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Local Parametric Surface Approximation With

Automatic Order Selection From Position Data

Michael R. Walker II, Member, IEEE

Abstract— Acquiring an anatomical map from position data
is important for medical applications where catheters interact
with soft tissues. To improve autonomous navigation in these
settings, we require information beyond nonparametric maps
typically available. We present an algorithm for local surface
approximation from position data with automatic surface order
selection. The traditional surface fitting objective function is
derived from a Bayesian perspective. Posterior probabilities
from the occupancy map are incorporated as weights on points
selected for surface fitting. Our novel iterative algorithm incor-
porates surface order selection using the Bayesian information
criterion. Simulations demonstrate the ability to automatically
select surface order consistent with the latent surface in the
presence of noise. Results on human procedure data are also
presented.

Index Terms— Catheterization surgery, Medical robotics,
Robotics and automation, Surface fitting

I. INTRODUCTION

Anatomic maps used by human navigators exhibit signif-

icant interpolation when contrasted against occupancy maps

aggregating smoothed position data (see Figure 1). In cardiac

catheter ablation surgery, the occupancy map’s utility extends

beyond traditional autonomous navigation tasks (e.g. path

planning, obstacle avoidance) as catheter-tissue interactions

affect catheter response [1]. Here we present a robust algo-

rithm for local parametric surface approximation providing

new information from noisy, incomplete data in real time

(1Hz updates).

This paper has three main contributions. First we describe

a novel algorithm for point selection from an occupancy map

for non-planar surfaces. Second, we augment the traditional

objective function for surface fitting to include posterior

probabilities available from occupancy maps. Third, and

most significantly, we incorporate automatic surface order

selection in the iterative minimization algorithm, which is

critical for distinguishing curvature of the latent surface from

noise (errors) in the data.

Here we approximate anatomic surfaces using position

data, from the therapeutic catheter, alone. The process is

outlined in Figure 2. Position data are typically available

with sub-mm precision [2]. These data are subject to strong

heartbeat and respiratory motion [3] which we suppress

using an unpublished algorithm [4]. Since localization data

is available, our problem does not include simultaneous

localization and mapping (SLAM) [5], and constructing an
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Fig. 1. Anatomic mapping data in left atrium. The surface presented to the
physician for navigation is labeled mesh. A level set of the occupancy map
is labeled V . Additionally, we indicate a local selection of boundary voxels
X . The left inferior pulmonary vein (LIPV), left superior pulmonary vein
(LSPV), and left atrial appendage (LAA) are labeled. The voxels indicated
by X are on the ridge between the pulmonary veins and the LAA. For size
reference, voxels are 1mm3.
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Fig. 2. Process for local surface approximation.

occupancy map [6] is straight forward. Posterior probabilities

can be assigned to voxels based on additional sensor data

(e.g. tip force or magnetic torque). From the occupancy

map, we consider a dense binary matrix, V ∈ {0, 1}n×m×p
,

thresholding the known interior volume. From this, we iden-

tify an unorganized collection of points, X =
{
xi ∈ R

3
}

,

which we interpret as a noisy, non-uniform sampling of

the latent surface. From these points, we determine a set

of control points, A ∈ R
(nu+1)×(nv+1)×3, defining a Bézier

surface. Parameters nu, nv ∈ N>0 set the surface order and

are determined automatically.

There is considerable published work on the fitting of

Bézier curves and related generalizations to point clouds.

At a high level, we distinguish gradient-free search methods

[7], [8] from gradient-based search methods (e.g. Gauss-

Newton) [9]–[12] (among others). In most cases, the surface

order is assumed fixed. We find the work of Iglesias et al.

http://arxiv.org/abs/1912.06981v2
https://github.com/mrw2ee/BezBic


an interesting exception for their inclusion of the Bayesian

information criterion (BIC) for surface order selection [8].

Our approach to surface fitting can be summarized as alter-

nating updates of the location parameters and control points

using the distance minimization method (PDM) (see [11] for

broader context). Our approach is unique in that we utilize

the BIC to conditionally increase the surface order at each

update of the control points. Once the surface order is fixed,

other methods have demonstrated faster convergence rates

[13], [14] and could be used to refine surface approximations

more efficiently if necessary.

The rest of this paper is organized as follows. In Section II

we present analytic and statistical models guiding algorithm

design. In Section III we describe algorithms for point

selection, model fitting, and model selection. In Section

IV we quantify performance using analytic simulations and

demonstrate results on human procedure data. Final remarks

are given in Section V.

II. MODEL

This work is focused on fitting a parametric surface to

available data. To this end we describe two models: an

analytic model for the surface, and a stochastic model for

the data. We will subsequently describe surface fitting as

maximum-likelihood estimation, and the same stochastic

models will be used to determine surface order automatically.

A. Parametric surface

We choose Bézier surfaces for our analytic model based

on their broad adoption and efficient use of parameters.

Fundamental to the definition of a Bézier surface are the

Bernstein polynomials b : R1 → R
1

b(u; i, n) =

(
n
i

)
ui(1− u)n−i, ∀i ∈ [0, . . . , n]. (1)

We collect the values of all basis functions as the vector-

valued function b : R→ R
n+1

b(u;n) =
[
b(u; 0, n) b(u; 1, n) · · · b(u;n, n)

]T
. (2)

The parameter n determines the length of b, n+ 1, and we

will omit it when clear from context.

A Bézier surface is simply a weighted combination of

Bernstein polynomials. For each coordinate, we define s :
R

2 → R

s(u, v;A∗∗k) = b(u;nu)
TA∗∗kb(v;nv). (3)

Here we use nu and nv to represent the polynomial order in

directions u and v, respectively. The function is parameter-

ized by a portion of the matrix A ∈ R
(nu+1)×(nv+1)×3. We

define the Bézier surface, concatenating three copies of (3),

as a mapping s : R2 → R
3

s(u, v;A) =



s(u, v;A∗∗1)
s(u, v;A∗∗2)
s(u, v;A∗∗3)


 . (4)

In subsequent expressions it will be convenient to reshape

A as a two-dimensional matrix Ā ∈ R
(nu+1)(nv+1)×3. We

make this distinction as nu, nv are clear from A, but am-

biguous from Ā alone. We restate (3) and (4)

s(u, v;A∗∗k) = vec (A∗∗k)
T (b(v;nv)⊗ b(u;nu)) (5)

s(u, v;A) = ĀT (b(v;nv)⊗ b(u;nu)) (6)

using ⊗ to represent the Kronecker product.

B. Stochastic Data

Let X =
{
xi ∈ R

3 : i = 1, . . . , nx

}
represent an indexed

set of points. We model the data

xi = s (ui, vi;A) + yi, i ∈ {1, . . . , nx} . (7)

Here yi ∈ R
3 represents a stochastic error term. This offset

is due to a number of factors including quantization of

the volume, biological motion, and model error. Motivated

by the central limit theorem, we consider the errors to be

Gaussian distributed. For simplicity, we model these terms

as independent and distributed as yi ∼ N
(
0, I3 σ

2/w2
i

)
. The

weights, wi ∈ R>0, represent the posterior probabilities of

the occupancy map encoding our confidence in each xi ∈ X .

Reducing wi, associated with xi, increases the modeled

variance of corresponding yi.
Let θ =

{
u,v, A, σ2

}
collectively refer to the model pa-

rameters. We define column vectors u,v ∈ R
nx comprising

the coordinates (ui, vi) associated with the indexed elements

of X .The log-likelihood of the data, parameterized by θ,

reads [15]

ℓ(X ; θ) = −nx

3

2
ln (2π)

+

nx∑

i=1

[
−
3

2
ln

(
σ2

w2
i

)
−

1

2

w2
i

σ2
‖xi − s (ui, vi;A)‖

2
ℓ2

]
. (8)

The maximum likelihood estimate of θ are the model param-

eters maximizing (8). This expression will also prove useful

in selecting nu and nv which determine the size of A.

III. ALGORITHMS

For our problem, X are not immediately available. They

must be determined based on a record of the known volume.

In the following, we first present an algorithm for selecting

X , and wi, from a binary occupancy map. Then, we fit the

surface parameters A, u, and v for fixed nu, nv . Finally, we

consider selection of nu, nv.

A. Point Selection

Let V ∈ {0, 1}n×m×p
indicate voxels visited by the

catheter obtained by thresholding the occupancy map. Our

objective in this section is to identify a subset of these voxels

which locally approximate a single surface. We identify

interior boundary voxels using convolution and thresholding

Ṽ = (W ∗ V ) ≥ ǫ (9)

where W is a discrete convolutional kernel matrix and ǫ is

a scalar threshold. There is some flexibility in selecting W .

We use the three-dimensional Laplacian kernel

[Wǫ]i,j,k =

{
26 i = j = k = 2

−1 otherwise
(10)



such that the threshold specifies the minimum number of

exterior voxels in a 3× 3× 3 neighborhood. In application,

we found ǫ = 9 provided reasonable balance of sensitivity

and specificity for our problem.

The voxels indicated by Ṽ typically compose multiple

surfaces. We attribute this to mislabeled voxels in matrix V .

For example, some interior voxels may not be visited by the

catheter. Next we seek to identify a local subset of voxels,

indicated by Ṽ , associated with a single surface.

We consider two points (i, j, k), and (i′, j′, k′) associated

with the same surface when they are both indicated by Ṽ
and are within the same neighborhood. We summarize these

requirements

[
Ṽ
]

i,j,k
=

[
Ṽ
]

i′,j′,k′

= [Jl ∗ δi,j,k]i′,j′,k′ = 1. (11)

In the final equality, we use δi,j,k to represent the indicator

matrix where the element (i, j, k) is one. We use Jl to

indicate the l × l × l matrix of all ones. Starting with an

initial point (i, j, k) such that
[
Ṽ
]

i,j,k
= 1, we expand

the collection of points iteratively convolving with J . At

each iteration, the iteration number approximates the distance

along the surface from newly added points to the initial point.

The point selection process is summarized in Algorithm 1.

Algorithm 1 POINTSELECTION. Identify points locally ap-

proximating a single surface about a query point. Input

binary matrix V indicates interior voxels, and δ indicates

the query point. We assume the size of kernels W,J do not

exceed the size of V . The indicated points are associated

with nonzero entries in R. The values of R approximate an

inverse distance, along the surface, to the query point. We use

∗ to indicate 3D convolution and ◦ to indicate element-wise

multiplication.

Input: V, δ ∈ {0, 1}n×m×p
; W,J ∈ Z

n′×m′×p′

Output: R ∈ N
n×m×p
≥0

1: Ṽ ← (W ∗ V ) > 0
2: R← (J ∗ δ) ◦ Ṽ
3: for t = 1, 2, . . . do

4: R← R + (J ∗R) ◦ Ṽ
5: end for

In general, we assume Algorithm 1 is applied locally

such that 3D convolutions are performed quickly. When

V represents a truncated set of the known volume, voxels

along the perimeter of Ṽ may be mislabeled. A maximum

number of iterations should be enforced such that J∗R never

indicates perimeter voxels.

In remaining algorithms, we will not reference V or R.

Rather, we use R to determine an indexed set of points

X =
{
xi ∈ R

3 : i = 1, . . . , nx

}
. Each element, xi ∈ X ,

is associated with a nonzero entry of R. Additionally, we

account for an indexed set of weights wi > 0. These could

be used to emphasize points closer to the query point, or to

represent stochastic priors from an occupancy map [6].

B. Model Fitting

Only s in (8) is affected by the parameters A, u, and v.

The maximum likelihood estimates of these parameters are

found minimizing

f(A,u,v) =
1

2

nx∑

i=1

w2
i ‖xi − s (ui, vi;A)‖

2
ℓ2 . (12)

This expression is challenging to minimize since (3) involves

a high-order product of its arguments. However, the argu-

ments provide a natural decomposition for block coordinated

descent [16]. We define

P1 : u(t+1),v(t+1) = argmin
u,v

f(A(t),u,v) (13)

P2 : A(t+1) = argmin
A

f(A,u(t+1),v(t+1)) (14)

and iteratively update estimates of the control points and

location parameters.

By fixing A, (12) becomes separable. In this way, P1
decomposes as nx two-dimensional optimization problems.

For each xi ∈ X , we solve

ûi, v̂i = arg min
u,v∈R

g (u, v;xi, A) (15)

where g : R2 → R
1

g(u, v;x, A) :=
1

2
‖x− s (u, v;A)‖2ℓ2 . (16)

The gradient and Hessian of (16), with respect to u and v,

are available analytically (see Appendix A for details). They

are not constant with respect to u and v, and the Hessian

is not guaranteed to be positive definite. However, a local

minimum can be identified quickly using Newton’s method

with Armijo backtracking [16].

In contrast, P2 has a closed-form solution. For conve-

nience we horizontally concatenate xn as X ∈ R
3×nx , and

define B ∈ R
(nu+1)(nv+1)×nx

B =
[
b([v]1)⊗ b([u]1) · · · b([v]nx

)⊗ b([u]nx

)
]
.

(17)

Using wi, we compose the diagonal matrix Λ ∈ R
nx×nx

>0 . We

then restate (12) as a matrix equation

f(A,u,v) =
1

2

∥∥ΛBT Ā− ΛXT
∥∥2

F
, (18)

replacing the vector norm with the matrix norm. In this form,

the solution to P2 is obvious.

Often P2 is poorly scaled, and without regularization

the optimal A will include control points far from the

elements of X . Regularization has been addressed previously

(e.g. Tikhonov [17], and the fairing term [11], [14]). Using

Tikhonov regularization the solution remains available in

closed form. Without loss of generality, we assume X are

centered about the origin. This assumption may require

translation of the initial point cloud X̃ before fitting and

translation of A after fitting summarized as

X = X̃ − x01
T , Ã = Ā+ 1xT

0 .



Here we use 1 to represent a vector of all ones. We define

the regularized function

fλ(A,u,v) =
1

2

∥∥ΛBT Ā− ΛXT
∥∥2
F
+

λ

2

∥∥Ā
∥∥2
F
. (19)

The A minimizing (19) is found solving the linear system

of equations
(
BΛ2BT + λI

)
Ā = BΛ2XT . (20)

So far, we have assumed nu and nv constant. They

determine the size of A and B but have no affect on the

size of u or v. In this way, each iteration of P2 provides an

opportunity to change nu, nv. Next, we consider selection

of these parameters.

C. Model Selection

We can force (8) arbitrarily small by selecting large nu

and nv. However, increasing these parameters leads to higher

order surfaces which are not anatomically accurate. We cast

the problem of choosing nu and nv as model selection. For

this we employ the Bayesian information criteria (BIC).

Let q index the candidate models θq. In our case, each θq
comprises the optimal parameters associated with a unique

surface order (nu, nv). We seek the model which most-

likely generated the available data. As nx increases, the BIC

asymptotically approximates the joint log likelihood of the

data and model [18]

ln p (X , q) ≈ ℓ(X ; θq)−
dq
2

lnnx. (21)

In this approximation θq represents the maximum likelihood

estimates for model q. The scalar dq indicates the total

number of model parameters associated with the model q

dq = 2nx + 3 (nu + 1) (nv + 1) + 1. (22)

Expression (21) provides a regularized objective function

for model order selection. Gains in ℓ(X ; θq) are offset by

additional model parameters.

In (21) we make use of (8) which requires σ2. Given

maximum-likelihood estimates A, u, v (as detailed in Sec-

tion III-B), the maximum-likelihood estimate of σ2 is then

σ̂2 =
1

3nx

nx∑

i=1

w2
i ‖xi − si‖

2
ℓ2

=
2

3nx

f (A,u,v) .

(23)

Plugging (23) into (8), we retain only terms of σq and dq
and define the statistic

tq = −3nx lnσ
2
q − dq lnnx. (24)

Here q indexes candidate models θq , which includes σ2
q ,

and determines dq according to (22). The model selection

maximizing (21) is equivalent to selecting q maximizing the

statistic tq . Algorithm 2 describes the process of estimating

A for multiple pairs (nu, nv) and selecting the result yielding

the largest t.
The surface fitting process is given in Algorithm (3). We

assume u,v have been initialized, for example, projecting

Algorithm 2 MDLSELECT. Estimate A and statistic t while

increasing model order. Return the model with the largest

statistic. Here COMPUTEA refers to the solution for (20),

and COMPUTESIGMA2 refers to (23). While the parameters

u,v are returned in θ, they are not changed.

Input: X ∈ R
3×nx ;w ∈ R

nx

>0;u,v ∈ R
nx ;nu, nv ∈ N>0;

λ ∈ R≥0

Output: θ
1: q ← 0
2: for n′

v = nu to nu + 1 do

3: for n′
v = nv to nv + 1 do

4: q ← q + 1
5: A← COMPUTEA (X,w,u,v, n′

u, n
′
v, λ) ⊲ (20)

6: σ2 ← COMPUTESIGMA2 (X,w, A,u,v) ⊲ (23)

7: tq ← COMPUTET (θ) ⊲ (24)

8: end for

9: end for

10: i← argmaxi∈{1, ... , q} ti ⊲ Maximize BIC

11: θ ← θi

X onto a 2D subspace using SVD. With each update of

A, in MDLSELECT, we potentially increase surface order

according to the BIC. Changes to u,v, and σ2 are all useful

for stopping criteria (not addressed here).

Algorithm 3 FITSURFACE. Fit a surface to a collection of

points iteratively updating u,v, and A. UPDATEPOINT refers

to (15), which requires an iterative solver.

Input: X ∈ R
3×nx ;u,v ∈ R

nx ;w ∈ R
nx

>0;λ > 0
Output: θ

1: nu, nv ← 1
2: θ ← MDLSELECT (X,w,u,v, nu, nv, λ) ⊲ Algorithm 2

3: for t = 1, 2, . . . do

4: A, nu, nv ← A(θ), nu(θ), nv(θ) ⊲ Expand last θ
5: for i = 1 to nx do ⊲ Update u, v

6: ui, vi ← UPDATEPOINT (xi, A, ui, vi) ⊲ (15)

7: end for

8: θ ← MDLSELECT (X,w,u,v, nu, nv, λ) ⊲ Update

A
9: end for

The statistical interpretation of (21), as an approximation

for the joint log-likelihood, is somewhat disingenuous for

our problem. The asymptotic approximation of the BIC is

not accurate for our problem sizes (nx ∼ 100). Addition-

ally, the criterion requires maximum likelihood estimates of

the parameters which are not resolved during the iterative

algorithm. The implication here is that q, maximizing tq,

may fluctuate while the algorithm converges. Additionally,

switching q online (as in Algorithm (3)) may yield different

results in contrast with the brute-force approach of solving

for each model order independently and then applying model

selection. However, the brute-force approach is computation-

ally expensive. Here we use the right hand side of (21)

as a regularized objective function guiding allocation of



Fig. 3. Visualization of surface approximation. The training and testing
data are indicated by XTR and STE, respectively. The reference surface and

approximation are indicated by S and Ŝ , respectively. Here nTR = 100,
and σ2

y = 0.02.

computational resources.

IV. SIMULATIONS AND RESULTS

To demonstrate the benefits of our approach, we quantify

performance with simulations and present qualitative results

on human procedure data. Simulations are primarily designed

to demonstrate automatic surface order selection: avoiding

both overfitting and underfitting the latent surface.

We simulate a notional reference surface as an infinite

collection of points S ⊂ R
3. We then define two unique

subsets, STR,STE ⊂ S, STR∩STE = ∅, used for training and

testing purposes, respectively. For convenience, we will refer

to the cardinality of these sets using nTR = |STR|, nTE =
|STE|. Concatenating the elements of STR horizontally, we

define the matrix STR ∈ R
3×ntr . We do not assume STR is

available directly. Instead, we assume the observed data are

subject to additive noise

XTR = STR + Y (25)

consistent with (7). From the available XTR we fit a surface,

estimating θ̂. These parameters, or more specifically A,

define a surface Ŝ ⊂ R
3 as an infinite collection of points

indexed by coordinates (u, v) ∈ R. These quantities are

shown for an example surface in Figure 3.

To quantify surface fit, we consider the distance be-

tween elements xi ∈ STE and their nearest neighbor

s (ûi, v̂i;A) ∈ Ŝ. Finding neighbor coordinates (ûi, v̂i) re-

quires solving (15). We then define the matrix ŜTE ∈ R
3×nTE

concatenating s (ûi, v̂i;A) horizontally. We quantify perfor-

mance with two metrics

σ̂2
TR =

1

3nTR

∥∥∥ŜTR −XTR

∥∥∥
2

F
(26)

σ̂2
TE =

1

3nTE

∥∥∥ŜTE − STE

∥∥∥
2

F
. (27)

Here ŜTR are determined by θ̂. When wi = 1, (26) is

equivalent to (23).

Two attributes of the training data have a significant impact

on algorithm performance: nTR and the variance of Y , σ2
Y .

We demonstrate these effects using a scaled-version of the

Rosenbrock function (see Figure 3). We sample the reference

function and apply a consistent, randomly generated rotation

to all sampled points. We then partition the rotated sample

points as STR, STE. Randomly generating i.i.d. elements

[Y ]i ∼ N
(
0, σ2

Y

)
, we generate XTR using (25). From XTR

we estimate θ̂ using Algorithm 3, which also determines ŜTR

and σ̂2
TR. From Â and STE we estimate ŜTE by solving (15)

for each xi ∈ STE. Using ŜTE, we determine σ̂2
TE according

to (27). This process was repeated 100 times for multiple

pairs (nTR, σ
2
Y ). The averages are shown in Table I.

TABLE I

EFFECTS OF PROBLEM SIZE AND NOISE ON RESULTS

nTR σ2

Y
iter. size σ̂2

TR σ̂2

TE ms

50 2.5E-01 9.91 5.94 6.8E-02 4.9E-02 391.3
50 1.0E-02 10 14.21 2.5E-03 4.6E-03 404.0
50 2.5E-03 9.31 17.93 8.1E-04 2.4E-03 353.5
50 1.0E-04 5.84 30.28 2.5E-04 1.6E-03 221.4

100 2.5E-01 10 6.91 6.8E-02 3.3E-02 449.2
100 1.0E-02 9.99 14.89 3.1E-03 1.7E-03 448.1
100 2.5E-03 9.61 18.86 9.6E-04 8.2E-04 434.8
100 1.0E-04 6.5 32.85 1.9E-04 3.4E-04 282.8

1000 2.5E-01 10 12.79 7.0E-02 1.1E-02 1343.2
1000 1.0E-02 9.92 23.09 3.3E-03 3.0E-04 1331.9
1000 2.5E-03 7.63 34.79 8.3E-04 9.9E-05 1044.3
1000 1.0E-04 6.86 60.27 3.7E-05 2.7E-05 937.7

In Table I, the iter. column represents the average number

of AM iterations (t in Algorithm 3). We limited 10 as the

maximum number of iterations which we found sufficient for

establishing the appropriate surface order. The size column

in Table I indicates the number of control points in A: (nu+
1)(nv +1). We emphasize this is not d to avoid dependence

on nTR. There are two trends to observe. First, size increases

with nTR. Second, size increases as σ2
y decreases. Both of

these trends are due to the BIC. Similarly, we find that

larger model sizes are associated with lower σ̂2
TR and σ̂2

TE

since the BIC hedges against over-fitting. The final column

depicts the average run time for surface fitting (excluding

point selection). Computations were preformed in MATLAB

on a Late 2016 MacBook Pro (2.9 GHz Quad-Core i7). The

separable problem was parallelized among 4 workers with

no GPU support.

To further demonstrate the benefits of automatic order

selection, we contrast fitting errors of fixed-order models.

In addition to the Rosenbrock test surface, we now consider

a plane as a second latent test surface. Intuitively we expect

low-order models to perform poorly on the Rosenbrock test

surface (under fitting), while high order models perform

poorly on the planar surface (over fitting). This is confirmed

in Figure 4. Additionally we find our approach performs well

in both cases, automatically selecting a reasonable order for

the latent surface from noisy measurements.

To demonstrate the complete algorithm performance, we
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Fig. 4. Contrasting testing error as a function of noise. For Figure 4a and
Figure 4b the latent surfaces represent a plane and Rosenbrock function,
respectively. The legend indicates the number of control points assumed in
fixed-order models.

revisit the human procedure data depicted in Figure 1. The

occupancy map was constructed from position data after

applying an unpublished algorithm [4] to reduce biological

motion [3]. From the occupancy map we extract a dense

binary matrix V indicating interior volume with cubic voxels

with 1mm edge lengths. We identify X applying Algorithm

1 to a cubic volume with edge lengths 15mm. This collection

was indicated as the point cloud in Figure 1. Using Algorithm

3 we fit a surface Ŝ to X . Results are shown in Figure 5.

In this case nx = 132, and we used wi = 1. For the fitted

surface, nu = 1, nv = 3, and σ̂2 ≈ 0.05. This case presents

a region of the anatomy with high curvature, yet the resulting

error is well below quantization of the data. To contrast our

results with the surface presented to the physician navigators,

we limit display to only mesh vertices representing a nearest

point to one of the elements of X . The median distance from

X to the nonparametric display surface (nearest vertex) is

3.38 mm in contrast to 0.24mm (orthogonal distance) to our

parametric surface.

V. CONCLUSIONS

We have demonstrated an iterative algorithm for surface

approximation that converges quickly and is robust against

over fitting. We feel this approach is well suited for the

unique challenges associated with autonomous navigation of

catheters for cardiac ablation surgery.

Our algorithm for surface fitting only address the local

search problem. In other words we assume the initial pa-

rameter selections, u(0),v(0), are near the global minimum.

We select u(0), v(0) by projection X onto a 2-dimensional

subspace (SVD). The usefulness of this strategy will depend

on the curvature of the latent surface. For example, this

is not reasonable when the point cloud approximates a

cylinder. Limiting the extent of the surface approximation is

Fig. 5. Local surface approximated from human procedure data. The
nonparametric surface presented to human navigators is labeled mesh. Our
parametric surface approximation and the intermediate point cloud are

labeled Ŝ and X , respectively. The marker colors for X indicates the ℓ2
distance (normal) to the approximated surface in mm.

one mitigation strategy. Larger surfaces may require global

search or stitching together multiple surfaces approximations

and presents an opportunity for further research.

APPENDIX

A. Gradient and Hessian of the Separable Problem

The Jacobian of (6) can be expressed

Js =
[
b(v)⊗ b′(u) b′(v)⊗ b(u)

]T
Ā. (28)

Here we use b′(u) to represent the derivative of (2) with

respect to u. Subsequently we will use b′′(u) to represent

the second derivative. Their analytic derivation is straight

forward from (1). The gradient of (16) is then

∇g(u, v;x, A) = −Js (x− s(u, v;A)) (29)

For the convenience, we define the auxiliary scalar values

cu = (b(v)⊗ b′′(u))
T
Ā (x− s(u, v;A)) (30)

cv = (b′′(v)⊗ b(u))
T
Ā (x− s(u, v;A)) (31)

cuv = (b′(v)⊗ b′(u))
T
Ā (x− s(u, v;A)) . (32)

The Hessian of (16) is then

∇2g(u, v;x, A) = Js J
T
s
−

[
cu cuv
cuv cvv

]
. (33)
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