. 6).
By simultaneously learning a semantic segmentation task in paral-

Figure 5: The overview of the proposed eye height adaptation approach. The proposed eye height adaptation approach is a multitask architecture
that leverages both equirectangular and cubemap projections to predict depth and semantic segmentation. The architecture is omnidirectional-
aware and uses semantic segmentation as guiding information to complete the layered depth and color images using inpainting networks. The
final step involves synthesizing natural and realistic visuals that are adapted to different eye heights for improved perception and immersion.



Figure 6: The overview of the proposed multitask network. Depth estimation: the top and middle branches learn to predict the depth of the
same scene with both equirectangular projection and cubemap projection, leading to sharper boundaries for local objects while maintaining
consistent and smooth prediction for the entire scene with the extreme FOV. Semantic segmentation: the middle and bottom branches with
cubemap projection jointly learn to reveal the scene layout with a smaller FOV, providing valuable guides and facilitating the inpainting stage.

lel with depth estimation, our model not only improves boundary
estimation for local objects, but also facilitates the subsequent im-
age inpainting stage by providing useful semantic guides. This
approach offers a promising solution for synthesizing novel views
from omnidirectional images.

Multitask architecture. To obtain accurate depth maps for om-
nidirectional images, we propose regressing dense global depth
estimation from a single view equirectangular image in two different
projections: equirectangular and cubemap. For the equirectangular
input, the architecture has an encoder-decoder structure that progres-
sively down-projects and up-projects to the original size. The advan-
tage of directly learning depth estimation on the entire 360-degree
input is that low spatial frequencies better represent global features
such as structures and shapes in the scene. Coarse perception of
the scene can be further exploited by a smoothness loss function to
ensure that the learned depth is consistent and uniform. However,
the disadvantage of projecting a sphere onto a flat 2D plane is the
strong distortion introduced by uneven pixel densities. Distortion is
stronger for sparse pixels near the poles and less prominent at the
equator [77]. To address this issue, we use rectangular filters with
varying sizes at the first convolution layer along the vertical axis of
the input equirectangular image. The encoder of this branch shares
the same structure as ResNet-50, while the decoder consists of four
up-projection blocks [32].

For the cubemap input, we first project the spherical image onto
a cube to obtain cubemap faces. The use of cubemap projection in
depth estimation is motivated by the desire to reduce distortion in
the input image and provide higher spatial frequencies for improved
shape and boundary detection of local objects. When directly using
equirectangular images to learn depth estimation, details of local
objects with steep gradient changes are usually omitted during the
training process. By learning the depth estimation from both the
equirectangular and cubemap projections, our model is able to learn
complementary features from the same input. To encourage feature
sharing and balance between the two branches, we use a fusion
process and spherical padding [68] to connect the cube faces. This
allows our model to adapt to weights trained for pinhole cameras and
improve learning accuracy and efficiency. The final depth estimation
is generated by projecting the output from the cubemap back onto
the equirectangular projection and applying a convolution module.

We use mp and m f to represent feature maps from the equirect-
angular and cubemap branches, respectively. These maps are repro-
jected to m̂ f in equirectangular format and m̂p in cubemap projection
and fed into the next layer of the respective branches. In this layer,
the reprojected maps are passed through a convolution layer (C)

and added to the original feature maps. The result, mp +C(m̂ f ), is
then passed to the next layer of the equirectangular branch, while
m f +C(m̂p) is passed to the cubemap branch. This fusion process
enables our model to learn complementary features from the two
projections, improving the accuracy of the depth estimation.

To enhance the detection of depth discontinuities and improve
the performance of the inpainting stage, our multitask architecture
learns semantic segmentation from the cubemap input. We use the
same encoder for both depth estimation and semantic segmentation
to improve boundary recognition. Additionally, we train a separate
decoder to generate semantic segmentation in the cubemap format.
With a similar FOV of perspective images, the branch utilizes abun-
dant training data and pre-trained weights to improve the accuracy
and efficiency of the entire training process of the proposed network.

Loss Functions. In our model, we use supervised loss constraints
for both the depth estimation and semantic segmentation tasks. For
the depth estimation task, we use the inverse Huber loss function,
which is defined in [32], as the optimizing objective LBerhu(di, d̂i):

LBerhu(di, d̂i) =

{
|di − d̂i| |di − d̂i| ≥ c
(di−d̂i)

2+c2

2c |di − d̂i|> c
(1)

where di is the ground truth depth of the ith pixel, and d̂i is the
predicted depth of the ith pixel, and c = max(|di − d̂i|)/5. The
loss function LSeg for semantic segmentation is a cross-entropy loss
between the estimated segmentation ŝi and the result predicted with
a pre-train network S. Combined, the total loss can be defined as:

LTotal = LBerhu(di, d̂i)+LSeg(si, ŝi) (2)

4.2 Context-aware inpainting
In the inpainting stage, we improve upon the existing LDI ap-
proach [60] by incorporating guidance from the omnidirectional-
aware depth and semantic segmentation information. Our method
can therefore synthesize realistic textures for occluded regions, lead-
ing to more natural and realistic images. This is especially beneficial
for pre-captured environments, where the ability to adapt to different
eye heights is crucial for creating a convincing experience.

Backbone. LDIs are effective ways to synthesize novel view-
points from color and depth information. LDIs can handle arbitrary
numbers of layers, which allows them to represent complex scenes.
Each LDI pixel contains color information, a corresponding depth
value, and pointers to horizontal and vertical neighboring pixels. In
the case of depth discontinuities, LDI pixels will have zero neigh-
boring pixels in the relevant cardinal direction.



Figure 7: Illustration of the proposed process of LDI. For fully con-
nected input depth image (a), we first separate the input according
to segmentation information (b), resulting in foreground (red) and
background regions (gray). After missing pixels are inpainted and no
holes are left for each layer, results are then merged into the final LDI.

To use an LDI (Fig. 7), we first initialize it with a single layer
that is fully connected in all directions. We then utilize the estimated
semantic segmentation information and the previously-generated
depth map to identify depth discontinuities and group them into
simple and connected local edges. Subsequently, we disconnect LDI
pixels across these edges and apply inpainting networks to fill in
the occluded regions for both the depth map and color image. After
inpainting, we merge the synthesized pixels back into the LDI until
all the local edges have been resolved.

Multi-layer inpainting. Our goal is to use LDIs to inpaint oc-
cluded regions in an omnidirectional image and render views from a
different eye height. This will allow us to synthesize novel views that
closely resemble the real environment from the specified viewpoint.

To identify the regions that require inpainting, it is essential to ac-
curately identify depth discontinuities in the input image. Traditional
methods employ thresholding algorithms, which result in blurred
boundaries across multiple pixels [60]. In addition, generating photo-
realistic output from existing LDIs requires precise pairing of depth
and color images, which can be challenging. Although CNNs have
been utilized to address this issue for single-image inputs, models
designed for images captured with pinhole cameras often produce
suboptimal results when synthesizing depth information, resulting
in inconsistent novel views with artifacts [2]. To overcome these
challenges and improve the accuracy of the generated LDIs, we
employ the proposed omnidirectional-aware multitask network that
generates guiding semantic segmentation and detects discontinuities
in the estimated depth maps (Fig. 7 (c)). We create a binary mask,
labeling depth discontinuities as 1 and the remaining pixels as 0. We
then merge adjacent discontinuities into linked local edges and use
connected component analysis to prevent merging across disconti-
nuities. Finally, we exclude local edges with less than ten pixels in
length to obtain the regions for the inpainting process.

To perform inpainting of both depth and color information, we uti-
lize a standard encoder-decoder architecture with U-Net and partial
convolution for the depth inpainting network, as proposed in [42].
The color inpainting network is structured similarly, with the same
number of layers. The depth inpainting network takes the contextual
depth and local edges as input, while the color inpainting network
takes the contextual color image and local edges as input. The
training objectives for each network are as follows:

LDepth =
1
N
||S⊙ (di, d̃i)|| (3)

LColor = α(
1
N
||S⊙ (ci, c̃i)||)+βLPerceptual (4)

where di is the ground truth depth of the ith pixel, d̃i is the inpainted
depth of the ith pixel, ci is the ground truth color of the ith pixel,
and c̃i is the inpainted color of the ith pixel. S is a binary mask that
describes the contextual region, ⊙ denotes the Hadamard product,
and LPerceptual is the loss function for the color inpainting task. It
is obtained using the output of layers from a pre-trained VGG-16
model . The color inpainting network is trained on COCO-2017 [40],
while the depth inpainting network is trained on MegaDepth [38].

Eye height adaptation. To modify the viewpoint of a pre-
captured environment with a different eye height, we use a vertical

Figure 8: Results of the proposed eye height adaptation approach.
(a) shows the omnidirectional visuals when adapted to a higher eye
height (+25cm) and a lower eye height (−25cm). (b) shows perspective
visuals when viewed with a smaller FOV (i.e., HMD).

geometric model to reproject the LDIs to the desired viewpoint, as
depicted in Fig. 1. Specifically, we apply the vertical spherical
model introduced in [77] to transform the original view j to the
altered view k with a vertical disparity d. The transformation is done
in polar coordinates, where each point p at (x,y,z) in Cartesian co-
ordinate is represented by its longitude φ and latitude θ . The radial
distance r (i.e., depth value) of a point is given by

√
x2 + y2 + z2,

and the vertical distance is defined as δ = (φ j −φk,θ j −θk). As we
only need to adapt the eye height, we only consider vertical disparity
d = (0,dy,0), and the disparity is reduced to δ = ( ∂φ

∂y ,
∂θ

∂y ).

To render a target view k̂ from the source input j, each pixel
p = (φ ,θ) on the equirectangular image is a function of the vertical
disparity d and the radial distance r. Since we already have the depth
and color information from LDIs, we can compute the target frame
k̂ with a function:

k̂(p) = Γ j→k̂(d̃,d j→k, j(p)) (5)

5 EXPERIMENTAL RESULTS

5.1 Implementation Details
We have implemented our proposed multitask network using the
PyTorch framework , and trained it on a single Nvidia RTX 2080Ti
graphics card, using data from the Depth360 dataset [13]. During
training, we employed the Adam optimizer with a learning rate of 3e-
4, and used a batch size of 1 due to graphics memory constraints. Our
equirectangular branch was initialized with Xavier initialization [15],
while the cubemap branch was initialized with ImageNet pretrained
weights. Our approach takes around 150ms to predict depth maps
and semantic segmentation for a single equirectangular image. For
the contextual inpainting networks, we trained the depth inpainting
network on MegaDepth [38] for 5 epochs, while the color inpainting
network was trained on the MS-COCO [40] for 10 epochs. We used
α = 1 and β = 0.05 as the parameters for the inpainting process.

5.2 Qualitative Evaluation
We qualitatively evaluates our proposed eye height adaptation
method for pre-captured immersive content. Fig. 8 displays the vi-
sual results obtained when our method was tested on unseen equirect-
angular images with both indoor and outdoor settings. As shown in
Fig. 8 (b), our method successfully generates new perspectives with
varying eye heights. To showcase the effectiveness and accuracy of



Figure 9: Comparisons of scene structures between adapted views
and captured ground truth showed that the generated visuals at both
higher (+25cm) and lower (−25cm) adapted eye heights matched the
ground truth scene structures.

Figure 10: Qualitative comparisons against a baseline method of
parallax mapping that completes the occluded regions with bilinear
interpolation, and a state-of-the-art NeRF-based method designed for
novel view synthesis from omnidirectional input.

our method, we captured the ground-truth at respective eye heights
using a 360-degree camera. As demonstrated in Fig. 9, the adapted
views from different eye heights match the ground-truth with high
accuracy, demonstrating the efficacy of our approach.

In addition, we conducted a comparative analysis of our method
against a baseline approach and a state-of-the-art NeRF-based
method called OmniNeRF [19]. The baseline approach utilizes paral-
lax mapping based on the new viewpoint and the depth estimated by
our multitask network, and then employs bilinear interpolation for
occluded pixels to complete the view. The results of the experiment
are presented in Fig. 10 and Fig. 11. Our proposed method generates
visually compelling results with sharper details without the need
for re-training for each scene over prolonged periods. On the other
hand, although NeRF is capable of synthesizing images at arbitrary
resolution through its implicit formation, the experiment showed
low visual fidelity due to sparse sampling in a single omnidirectional
image. Nonetheless, it is worth noting that NeRF methods excel in
rendering specular surfaces and reflections with its ray tracing capa-
bility, while image-based methods encounter challenges in achieving
comparable realism in this aspect.

Figure 11: Close-up views for the output with adapted eye heights.
Compared to other approaches, the proposed method generates
more natural and clearer visuals for both local regions and image
boundaries with strong distortion.

Figure 12: Comparisons between different depth estimation ap-
proaches. For the same input, we swap the proposed multitask
network to different depth estimation models for eye height adap-
tation.When decreasing the eye height by 25cm, the proposed method
shows the sharpest edges for local objects and the most consistent
depth estimation.

5.3 Quantitative Evaluation
In this section, we assess the accuracy of our proposed approach
in adapting input RGB images to different eye heights for omnidi-
rectional images and compare it with state-of-the-art methods. To
mitigate potential lighting and scene configuration variations when
capturing the same real-world scene with different eye heights, we
utilized SynDepth360 [13], a small-scale synthetic omnidirectional
dataset with 3D models, to generate novel perspectives with virtual
camera placements altered for evaluating different methods. We
employed SSIM, PSNR, and LPIPS metrics [60] to quantify output
quality as shown in Table 1.

Run-time efficiency. We evaluate the processing time and mem-
ory requirements from inputting the image to render adapted views
in Table 2. For our method, it means passing the input through the
feed-forward models (Fig. 5); for NeRF, it means the system aug-
ments the single input and learn volumetric representation/rendering.
In addition to greatly improved run-time efficiency, our LDI-based
method is memory efficient, making it a viable option for future
applications on commercial HMDs with independent processors.

Network evaluation. We aim to evaluate the performance of our
proposed multitask network for accurate depth estimation, which is
crucial for generating the LDI required for rendering adapted views.
To assess our approach, we adopt commonly used depth prediction
metrics from literature to evaluate robustness and accuracy against
state-of-the-art techniques. Table 3 presents the results of our pro-
posed method alongside those of SegFuse [13] and BiFuse [68],
which are omnidirectional-aware methods, as well as perspective-
based methods MiDaS (v2.1) [55] and MegaDepth [38]. All models
were trained using their released code bases for 20 epochs. We
further demonstrate the results for adapted eye height with swapped
depth estimation components in Fig. 12. While our multitask net-
work outperforms all other methods in predicting the layout of indoor
omnidirectional images, the depth estimation learned through cube-
map projection can suffer from boundary issues in outdoor settings,
as previously pointed out in [13]. Despite this limitation, our method
still shows comparable accuracy to SegFuse in outdoor settings.
Overall, our method achieves high accuracy in depth estimation and
effectively achieves natural and accurate eye height adaptation.

5.4 User Study
The goal of this study was to examine the effectiveness of the pro-
posed eye height adaptation approach for pre-captured immersive en-
vironments. These experiments explore the influence of manipulated
eye heights on perception and immersion using verbal estimations
of egocentric distances and body location ownership questionnaires.

Participants and apparatus. In this study, we recruited a sample
of 22 participants from the university, including 15 males and 7
females. The average age of the participants was 23.6 years old
(SD = 3.1), and the average height was 166.9 cm (SD = 9.17). All



Table 1: Qualitative comparison on the SynDepth360 dataset [13].

Method SSIM ↑ PSNR ↑ LPIPS ↓
Baseline 0.8347 23.74 0.0982

OmniNeRF [19] 0.8528 26.74 0.0824
Ours 0.8776 27.19 0.0736

Table 2: Average computation time and memory requirement per
image. Every approach is evaluated using Nvidia RTX 2080Ti and
Intel i7-7800X, using input with a resolution of 1024 × 512.

Method Computation time [s] Memory cost [MB]

OmniNeRF [19] > 250,000 13.6
Ours 0.450 1.42

Table 3: Qualitative results of depth estimation on Matterport3D
dataset [4], SunCG dataset [67], and Depth360 dataset [13].

Method RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
The Matterport3D dataset [4] (Real domain, indoor settings.)

BiFuse [68] 0.6259 0.1134 84.52% 93.19% 96.32%
SegFuse [13] 0.6029 0.1100 84.60% 93.14% 96.28%
MiDaS [55] 0.7641 0.1420 77.05% 88.94% 95.77%

MegaDepth [38] 0.7845 0.1502 69.50% 87.94% 94.21%
Ours 0.5880 0.0986 85.17% 93.45% 96.85%

The SunCG dataset [67] (Synthetic domain, indoor settings.)

BiFuse [68] 0.2596 0.0443 95.90% 98.23% 99.07%
SegFuse [13] 0.2540 0.0427 95.32% 98.34% 99.10%
MiDaS [55] 0.3244 0.0730 89.90% 96.62% 95.44%

MegaDepth [38] 0.4041 0.0845 84.06% 93.92% 94.85%
Ours 0.2490 0.0425 95.57% 98.45% 99.26%

The Depth360 dataset [13] (Real domain, outdoor settings.)

BiFuse [68] 5.0725 0.8316 40.13% 59.17% 67.92%
SegFuse [13] 4.0442 0.7777 82.26% 91.35% 94.22%
MiDaS [55] 6.0132 0.9574 52.26% 58.73% 65.31%

MegaDepth [38] 6.7320 0.9863 48.33% 61.75% 64.82%
Ours 4.0544 0.7965 81.07% 90.89% 94.18%

participants had normal visual acuity and were comfortable using
HMDs. The experiment was implemented in Unity3D and played
back wirelessly on an Meta Quest 2 HMD using Air Link. The
system used an Nvidia RTX 2080 Ti GPU, an Intel i7-7800X CPU,
and 32GB RAM. The HMD had a refresh rate of 90 HZ and a field
of view of 90◦ ± 5◦ horizontally and 93◦ ± 5◦ vertically, based on
individual participant fitting. We used the same questionnaires as in
the pilot study to assess perceived immersion and the same metric to
compare the discrepancy between estimated and actual distance.

Design and procedure. In our main study, we used a within-
subjects design to manipulate eye height as the independent variable.
Unlike the pilot study, we used the HMD’s tracking capability to
obtain the participant’s actual eye height. We used the lowest capture
(140 cm) as the input to the pipeline, and rendered monoscopic views
from 141 cm to 190 cm. During the study, we prepare adapted, low
(−25cm), and high (+25cm) eye heights for each user. We tested
this method’s effectiveness by providing four similar environments
to the pilot study, two indoor and two outdoor scenarios, while
minimizing the impact on distance estimation accuracy.

During the experiment, the experimenter first provided instruc-
tions to each participant and answered any questions until the par-
ticipant had a clear understanding of the task. Before equipping the
HMD, the experimenter showed the participant a one-meter ruler to
ensure their understanding of distance. After loading each condition,
participants had time to freely explore the environment until they
were ready to verbally estimate the distance to the target. This was
crucial for the post-experiment presence questionnaire, which as-
sessed subjective body ownership and immersion. On average, each
participant completed the experiment in approximately 20 minutes.

Results and general discussion. After conducting an analysis
using a repeated-measures ANOVA with manipulated eye height
(low, adapted, or high) and environment (indoor or outdoor) as the
between-subjects factor, and estimated distances as the dependent
measure, we confirmed the similar result to the pilot study that the

adapted eye height significantly influenced distance perception (refer
to Fig. 13). The estimated distances varied significantly for low eye
height (Mindoor = .99, SEindoor = .049, Moutdoor = .96, SEoutdoor =
.046), adapted eye height (Mindoor = .95, SEindoor = .039, Moutdoor =
.94, SEoutdoor = .039), and high eye height (Mindoor = .81, SEindoor
= .066, Moutdoor = .78, SEoutdoor = .055), with the effect being
statistically significant (p < .001). The outdoor conditions show
significant (p < .001) distance underestimation when compared
to indoor conditions. This aligns with the findings from previous
research [46]. Regarding body location ownership, our findings
show that the adapted eye height conditions resulted in improved
immersion responses with an average of 3.14 compared to low eye
height (M = 2.81) and high eye height (M = 2.22). Although a
significant influence was still observed when the manipulated eye
height was higher than the user’s actual eye height (p < .001), no
significant effect on immersion was confirmed when the manipulated
eye height was lower than the actual eye height of the user, consistent
with both the pilot study and previous research. This finding can
be explained by the abundance of daily actions people perform to
lower their eye height, while actions to increase eye height are less
common. In summary, our approach effectively improves distance
perception and provides better immersion with adapted eye height
when the environment is captured with a higher declination angle.

Figure 13: User study results in distance perception and immersion.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a learning-based eye height adaptation
method that generates corrected views from pre-captured immersive
environments based on the user’s actual eye height during playback.
We first conducted a pilot study to confirm the hypothesis that dif-
ferent eye heights significantly influence distance perception and
immersion. Subsequently, we propose a learning-based approach
with a novel multitask architecture that learns to predict depth and
semantic segmentation for omnidirectional images with high accu-
racy. By utilizing layered depth image representation and image
inpainting to generate views with altered eye heights, our approach
efficiently synthesizes natural-looking visuals. Evaluation against
state-of-the-art approaches demonstrates the effectiveness of our
proposed method, while a user study confirms the improvements in
perception and immersion. Future work will explore networks with
better capability to generate high-resolution results for mixed reality,
as well as the incorporation of efficient NeRF algorithms to improve
accuracy in environments with specular surfaces. Finally, while this
method can be applied to highly dynamic scenes on a per-frame
basis, exploiting temporal and geometric information in videos is a
another promising direction to ensure visual consistency.
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