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Abstract— Ultrasound is a commonly used medical imaging
modality that requires expert sonographers to manually ma-
neuver the ultrasound probe based on the acquired image.
Autonomous Robotic Ultrasound (A-RUS) is an appealing
alternative to this manual procedure in order to reduce sonog-
raphers’ workload. The key challenge to A-RUS is optimizing
the ultrasound image quality for the region of interest across
different patients. This requires knowledge of anatomy, recog-
nition of error sources and precise probe position, orientation
and pressure. Sample efficiency is important while optimizing
these parameters associated with the robotized probe controller.
Bayesian Optimization (BO), a sample-efficient optimization
framework, has recently been applied to optimize the 2D motion
of the probe. Nevertheless, further improvements are needed to
improve the sample efficiency for high-dimensional control of
the probe. We aim to overcome this problem by using a neural
network to learn a low-dimensional kernel in BO, termed as
Deep Kernel (DK). The neural network of DK is trained using
probe and image data acquired during the procedure. The
two image quality estimators are proposed that use a deep
convolution neural network and provide real-time feedback to
the BO. We validated our framework using these two feedback
functions on three urinary bladder phantoms. We obtained
over 50% increase in sample efficiency for 6D control of the
robotized probe. Furthermore, our results indicate that this
performance enhancement in BO is independent of the specific
training dataset, demonstrating inter-patient adaptability.

I. INTRODUCTION

Ultrasound imaging delivers instantaneous, non-invasive
access to the human body to effectively visualize anatomy
and pathology [1]. Ultrasound stands out among other imag-
ing modalities, such as MRI or CT scan, because it is
low-cost, non-radiating, and suitable for use in rural or
underserved communities. However, unlike other modalities,
ultrasound is not a plug-and-play technology. Acquiring
quality images relies heavily on the expertise of the trained
sonographer who ensures optimal ultrasound probe contact
location, pressure, angle, and gel condition between the
probe and skin [2]. In addition, the sonographer must in-
tegrate the visual feedback from the image with a mental
model of anatomical structure(s) to continuously improve the
probing process.

In the pursuit of reducing the dependency on experts,
enhancing access to care and eliminating the requirement for
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Fig. 1: Robotic ultrasound system with probe attached to its
end-effector [2], conducting an in-vivo ultrasound.

direct patient contact, a Robotic Ultrasound System (RUS)
is introduced [3]. RUS has a 6-DoF robotic arm with an
ultrasound probe attached to its end-effector, as shown in Fig.
1. Recently, several telerobotic or human-assisted ultrasound
systems have been proposed [2], [4]–[6]. In contrast to those
systems, our system is fully autonomous. This allows for
shorter procedural times, lower cognitive load, and prevents
communication delays. However, several challenges need to
be addressed for autonomous RUS. One of the key challenges
is high-dimensional control of the probe maneuvers over the
patient body. The probe position, angle and pressure need
to be adjusted precisely and uniquely for inter- and intra-
patient procedures. Inappropriate probe maneuvers would
lead to acquiring low-quality images having artifacts, thereby
leading to false alarms during the patients’ diagnosis [7].
In order to master this procedure’s skill, novice operators
repeatedly scan different subjects in laboratory and clinical
setting during their medical training [8]. Inspired by their
training method, several model-based [9], [10] and model-
free [11]–[13] paradigms have been applied to learn the
robotized probe maneuvering for acquiring the optimal im-
age. However, these techniques either provide limited probe
motions or require a prohibitive number of samples for
training, making them infeasible for in-human optimization
of the RUS controller. This has led to the research com-
munity’s interest in sample-efficient learning techniques for
optimizing the RUS controllers.

Bayesian Optimization (BO) is a popular sample-efficient,
gradient-free and black-box optimization method for learn-
ing robotic controller parameters [14], [15]. Recently, BO
has been applied to optimize the 2D motion of robotized
ultrasound probe [16]. The clinical procedures, however,
require high-dimensional motion of probe for adjusting its
position, orientation and forces. Moreover, the performance
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of BO degrades in high dimensions due to its exponentially
increasing statistical and computational complexity [17],
[18]. In this work, we formulate a transformation that uses a
neural network to construct a low-dimensional kernel metric,
thereby providing a sample-efficient BO framework for opti-
mizing a high-dimensional RUS controller. The kernel metric
is termed as Deep Kernel (DK), which is learned by utilizing
the probe and image data obtained offline from the ultrasound
procedure. This requires maneuvering the ultrasound probe
over the scanning region and recording the probe poses
and corresponding images. The neural network then learns
a mapping between the high-dimensional probe pose and
low-dimensional image quality metric. In order to estimate
image quality, we propose two estimators using a Deep Con-
volution Neural Network (D-CNN) for image classification
and segmentation, respectively, which also provide real-time
feedback to BO. In order to validate it experimentally, we
optimized a 6D control of the robotized probe, including
position, orientation and force along z-axis, for three urinary
bladder phantoms. We demonstrate that using a Deep Kernel
in BO outperforms the sample-efficiency of standard kernel
formulation. We noted that DK’s performance is independent
of a specific training dataset, which shows inter-patient
adaptability. Finally, we validated the proposed image quality
estimators on the phantom dataset and noted enhancement in
accuracy over state-of-the-art networks.

A. Related Work

1) Autonomous Robotic Ultrasound (A-RUS) systems:
Several A-RUS systems have been developed to address
the challenges of manual procedure. Recent works have
used confidence-maps [9], [10], [19] or support vector ma-
chines [20] to assess image quality and then used it for
adjusting the probe poses and forces. However, the probe
control is limited, having either 2D/3D motion or decou-
pled poses/forces, which is insufficient to acquire a good
quality ultrasound image for complex procedures on patients
with challenging physiological conditions. Li et. al. [11],
[12] have used a deep reinforcement learning framework
to develop a robotized probe controller for optimizing the
image quality in spinal ultrasound. However, these systems
require a large number of explorations to find the global
optimum, therefore their success is limited to phantoms.
Jiang et. al. [21], [22] have used segmentation of tubular
structures in human limbs for scanning them while the limb
is static or moving. However, the procedures like spine or
limb ultrasound require the probe to be oriented in a normal
direction to the point of contact, with minimal orientation
adjustment required throughout scanning. In contrast to these
systems, we propose a generic A-RUS with a comprehensive
probe controller using a sample-efficient BO framework.

2) Bayesian optimization for ultrasound robots: BO has
been used for several safety-critical robotic medical pro-
cedures, such as autonomous robotic palpation [23], semi-
autonomous surgical robot [24], controller tuning of hip
exoskeletons [25] and A-RUS [16], [26]. Our work is a
non-trivial extension to work by Goel et al. [16]. They

proposed using BO for A-RUS utilizing segmentation of the
vessel in the ultrasound image as feedback to the BO for
finding and scanning the region with high vessel density.
They used hybrid position-force control to move the robot
in 2D plane while maintaining constant force along the
probe axis normal to the point of contact. In contrast, our
work proposes technical enhancements to make this approach
more practical and expand its scope to complex ultrasound
procedures. We propose a 6D control of the probe pose,
including the variable force control along the z−axis. We
further propose a novel kernel for BO to improve its sample
efficiency during the optimization of 6D probe controller.

3) High-Dimensional Bayesian Optimization: A large
body of literature has addressed the issues related to the
scalability of BO to high-dimensional optimization prob-
lems. A few methods have exploited the potential additive
structure in the objective function [27], [28]. However, these
methods require partitioning of the objective function and
a large number of GPs, hence they do not generalize well
to several applications. The other methods determined the
mapping from high-dimensional space to low-dimensional
subspace [29], [30]. For robotic systems, the transformation
of search space to a lower dimension has been attempted for
locomotion controller [31], [32]. Rai et. al. [32] proposed
a transformation based on human walking knowledge to
project a 16D controller to 1D controller. Antonova et. al.
[31] propose to learn the transformation using a neural net-
work trained on data obtained from a high-fidelity simulator.
However, the paradigms of high-dimensional BO have not
yet been explored for optimizing the RUS controller.

II. METHODOLOGY

The overview of the proposed BO is shown in Fig. 2. In
the offline phase, first the dataset of images will be collected
from the scanning region by varying the probe poses. Then,
each image in dataset will be annotated for quality rating and
segmentation masks, which will be used to train the Image
Quality Estimators (IQEs). Second, the Deep Kernel (DK)
neural network is trained using the dataset of probe poses and
their corresponding image qualities estimated using the IQEs
trained earlier. In the online phase, the BO will utilize the DK
in Gaussian Process (GP) model and learnt IQEs to calculate
the probabilistic estimate of the unknown image quality in
the scanning region of human body. An acquisition function
is optimized during online BO to yield the new probing pose,
which will acquire the new ultrasound image. The GP model
is then re-fitted to the new data and process is repeated until
the termination criteria is reached, which can either be the
maximum quality reached or maximum reasonable steps.

A. Bayesian optimization

The BO can determine the probing poses that will optimize
the ultrasound image quality within a scanning region. If A
denotes the scanning region on the human body, then the
objective function of BO is given by:

max
p∈A

q(I(p)) (1)
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Fig. 2: Overview of the Bayesian optimization (BO) framework for optimizing 6D robotic ultrasound controller using deep
kernels in Gaussian process model and image quality estimators as feedback.

where q(I(p)) denotes the ultrasound image quality score
I at probing pose p.

1) Deep Kernel: The GP model is used as the function
estimator in BO. It defines an unknown quality function value
q(I(p)) at a probe pose p by a mean function µ(·) and
kernel function κ(·, ·) as

q(I(p)) ∼ GP (µ(·),κ(·, ·)) (2)

Given the quality values set q̄ = [q(I(p1)), · · · , q(I(pn))]
at probe poses p̄ = [p1, · · · ,pn], the GP regression can
predict the quality function value at new probe pose p∗ as
the Gaussian distribution and is given by:

P(q(I(p∗)|p∗, p̄, q̄) = N (kK−1q̄,κ(p∗,p∗)− kK−1kT )
(3)

where,
k =

[
κ(p∗,p1) · · · κ(p∗,pn)

]
K =

κ(p1,p1) · · · κ(p1,pn)
...

. . .
...

κ(pn,p1) · · · κ(pn,pn)


For kernel matrix κ, we propose using a sum of two
functions, the radial basis function and white noise func-
tion, because their combination provides better estimates for
anatomical structures in ultrasound images [16].

κ(pi,pj) = σr exp

(−||pi − pj ||2

2l2

)
+ σwIn (4)

where σr, σw and l is the overall variance, noise variance and
length-scale, respectively, representing the BO hyperparam-
eters θ. Robotized control of ultrasound probe necessitates
high-dimensional control of probe pose, including its po-
sition, orientation and forces to acquire appropriate quality
images for inter- and intra-patient procedures. However, the
performance of BO often degrades in high dimensions [18],
specifically due to two reasons: (i) the high dimensional
objective function exponentially increases the number of
samples (queries) required to explore the space (ii) the BO’s
acquisition function is non-convex and optimizing it demands
exponentially increasing computational power.

In order to overcome these issues, we propose a 1D kernel
for GP and term it as a Deep Kernel, as shown in Fig. 3.
It will transform the 6D representation of probe poses into
a 1D space. We use a supervised Neural Network (NN),
represented by ϕD, which will learn the mapping between
probe pose representation and image quality metric. The DK
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Fig. 3: Dataset and neural network structure for Deep Kernel

neural network used two hidden layers, each having 400 and
300 neurons, respectively. The activation function used for
each layer is Rectified Linear Unit (ReLU). The estimation
of image quality metric for a given image has been explained
in section II-B. The data for training the neural network
can be collected offline by the expert-demonstrated probing
maneuvers or random sampling of the probe poses over
the scanning region. The functional form of this kernel is
identical to that of eq. (4). However, the euclidean difference
between the six-dimensional probe poses was replaced with
the difference between the uni-dimensional NN output image
quality score for the input probe pose.

κ(pi,pj) = σr exp

(−||ϕD(pi)− ϕD(pj)||2

2l2

)
+σwI (5)

where, ϕD(p∗) denotes the output of NN at probe pose p∗.
The hyper-parameters θ of DK-based GP will be estimated
by maximizing the log marginal likelihood with a Lim-
ited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
solver, which is given by

θ∗ = argmax
θ

log
∏

N (q(I(pi))|µθ(pi),K) (6)

2) Acquisition Function: The next probe pose is deter-
mined by optimizing the acquisition function. We have used
an Expected Improvement (EI), which is the most commonly
used acquisition function. Given the posterior mean and
variance of GP as µq̄(p),σ

2
q̄(p), the expression for EI is:

EI(p) =

{
(µq̄(p)− q+ − ξ)Φ(Z) + σ2

q̄(p)ϕ(Z) if σ2
q̄(p) > 0

0 if σ2
q̄(p) = 0

(7)

where Z =
µq̄(p)−q+

σ2
q̄(p)

if σ2
q̄(p) > 0 else 0; Φ and ϕ are the

Probability Density Function (PDF) and Cumulative Density
Function (CDF) of standard normal distribution, respectively
and q+ = q+(I(p)) is the best observed image quality so



far. The exploration and exploitation during optimization is
balanced by parameter ξ, and high ξ means more exploration
or less exploitation.

B. Image quality estimation:

We proposed two image quality estimators for estimating
real-time diagnostic ultrasound image quality in A-RUS,
which are based on: (1) Classification and (2) Segmentation
of ultrasound image, as shown in Fig. 4.
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Fig. 4: D-CNNs for image quality estimators
1) Image classification: We propose using a Deep Convo-

lution Neural Network (D-CNN) based classifier to extract
the ultrasound image features and classify them based on
the diagnostic quality. Ultrasound image quality assessment
requires rich feature extraction for classifying the images
that look quite similar but differ a lot in terms of image
quality. In recent work, Song et al. [33] proposed a Bilinear
Convolutional Neural Network (B-CNN) for fine-grained
classification of breast ultrasound image quality. We propose
a statistical enhancement to this work to improve its per-
formance for ultrasound images having complex anatomical
structures. Recently, Li et al. [34] proposed Second-order
Pooling (SoP) block for enhancing the non-linear modeling
ability of D-CNNs. Inspired by their work, we perform
the SoP along spatial dimension at the end of the D-
CNN network. First, we reduce the number of channels
of feature volume X ∈ RH×W×N from N to M using
1 × 1 convolution. Then, X is reshaped to X ∈ RM×N

where M = H × W . Later, we compute the covariance
matrix CM×M = (X − X̄)(X − X̄)T , reshaped it to
1 × M × M and passed it through convolution layer with
4M kernels of size 1×M . The resulting tensor 1× 1× 4M
is then resized to 1 × 1 × M tensor, wM , using a 1 × 1
convolution. Finally, weight vector wM is multiplied with X
to obtain the resultant feature volume V M ∈ RH×W×N . The
base network used in proposed D-CNN is Residual Network
(ResNet50). We trained the network using the Categorical
Cross Entropy as a loss function.

2) Image segmentation: To evaluate the image quality
based on image segmentation, we used U-net [35], which is
a state-of-the-art segmentation network for biomedical image
segmentation. The network consists of two 2D convolution
layer (Conv2D), followed by a Batch Normalization layer,
Rectified Linear Unit (ReLU) as activation function, a max.
pooling layer (i.e down sampling) of 2×2 in the contracting
path. Each Conv2D layer is padded convolution with kernel
size as 3 × 3. Similarly, for the expansive path, an up-
sampling layer of 2× 2 was added after each Conv2D layer.

The number of filters along the contracting path doubled
with each successive convolutional layer. The inverse of this
pattern was replicated in the expanding path, resulting in the
same number of filters in the last 3× 3 convolutional layer
of expanding path. In our dataset images, the bladder bound-
aries are blurred and irregular, making its segmentation rather
challenging. Hence, we have used multiple loss functions to
train the network, so that the model would be enforced to
learn fine-grained features of the bladder [36]. We used the
combinations of three loss functions, Dice coefficient (DC)
and Jaccard Index (JI) and Binary Cross-Entropy (BCE),
formulated as LDJB = LDC +LJI +LBCE , where

LDC = 1−
(

2ytyp + s

yt + yp + s

)
,LJI = 1−

ytyp + s

yt + yp − ytyp + s

LBCE = −ytlog(yp)− (1− yt)log(1− yp)

where s, yt and yp represent smoothness constant, ground
truth and predicted mask, respectively. The model will finally
output the predicted mask of the given input ultrasound
image. We take normalized mean of the predicted mask as
the quality score, the value of which lies between 0 and 1.

3) Dataset: We collected ultrasound image dataset from
Urinary Bladder (UB) phantom (YourDesignMedical, USA).
A total of 2290 phantom images were collected. All images
have been resized to 224 × 224 shape. The training and
validation set consists of 2061 and 229 images, respectively.
For classification, the ground truth quality of images is an
integer score between 1 − 5, based on an internationally
prescribed generalized 5-level absolute assessment scale [4].
The training and validation set contains an equal distribution
of images for each quality type. A score of 1 means no ap-
pearance of the UB with unacceptable artifacts and 5 means
that the clear depiction of the UB with distinct boundaries
and acceptable artifacts, depicting a high diagnostic accu-
racy. A poor-quality image either contains noise or motion
artifacts, blurred images, indistinct boundaries, obscuring the
posterior or anterior sections of the UB. Later, we normalized
the quality score in the range 0 − 1 for comparison with
segmentation-based quality score, where 0 denotes a score
when the force value of probe along z-axis is below mini-
mum required for appropriate contact. For segmentation, we
annotated using SuperAnnotate (https://superannotate.com/).
A single polygon with multiple points is drawn in every
image, spanning the shape of UB. These polygons were then
used to generate corresponding ground truth masks.

C. Robotic controller

The robotic controller will move the probe to the new
pose p = [x, y, z, roll, pitch, yaw] given by BO. The hybrid
position-force control is used for controlling the robot, where
only z−axis is under force control, denoted as fz . For the
safety of phantoms, the force limits have been set to 20N .

III. RESULTS AND DISCUSSIONS

A. Experimental setup

We validate our framework on an experimental setup of
robotic ultrasound system, consisting of a 7-DoF Sawyer



collaborative robotic arm (Rethink Robotics, Germany) with
a Micro Convex MC10-5R10S-3 probe attached to its end-
effector. The probe is connected to the Telemed Ultrasound
machine (Telemed Medical Systems, Italy), which captures
the ultrasound image. The machine is connected to the laptop
for displaying and transmitting the image for processing in
BO. The ultrasound scanning is conducted on a urinary blad-
der phantom. In order to validate the proposed framework for

Urinary Bladder 
Phantom

Telemed Ultrasound 
Machine

Sawyer 7-DoF 
Robot Arm

Ultrasound
 Image

Curved Ultrasound 
Probe

Phantom 1 (P1)

Phantom 0 (P0)

Phantom 2 (P2)

Fig. 5: Experimental setup of robotic ultrasound system with
three different phantoms of the urinary bladder.

inter-patient ultrasound scanning, we modified the phantom
P0 using the layers of ballistic gel. We used 0.38 inch layer
for P1 and 0.63 inch layer for P2, as shown in Fig. 5. The
BO has been implemented in Python 3.8. The DK neural
network and IQEs explained in Section II has been trained
using PyTorch 1.11. For BO, we used ξ = 0.1 and region
limits A as x ∈ (−0.05, 0.05)m, y ∈ (−0.02, 0.02)m, fz ∈
(5 − 20)N , roll ∈ (−0.2, 0.2)rad, pitch ∈ (−0.2, 0.2)rad,
and yaw ∈ (−0.5, 0.5)rad. The orientation limits have been
decided to ensure collision-free scanning of phantoms.

B. Analyzing BO performance with Deep kernel

In order to analyze the effectiveness of the proposed
framework, we compared the performance of BO that used
our proposed neural network based Deep kernel with a stan-
dard Radial Basis Function (RBF) kernel. We have analysed
our results for two feedback functions, as described in Sec-
tion II-B: (i) Image quality score obtained from classification
network (qc), which is a non-smooth feedback; (ii) Image
segmentation score obtained from segmentation network
(qs), which is a smooth feedback function. The dataset for
deep kernel has been sampled from phantoms P0 and P1,
while no dataset has been taken from P2, which is our
test-case phantom. For training the deep kernel, we sampled
1200 probe poses, 600 for each of the phantom P0 and P1,
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Fig. 6: (a) Distribution of probe poses sampled for training;
(b) learning curve of deep kernel’s neural network

using latin hypercube sampling and scanned the phantoms
using sampled probe poses. The distribution of probe-poses
sampled for each pose variable and corresponding quality is
shown in Fig. 6a. The distribution shows that probe control
parameters have been widely explored. However, out of the
1200 sampled poses, only 110 resulted in a quality greater
than 0.8. This means that random sampling has only 9.2%
chance of locating a high image quality region. This shows
that acquiring high-quality images requires all sets of probe
parameters to be accurate, which highlights the complexity
of this optimization problem. The learning curve for the deep
kernel’s neural network is shown in Fig. 6b.
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Fig. 7: Analysis of BO runs on phantom P0 and P1 using
classification qc (a,c,e) and segmentation qs (b,d,f) feedback.
Line show mean and shaded region shows ±S.D over 10 runs

In total, we conducted 60 runs of BO, 5 each for 3
phantoms and 2 feedback functions. Each run of BO has
50 steps, which is the termination condition. In this section,
we denote the quality score greater than 0.8 as high quality
region (HQR). The average image quality achieved during the
runs of BO for phantom P0, P1 are shown in Fig 7a and 7b.
It indicates that BO with RBF kernel maintains a low value of
average image quality compared to deep kernel over all steps
of BO, and hence it could not locate the HQR reliably even
after 50 steps. Further, the large values of standard deviation
(represented by the shaded region on both sides of the mean
line) for RBF kernel show its extensive exploratory nature. In
contrast, deep kernel maintains high mean quality with low
standard deviations, which shows its better sample efficiency.
The deep kernel also succeeded in locating the HQR in first
5− 10 steps in all runs of BO, as shown in Fig. 7c and 7d.
Further, Fig. 7e and 7f shows that deep kernel has 61.76%
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Fig. 8: Analysis of BO runs on phantom P2 using classifica-
tion qc (a,c,e) and segmentation qs (b,d,f) as feedback. Line
show mean and shaded region shows ±S.D over 10 runs

and 56.68% more sample in HQR than RBF for qc and qs
feedback, respectively, in 10 runs of BO.

For phantom P2, the average values in Fig. 8a and 8b
show that BO with RBF kernel could not locate the HQR
reliably (high S.D.). However, BO with deep kernel reached
the HQR in approximately 10 − 30 steps, as shown in Fig.
8c and 8d. In contrast, the RBF kernel took more than 30
steps to locate the HQR reliably. Moreover, out of the 5 runs,
RBF kernel could only locate the HQR in 3/5 runs for qc
and qs, as shown in Fig. 8e and Fig. 8f. Further, RBF has less
number of HQR samples in comparison to deep kernel across
all runs of BO. These results indicate that the deep kernel
improves the sample efficiency of BO and its performance
is independent of its training dataset.

C. Analysis of image quality estimators

We evaluated the classification network on a 10-fold
cross-validation for classifying the urinary bladder phantom
images based on their quality. To avoid over-fitting on the
small dataset, we applied random horizontal flipping and
normalization data augmentations. The values of precision,
recall, and accuracy for five classes of quality are shown
in Table I. We compared the proposed network, ResNet50
with Spatial SoP (RN50+SSoP), with the ResNet50 with
Bilinear Pooling (RN50+BP) [33], to validate the perfor-
mance enhancement. Results show that the RN50+SSoP has
an average accuracy of 98.2 ± 0.5, which is 1.42% more
than the average accuracy of RN50+BP. The class-wise
analysis suggest that RN50+SSoP has significant gains over
the RN50+BP, achieving 1.46%, 2.06%, 2.95% and 0.91%

(a) (b) (c)

Fig. 9: The predicted masks when bladder appears (a) at full
size, (b) approx. half of its size, and (c) one-fourth of its size

more accuracy for quality scores 2, 3, 4 and 5, respectively.
Hence, it is validated that the proposed network enhanced
the accuracy of ultrasound image quality classification.

TABLE I: Comparison of the classification-based IQE with
the state-of-the art network on 10-fold cross validation

Score RN50+BP [33] RN50+SSoP (Proposed)

Precision Recall Accuracy Precision Recall Accuracy

1 99.7± 0.3 99.4± 0.7 99.5± 0.4 99.7± 0.5 99.9± 0.3 99.8± 0.4
2 93.9± 2.1 95.8± 1.7 94.8± 1.3 95.5± 1.7 97.0± 1.5 96.2± 1.3
3 94.6± 1.3 95.5± 1.9 95.0± 1.1 97.8± 1.3 96.3± 1.6 97.0± 1.2
4 96.3± 1.4 94.8± 1.6 95.5± 0.7 98.7± 0.9 98.1± 0.4 98.4± 0.3
5 97.3± 0.8 98.9± 0.3 98.0± 0.1 98.7± 0.6 99.1± 0.2 98.9± 0.1

Avg. 96.5 ± 0.5 97.1 ± 0.5 96.8 ± 0.5 98.2± 0.5 98.2± 0.5 98.2± 0.5

For the segmentation network, the qualitative results are
shown in Fig. 9. We further evaluated this network quan-
titatively using the standard evaluation matrices, including
Precision (P), Recall (R), F1 score (F1), Dice Coefficient
(DC), and Intersection over Union (IoU). The values of
these evaluation metrics for the 10-fold cross-validation and
comparison with standard dice loss function (LDC) are given
in Table II. The proposed loss function, LDJB outperforms
LDC on P, R, F1, DC and IoU by 3.2%, 4.7%, 2.6%, 2.5%
and 4.8%, respectively. Hence, the U-net guided with the
proposed multi-loss function is an effective method for the
segmentation of complex structures in the ultrasound image.

TABLE II: Comparison of the segmentation-based IQE for
standard dice loss and proposed multi-loss function

Loss P R F1 DC IoU

LDC 95.6±6.09 92.7±5.55 93.9±2.99 93.7±3.04 88.4±5.41
LDJB 98.8±0.26 97.3±2.02 96.4±1.57 96.1±2.10 92.9±1.81

IV. CONCLUSION

We proposed a sample-efficient Bayesian Optimization
(BO) framework using deep kernel and image quality es-
timators for optimizing the 6-dimensional robotic ultrasound
controller. The deep kernel of Gaussian process model learns
a one-dimensional embedding representing image quality
for a given probe pose. The two image quality estimators
(IQEs) based on classification and segmentation utilizing a
deep convolutional neural network are proposed for real-time
quality assessment in RUS. We validated the framework on
three urinary bladder phantoms and demonstrated over 50%
increase in sample efficiency over the standard kernel for
both IQEs as feedback to BO. In future work, we would
like to validate it for complicated surface phantoms and
in-vivo trials for a clinical procedure [2], [37]. We will
explore approaches for improving the IQEs and learning
the kernel from multiple expert demonstrations. We would
also investigate integrating the deep kernel with a pre-trained
prior quality model similar to [38] for further improvement
in the sample efficiency of BO.
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