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Approximating Propositional Calculi by
Finite-valued Logics

Matthias Baaz∗ Richard Zach†

Abstract

Bernays introduced a method for proving underivability results in propositional cal-
culi C by truth tables. In general, this motivates an investigations of how to find, given
a propositional logic, a finite-valued logic which has as fewtautologies as possible, but
which has all the valid formulas of the given logic as tautologies. It is investigated how
far this method can be carried using (1) one or (2) an infinite sequence of finite-valued
logics. It is shown that the best candidate matrices for (1) can be computed from a cal-
culus, and how sequences for (2) can be found for certain classes of logics (including,
in particular, logics characterized by Kripke semantics).

1 Introduction

The question of what to do when face to face with a new logical calculus is an age-
old problem of mathematical logic. One usually has, at leastat first, no semantics.
For example, intuitionistic propositional logic was constructed by Heyting only as a
calculus; semantics for it were proposed much later. Currently we face a similar sit-
uation with Girard’s linear logic. The lack of semantical methods makes it difficult
to answer questions such as: Are statements of a certain form(un)derivable? Are the
axioms independent? Is the calculus consistent? For logicsclosed under substitution
many-valued methods have often proved valuable since they were first used for prov-
ing underivabilities by Bernays [2] in 1926 (and later by others, e.g., McKinsey and
Wajsberg; see also [16,§ 25]). For the above-mentioned underivability question it is
necessary to find many-valued matrices for which the given calculus is sound. If a for-
mula is not a tautology under such a matrix, it cannot be derivable in the calculus. It is
also necessary, of course, that the matrix has as few tautologies as possible in order to
be useful.

Such “optimal” approximations of a given calculus may also have applications in
computer science. In the field of artificial intelligence many new (propositional) log-
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ics have been introduced. They are usually better suited to model the problems dealt
with in AI than traditional (classical, intuitionistic, ormodal) logics, but many have
two significant drawbacks: First, they are either given solely semantically or solely by
a calculus. For practical purposes, a proof theory is necessary; otherwise computer
representation of and automated search for proofs/truths in these logics is not feasi-
ble. Second, most of them are intractable, and hopelessly so, provided the polynomial
hierarchy does not collapse. For instance, many nonmonotonic formalisms have been
shown to be hard for classes above NP [6]. Although satisfiability in many-valued
propositional logics is (as in classical logic) NP-complete [15], this is still (probably)
much better.

On the other hand, it is evident from the work of Carnielli [3]and Hähnle [10] on
tableaux, and Rousseau, Takahashi, and Baaz et al. [1] on sequents, that finite-valued
logics are, from the perspective of proofandmodel theory, very close to classical logic.
Therefore, many-valued logic is a very suitable candidate if one looks for approxima-
tions, in some sense, of given complex logics.

What is needed are methods for obtaining finite-valued approximations of the propo-
sitional logics at hand. It turns out, however, that a shift of emphasis is in order here.
While it is thelogic we are actually interested in, we always are given only arepresen-
tationof the logic. Hence, we have to concentrate on approximations of the represen-
tation, and not of the logic per se.

What is a representation of a logic? The first type of representation that comes to
mind is a calculus. Hilbert-type calculi are the simplest conceptually and the oldest
historically. We will investigate the relationship between such calculi on the one hand
and many-valued logics or recursive sequences of many-valued logics on the other
hand. The latter notion has received considerable attention in the literature in the form
of the following two problems: Given a calculusC,

(1) find a minimal (finite)normalmatrix for C (relevant for non-derivability and
independence proofs), and

(2) find a sequence of finite-valued logics whose intersection equals the theorems
of C, and its converse, given a sequence of finite-valued logics,find a calculus
for its intersection (exemplified by Jaśkowski’s sequencefor intuitionistic propo-
sitional calculus, and by Dummett’s extension axiomatizing the intersection of
the sequence of Gödel logics, respectively).

For (1), of course, the best case would be a finite-valued logic M whose tautologiesco-
incidewith the theorems ofC. C then provides an axiomatization ofM. This of course
is not always possible, at least forfinite-valued logics. Lindenbaum [14, Satz 3] has
shown that any logic (in our sense, given by a set of rules and closed under substitution)
can be characterized by aninfinite-valued logic. For a discussion of related questions
see also Rescher [16,§ 24].

In the following we will consider these questions in a general setting. Consider a
propositional Hilbert-type calculusC. First of all, an optimal (i.e., minimal under set
inclusion of the tautologies)m-valued logic for whichC satisfies reasonable soundness
properties can be computed. We call such a logicnormalfor C. The next question is,
can we find an approximating sequence ofm-valued logics in the sense of (2)? It is
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shown that this is impossible for undecidable calculiC, and possible for all decidable
logics closed under substitution. This leads us to the investigation of themany-valued
closureMC(C) of C, i.e., the set of formulas which are true in all covers ofC. In
other words, if some formula can be shown to be underivable inC by a Bernays-style
many-valued argument, it is not in the many-valued closure.Using this concept we
can classify calculi according to their many-valued behavior, or according to how good
they can be dealt with by many-valued methods. In the best case MC(C) equals the
theorems ofC (This can be the case only ifC is decidable). OtherwiseMC(C) is a
proper superset of the theorems ofC.

We show thatMC(C) is decidable ifC is analytic(This does not imply thatC itself
is decidable; e.g., cut-free propositional linear logic isknown to be undecidable). Two
axiomatizationsC andC′ of the same logic may have different many-valued closures
MC(C) and MC(C′) while being model-theoretically indistinguishable. Hence, the
many-valued closure can be used to distinguish betweenC andC′ with regard to their
proof-theoretic properties.

Finally, we investigate some of these questions for other representations of logics,
namely for decision procedures and finite Kripke models. In these cases approximating
sequences of many-valued logics whose intersection equalsthe given logics can always
be given.

2 Propositional Logics

2.1. DEFINITION A propositional languageL consists of the following:

(1) propositional variables:X0, X1, X2, . . . ,X j, . . . (j ∈ ω)

(2) propositional connectives of arityn j: �
n0
0 , �n1

1 , . . . ,�nr
r . If n j = 0, then� j is

called apropositional constant.

(3) Auxiliary symbols:(, ), and, (comma).

Formulas and subformulas are defined as usual. We denote the set of formulas
over a languageL by Frm(L). By Var(A) we mean the set of propositional variables
occurring inA.

2.2. DEFINITION A propositional Hilbert-type calculusC in the languageL is given
by

(1) A finite setA(C)⊆ Frm(L) of axioms.

(2) A finite setR(C) of rules of the form

A1 . . . An

A
r

whereA, A1, . . . ,An ∈ Frm(L)
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A formulaF is atheoremof L if there is a derivation ofF in C, i.e., a finite sequence

F1,F2, . . . ,Fs = F

of formulas s.t. for eachFi either

(1) Fi is a substitution instance of an axiom inA(C), or

(2) there areFk1, . . . , Fkn with k j < i and a ruler ∈ R(C), s.t. Fk j is a substitution
instance of thej-th premise ofr, andFi is a substitution instance of the conclu-
sion.

If F is a theorem ofC we writeC⊢ F. The set of theorems ofC is denoted by Thm(C).

2.3. Remark The above notion of a propositional rule is the one usually used in axiom-
atizations of propositional logic. It is, however, by no means the only possible notion.
For instance, Schütte’s rules

A(⊤) A(⊥)

A(X)
C ↔ D

A(C)↔ A(D)

whereX is a propositional variable, andA, C, andD are formulas, does not fit under
the above definition.

2.4. DEFINITION A propositional calculus is calledanalyticiff for every rule

A1 . . .An

A
r

it holds that Var(A1)⊆ Var(A), . . . , Var(An)⊆ Var(A).

2.5. Remark Note that analytic calculi here neednothave a strict subformula property,
in contrast to the notion in sequent calculus. Cut-free sequent calculi can easily be be
encoded in analytic Hilbert-type calculi. Henceforth, whenever we refer to a sequent
calculus we always mean its encoding according to the following construction.

(1) Sequences of formulas can be coded using a binary operator ·. The sequent
arrow can simply be coded as a binary operator→. We have the following rules,
to assure associativity of·:

X ·
((

U · (V ·W )
)
·Y

)
→ Z

X ·
((

(U ·V ) ·W
)
·Y

)
→ Z

(
X ·

(
U · (V ·W )

))
·Y → Z

(
X ·

(
(U ·V ) ·W

))
·Y → Z

as well as the respective rules withoutX , withoutY , without bothX andY , with
the rules upside-down, and also for the right side of the sequent (20 rules total).
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(2) To avoid logical rules acting on sequences instead of formulas, a formula markerF

is introduced. Logical axioms then take the formXF → XF .

(3) The usual sequent rules can be coded using the above constructions.

(4) Some sequent rules require restrictions on the form of the side formulas in a rule,
e.g., the R! rule in classical linear logic:

!Π → A,?Γ
!Π →!A,?Γ R!

We introduce operators! and? s.t.

(a) A! andB? can be introduced only onA ≡!C andB ≡?D, respectively;

(b) ! and? distribute over·; and

(c) ! and? can always be canceled.

R! would then take the form
X ! → A ·Y?

X ! → !A ·Y ?

It is easily seen that the resulting Hilbert calculus is analytic in the sense of Defi-
nition 2.4 if the original sequent calculus was. This also shows that this notion of
analyticity does not entail decidability, since for instance cut-free propositional lin-
ear logicLL can be coded in an analytic Hilbert calculus.LL, however, is undecid-
able [13].

2.6. EXAMPLE Intuitionistic propositional logic is axiomatized by the following cal-
culusIPC:

(1) Axioms:
a1 A ⊃ A∧A
a2 A∧B ⊃ B∧A
a3 A ⊃ B ⊃ (A∧C ⊃ B∧C)
a4 (A ⊃ B)∧ (B ⊃C)⊃ (A ⊃C)
a5 B ⊃ (A ⊃ B)
a6 A∧ (A ⊃ B)⊃ B
a7 A ⊃ A∨B
a8 A∨B ⊃ B∨A
a9 (A ⊃C)∧ (B ⊃C)⊃ (A∨B ⊃C)
a10 ¬A ⊃ A ⊃ B
a11 (A ⊃ B)∧ (A ⊃ ¬B)⊃¬A
a12 A ⊃ (B ⊃ A∧B)

(2) Rules (in usual notation):
A A ⊃ B

B MP
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Gentzen’s sequent calculusLJ without cut gives an analytical axiomatization.

2.7. DEFINITION A propositional logicL in the languageL is a subset of Frm(L)
closed under substitution.

Every propositional calculusC defines a propositional logic, namely Thm(C) ⊆
Frm(L), since Thm(C) is closed under substitution. Not every propositional logic,
however, is axiomatizable, let alone finitely axiomatizable by a Hilbert calculus. For
instance, the logic

{�k(⊤) | k is the Gödel number of a

true sentence of arithmetic}

is not axiomatizable, whereas the logic

{�k(⊤) | k is prime}

is certainly axiomatizable (it is even decidable), but not by a Hilbert calculus using
only� and⊤. (It is easily seen that any Hilbert calculus for� and⊤ has either only a
finite number of theorems or yields arithmetic progressionsof �’s.)

2.8. DEFINITION A propositional finite-valued logicM is given by a set of truth values
V (M) = {1, 2, . . . ,m}, the set ofdesignated truth valuesV+(M)⊆V (M), and a set of
truth functions�̃ j:V (M)n j →V (M) for all connectives� j ∈ L with arity n j.

The corresponding subset of Frm(L) of true formulas is the set of tautologies ofM,
defined as follows.

2.9. DEFINITION A valuationI is a mapping from the set of propositional variables
into V (M). A valuationI can be extended in the standard way to a function from
formulas to truth values.I satisfiesa formulaF , in symbols:I |=M F , if I(F)∈V+(M).
In that case,I is called amodelof F , otherwise acountermodel. A formula F is a
tautologyof M iff it is satisfied by every valuation. Then we writeM |= F . We denote
the set of tautologies ofM by Taut(M).

2.10. EXAMPLE The sequence ofm-valued Gödel logicsGm is given byV (Gm) =
{0,1, . . . ,m−1}, the designated valuesV+(Gm) = {0}, and the following truth func-
tions:

¬̃Gm(v) =

{
0 for v = m−1
m−1 for v 6= m−1

∨̃Gm(v,w) = min(a,b)

∧̃Gm(v,w) = max(a,b)

⊃̃Gm(v,w) =
{

0 for v ≥ w
w for v < w

This sequence of logics was used in [8] to show that intuitionistic logic cannot be
characterized by a finite matrix.
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In the remaining sections, we will concentrate on the relations between calculiC,
logicsL, and many-valued logicsM. The objective is to find many-valued logicsM (or
sequences thereof) that, in a sense, approximate the calculusC and/or the logicL.

The following well-known product construction is useful for characterizing the “in-
tersection” of many-valued logics.

2.11. DEFINITION Let M andM′ bem andm′-valued logics, respectively. ThenM×
M′ is the mm′-valued logic whereV (M × M′) = V (M)×V (M′), V+(M × M′) =
V+(M)×V+(M′), and truth functions are defined component-wise. I.e., if� is an
n-ary connective, then

�̃M×M′(w1, . . . ,wn) = 〈�̃M,�̃M′〉.

For convenience, we define the following: LetI andI′ be valuations ofM andM′,
respectively.I× I′ is the valuation ofM×M′ defined by:(I× I′)(X) = 〈I(X),I′(X)〉.
If I× is a valuation ofM×M′, then the valuationsπ1I× andπ2I× of M andM′, respec-
tively, are defined byπ1I×(X) = v andπ2I×(X) = v′ iff I×(X) = 〈v,v′〉.

2.12. LEMMA Taut(M×M′) = Taut(M)∩Taut(M′)

Proof. Let A be a tautology ofM×M′ and I andI′ be valuations ofM andM′,
respectively. SinceI× I′ |=M×M′ A, we haveI |=M A andI′ |=M′ A by the definition
of ×. Conversely, letA be a tautology of bothM andM′, and letI× be a valuation of
M×M′. Sinceπ1I× |=M A andπ2I× |=M′ A, it follows thatI× |=M×M′ A.

The definition and lemma are easily generalized to the case offinite products∏i Mi

by induction.
When looking for a logic with as small a number of truth valuesas possible which

falsifies a given formula we can use the following construction.

2.13. PROPOSITION Let M be any many-valued logic, andA1, . . . ,An be formulas not
valid in M. Then there is a finite-valued logicM′ = Φ(M,A1, . . . ,An) s.t.

(1) A1, . . . ,An are not valid inM′,

(2) Taut(M)⊆ Taut(M′), and

(3) |V (M′)| ≤ ξ(A1, . . . ,An), whereξ(A1, . . . ,An) =∏n
i=1 ξ(Ai) andξ(Ai) is the num-

ber of subformulas ofAi +1.

This holds also ifM has infinitely many truth values, providedV (M), V+(M) and the
truth functions are recursive.

Proof. We first prove the proposition forn = 1. Let I be the interpretation inM
makingA1 false, and letB1, . . . , Br (ξ(A1) = r +1) be all subformulas ofA1. Every
Bi has a truth valueti in I. Let M′ be as follows:V (M′) = {t1, . . . , tr,⊤}, V+(M′) =

V+(M)∩V (M′)∪{⊤}. If � ∈ L, define�̃ by

�̃(v1, . . . ,vn) =

{
ti if Bi ≡�(B j1, . . . ,B jn)

andv1 = t j1, . . . ,vn = t jn
⊤ otherwise
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(1) Sincetr was undesignated inM, it is also undesignated inM′. But I is also a
truth value assignment inM′, henceM′ 6|= A1.

(2) LetC be a tautology ofM, and letJ be an interpretation inM′. If no subformula
of C evaluates to⊤ underJ, thenJ is also an interpretation inM, andC takes the
same truth value inM′ as inM w.r.t. J, which is designated also inM′. Otherwise,C
evaluates to⊤, which is designated inM′. SoC is a tautology inM′.

(3) Obvious.
For n > 1, the proposition follows by takingΦ(M,A1, . . . ,An) = ∏n

i=1 Φ(M,Ai)

Algebraic constructions can be used for simplifications of many-valued logics. For
example, a many-valued logicM has the same tautologies as a homomorphic imageM′,
if the induced congruenceC onV (M) satisfies the following condition:

if U ∈C then V+(M)∩U = /0 or V+(M)∩ (V (M)\U) = /0.

3 Many-valued Covers for Calculi

We are looking for many-valued logicsM s.t. Thm(C)⊆ Taut(M). M must, however,
behave “normally” with respect toC, i.e.,C must remain sound whenever we add new
operators and their truth tables toM or add tautologies as axioms toC.

3.1. DEFINITION An m-valued logicM is normal for a calculusC (and C strongly
soundfor M) if

(∗) All axioms A ∈ A(C) are tautologies ofM, and for every ruler ∈ R(C): if a
valuation satisfies the premises ofr, it also satisfies the conclusion.

M is then called acoverfor C.

We would like to stress the distinction between strong soundness, a.k.a. normality,
and soundness. The latter is the familiar property of a calculus to produce only valid
formulas as theorems. This “plain” soundness is what we actually would like to in-
vestigate in terms of approximations. More precisely, whenlooking for a finite-valued
logic that approximates a given calculus, we are content if we find a logic for which
C is sound. It is, however, not possible in general to test if a calculus is sound for a
given finite-valued logic. Itis possible to test if it is strongly sound. For this pragmatic
reason we consider only normal matrices for the given calculi. The next proposition
characterizes the normal matrices in terms of strong soundness conditions. These are
reasonable conditions which one expects to hold of a “normal” matrix.

3.2. PROPOSITION C is strongly sound for a many-valued logicM iff Thm(C′) ⊆
Taut(M′) for all M′ andC′, where

(1) M′ is obtained fromM by adding truth tables for new operations, and

(2) C′ is obtained fromC by adding tautologies ofM′ to as axioms.

8



Proof. If: First of all, C is sound forM: Let C ⊢ F. We show thatM |= F by
induction on the lengthl of the derivation inC:

l = 1: This meansF is a substi!tution instance of an axiomA.
l > 1. F is the conclusion of a ruler ∈ R(C). If r is

A1 . . . Ak

A
r

andX1, X2, . . . ,Xn are all the variables inA, A1, . . . ,Ak, then the inference has the form

A1[B1/X1, . . . ,Bn/Xn] . . . Ak[B1/X1, . . . ,Bn/Xn]

F = A[B1/X1, . . . ,Bn/Xn]

Let I be a valuation of the variables inF , and letvi = I(Bi) (1≤ i ≤ n). By induction
hypothesis, the premises ofr are valid. This implies that, for 1≤ i ≤ k, we have
{X1 7→ v1, . . . ,Xn 7→ vn} |= Ai. By hypothesis then,{X1 7→ v1, . . . ,Xn 7→ vn} |= A. But
this means thatI |= F . Hence,M |= F .

Moreover,C satisfies conditions (1) and (2) above.
Only if: Every axiom is derivable inC. By soundness, it is a tautology ofM, which

is just what (∗) says. Now letr ∈ R(C) be a rule, letI be an interpretation which makes
the premisesA1, . . . , Ak of r true, and letA be the conclusion ofr. I assigns truth
valuesv1, . . . ,vl to the variablesX1, . . . ,Xl in r. LetM′ be them-valued logic resulting
from M by extending the language by the constantsV1, . . . ,Vl with valuesv1, . . . , vl ,
respectively. Letσ be the substitution mappingXi to Vi. The formulasA1σ, . . . , Alσ
and (byr also)Aσ are derivable in the extensionC′ of C by the axiomsA1σ, . . . ,Alσ.
By (1) and (2),C′ is sound, soAσ is a tautology inM′. Consequently,I |= A in M.

3.3. COROLLARY If C is strongly sound forM andr is a directly dependent rule ofC
(i.e.,r can be simulated by the rules ofC) thenC+ r is also strongly sound forM.

3.4. PROPOSITION It is decidable if a given propositional calculus is strongly sound
for a givenm-valued logic.

Note also that for usual calculi, Property (∗) is relatively easy to check. For in-
stance, modus ponens is strongly sound iff, wheneverA is true,A ⊃ B is true iff B is
true; necessitation is strongly sound if�X is true wheneverX is true.

3.5. EXAMPLE The IPC is strongly sound for them-valued Gödel logicsGm. For
instance, take axioma3: B ⊃ A ⊃ B. This is a tautology inGm, for assume we assign
some truth valuesa andb to A andB, respectively. We have two cases: Ifa ≤ b, then
(A ⊃ B) takes the valuem−1. Whateverb is, it certainly is≤ m−1, henceB ⊃ A ⊃ B
takes the designated valuem−1. Otherwise,A ⊃ B takes the valueb, and again (since
b ≤ b), B ⊃ A ⊃ B takes the valuem−1.

Modus ponens passes the test: AssumeA andA ⊃ B both take the valuem−1. This
means thata ≤ b. But a = m−1, henceb = m−1.

9



Now consider the following extensionG⊤
m of Gm: V (G⊤

m)=V (Gm)∪{⊤},V+(G⊤
m)=

{m−1,⊤}, and the truth functions are given by:

�̃G⊤
m
(v̄) =

{
⊤ if ⊤ ∈ v̄
�̃Gm(v̄) otherwise

for � ∈ {¬,⊃,∧,∨}. NeitherIPC nor LJ are strongly sound forG⊤
m, but LJ without

cut is.

3.6. EXAMPLE Consider the following calculusK:

X ↔̃©X
X ↔̃Y

X ↔̃©Y
r1

X ↔̃X
Y

r2

It is easy to see that the corresponding logic consists of allinstances ofX ↔̃©kX where
k ≥ 1. This calculus is only strongly sound for them-valued logic having all formulas
as its tautologies. But if we leave outr2, we can give a sequence of many-valued
logics Mi, for each of whichK is strongly sound: Take forV (Mn) = {0, . . . ,n− 1},
V+(Mn) = {0}, with the following truth functions:

©̃v =
{

v+1 if v < n−1
n−1 otherwise

v˜̃↔w =
{

0 if v < w or v = n−1
1 otherwise

Obviously,Mn is a cover forK. On the other hand, Taut(Mn) 6= Frm(L), e.g., any
formula of the form©(A) takes a (non-designated) value> 0 (for n > 1). In fact, every
formula of the form©kX ↔̃X is falsified in someMn.

4 Optimal Covers

By Proposition 3.4 it is decidable if a givenm-valued logicM is a cover ofC. Since
we can enumerate allm-valued logics, we can also find all covers ofC. Moreover,
comparing two many-valued logics as to their sets of tautologies is decidable, as the
next theorem will show. Using this result, we see that we can always generate optimal
covers forL.

4.1. DEFINITION For two many-valued logicsM1 and M2, we write M1 ✂ M2 iff
Taut(M1)⊆ Taut(M2).

M1 is betterthanM2, M1 ✁ M2, iff M1 ✂ M2 and Taut(M1) 6= Taut(M2).

4.2. THEOREM Let two logicsM1 andM2, m1-valued andm2-valued respectively, be
given. It is decidable whetherM1 ✁ M2.
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Proof. It suffices to show the decidability of the following property: There is a
formulaA, s.t. (*) M2 |= A butM1 6|= A. If this is the case, writeM1 ✁

∗ M2. M1 ✁ M2

iff M1 ✁
∗ M2 and notM2 ✁

∗ M1.
We show this by giving an upper bound on the depth of a minimal formulaA sat-

isfying the above property. Since the set of formulas ofL is enumerable, bounded
search will produce such a formula iff it exists. Note that the property (*) is decidable
by enumerating all assignments. In the following, letm = max(m1,m2).

Let A be a formula that satisfies (*), i.e., there is a valuationI s.t.I6|=M1
A. W.l.o.g.

we can assume thatA contains at mostm different variables: if it contained more, some
of them must be evaluated to the same truth value in the counterexampleI for M1 6|= A.
Unifying these variables leaves (*) intact.

Let B = {B1,B2, . . .} be the set of all subformulas ofA. Every formulaB j defines
anm-valued truth functionf (B j) of m variables where the values of the variables which
actually occur inB j determine the value off (B j) via the matrix ofM2. On the other
hand, everyB j evaluates to a single truth valuet(B j) in the countermodelI.

Consider the formulaA′ constructed fromA as follows: LetBi be a subformula
of A andB j be a proper subformula ofBi (and hence, a proper subformula ofA). If
f (Bi) = f (B j) and t(Bi) = t(B j), replaceBi in A with B j. A′ is shorter thanA, and
it still satisfies (*). By iterating this construction untilno two subformulas have the
desired property we obtain a formulaA∗. This procedure terminates, sinceA′ is shorter
thanA; it preserves (*), sinceA′ remains a tautology underM2 (we replace subformulas
behaving in exactly the same way under all valuations) and the countermodelI is also
a countermodel forA′.

The depth ofA∗ is bounded above bymmm+1− 1. This is seen as follows: If the
depth ofA∗ is d, then there is a sequenceA∗ = B′

0,B
′
1, . . . ,B

′
d of subformulas ofA∗

whereB′
k is an immediate subformula ofB′

k−1. Every suchB′
k defines a truth func-

tion f (B′
k) of m variables inM2 and a truth valuedt(B′

k) in M1 via I. There aremmm

m-ary truth functions ofm truth values. The number of distinct truth function-truth
value pairs then ismmm+1. If d ≥ mmm+1, then two of theB′

k, sayB′
i andB′

j whereB′
j

is a subformula ofB′
i define the same truth function and the same truth value. But then

B′
i could be replaced byB′

j, contradicting the wayA∗ is defined.

4.3. COROLLARY It is decidable if two many-valued logics define the same set of tau-
tologies. The relation✂ is decidable.

Proof. Taut(M1) = Taut(M2) iff neitherM1 ✁
∗ M2 nor M2 ✁

∗ M1.

Let ≃ be the equivalence relation onm-valued logics defined by:M1 ≃ M2 iff
Taut(M1) = Taut(M2), and let MVLm be the set of allm-valued logics over L. ByMm

we denote the set of all sets Taut(M) of tautologies ofm-valued logicsM. The partial
order〈Mm,⊆〉 is isomorphic to〈MVL m/≃,✂ /≃〉.

4.4. PROPOSITION 〈Mm,⊆〉 is a finite complete partial order.

Proof. The set ofm-valued logics MVLm is obviously finite, since there are at most
mn1mn2 · · ·mnc different m-valued matrices forC. ✁ is a partial order on MVLm/ ≃
with the smallest element⊥ := Frm(L) and the largest element⊤ := /0.
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The “best” logic is the one without theorems, generated by a matrix where no con-
nective takes a designated truth valueanywhere. The “worst” logic is the one where
every formula of L is a tautology, it is generated by a matrix where every connective
takes a designated truth valueeverywhere.

In every complete partial order over a finite set, there existlub and glb for every
two elements of the set. Hence,〈M,△,▽,⊥,⊤〉 is a finite complete lattice, where△ is
the lub in✂, and▽ is the glb in✂. Since✂ is decidable andM can be automatically
generated the functions△ and▽ are computable.

4.5. PROPOSITION The optimal (i.e., minimal under✁) m-valued covers ofC are com-
putable.

Proof. Consider the setC(C) of m-valued covers ofC. SinceC(C) is finite and
partially ordered by✂, C(C) contains minimal elements. The relation✂ is decidable,
hence the minimal covers can be computed.

4.6. EXAMPLE By Example 3.5,IPC is strongly sound forG3. The best 3-valued
approximation ofIPC is the 3-valued Gödel logic. In fact, it is the only 3-valued
approximation ofanysound calculusC (containing modus ponens) forIPL which has
less tautologies thanCL. This can be seen as follows: Consider the fragment containing
⊥ and⊃ (¬B is usually defined asB ⊃ ⊥). Let M be some 3-valued strongly sound
approximation ofC. By Gödel’s double-negation translation,B is a classical tautology
iff ¬¬B is true intuitionistically. Hence, wheneverM |= ¬¬X ⊃ X , then Taut(M) ⊇
CL. Let 0 denote the value of⊥ in M, and let 1∈V+(M). We distinguish cases:

(1) 0∈V+(M): Then Taut(M) = Frm(L), since⊥⊃ X is true intuitionistically, and
by modus ponens:⊥,⊥⊃ X/X .

(2) 0 /∈ v+(M): Let u be the third truth value.

(a) u∈V+(M): ConsiderA≡ ((X ⊃⊥)⊃⊥)⊃X . If I(X) is u or 1, then, since
everything implies something true,A is true (Note that we haveY,Y ⊃ (X ⊃
Y )/X ⊃ Y ). If I(X) = 0, then (since 0⊃ 0 is true, butu ⊃ 0 and 1⊃ 0 are
both false),A is true as well. So Taut(M)⊇ CL.

(b) u /∈ V+(M), i.e.,V+(M) = {1}: Consider the truth table for implication.
SinceB⊃B,⊥⊃ B, and something true is implied by everything, the upper
right triangle is 1. We have the following table:

⊃ 0 u 1
0 1 1 1
u v1 1 1
1 v0 v2 1

Clearly,v0 cannot be 1. Ifv0 = u, we have, by((X ⊃ X) ⊃ ⊥) ⊃ Y , that
v1 = 1. In this case,M |= A and hence Taut(M)⊇ CL. So assumev0 = 0.

(i) v1 = 1: M |= A (Note that only the case of((u ⊃ 0)⊃ 0)⊃ u has to be
checked).
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(ii) v1 = u: M |= A.
(iii) v1 = 0: With v2 = 0, M would be incorrect (u ⊃ (1⊃ u) is false). If

v2 = 1, againM |= A. The case ofv2 = u is the Gödel logic, whereA
is not a tautology.

Note that it is in general impossible to algorithmically construct a✂-minimal m-
valuedlogic M (i.e., given independently of a calculus) withL ⊆ Taut(M), because,
e.g., it is undecidable whetherM is empty or not: e.g., take

L =

{
{�k(⊤)} if k is the least solution ofD(x) = 0
/0 otherwise

whereD(x) = 0 is the diophantine representation of some undecidable set.

5 Sequential Approximations of Calculi

In the previous section we have shown that it is always possible to obtain the bestm-
valued covers of a given calculus, but there is no way to tellhow goodthese covers are.
In this section, we investigate the relation between sequences of many-valued logics
and the set of theorems of a calculusC. Such sequences are calledsequential approxi-
mationsof C if they verify all theorems and refute all non-theorems ofC. Put another
way, this is a question about the limitations of Bernays’ method. On the negative side
an immediate result says that calculi for undecidable logics do not have sequential ap-
proximations. If, however, a propositional logic is decidable, it also has a sequential
approximation (independent of a calculus). However, they all have a uniquely defined
many-valued closure, whether they are decidable or not. This is the set of all sentences
which cannot be proved underivable using a Bernays-style many-valued argument. If
a calculus has a sequential approximation, then the set of its theorems equals its many-
valued closure. If it does not, then its closure is a proper superset. Different calculi
for one and the same logic may have different many-valued closures according to their
degree of analyticity.

5.1. DEFINITION Let C be a calculus and letA = 〈M1,M2,M3, . . . ,M j , . . .〉 ( j ∈ ω) be
a sequence of many-valued logics s.t.

(1) A is given by a recursive procedure,

(2) Mi ✂ M j iff i ≥ j, and

(3) Mi is a cover forC.

A is called asequential approximationof C iff Thm(C) =
⋂

j∈ω Taut(M j). We sayC
is approximable, if there is such a sequential approximation forC.

Condition (2) above is technically not necessary. Approximating sequences of log-
ics in the literature (see next example), however, satisfy this condition. Furthermore,
with the emphasis on “approximation,” it seems more naturalthat the sequence gets
successively “better.”
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5.2. EXAMPLE Consider the sequenceG = 〈Gi〉i≥2 of Gödel logics and intuitionistic
propositional logicIPC. Taut(Gi) ⊃ Thm(IPC), sinceGi is a cover forIPC. Fur-
thermore,Gi+1 ✁ Gi. This has been pointed out by [8], for a detailed proof see [9,
Satz 3.4.1]. It is, however, not a sequential approximationof IPC: The formula(A ⊃
B)∨(B⊃A), while not a theorem ofIPL, is a tautology of allGi. In fact,

⋂
j≥2Taut(Gi)

is the set of tautologies of the infinite-valued Gödel logicGℵ, which is axiomatized by
the rules ofIPC plus the above formula. This has been shown in [5] (see also [9,
§ 3.4]). Hence,G is a sequential approximation ofGℵ = IPC+(A ⊃ B)∨ (B ⊃ A).

Jaśkowski [12] gave a sequential approximation ofIPC. ThatIPC is approximable
is also a consequence of Theorem 6.7, with the proof adapted to Kripke semantics for
intuitionistic propositional logic, sinceIPL has the finite model property [7, Ch. 4,
Theorem 4(a)].

The natural question to ask is: Which calculi are approximable? First we give the
unsurprising negative answer for undecidable calculi.

5.3. PROPOSITION If C is undecidable, then it is not approximable.

Proof. If C were approximable, there were a sequenceA = 〈M1,M2,M3, . . .〉 s.t.⋂
j≥2Taut(M j) = Thm(C). If N is a non-theorem ofC, then there would be an indexi

s.t.N is false inMi. But this would yield a semi-decision procedure for non-theorems
of C: Try for each j whetherN is false inM j. If N is a non-theorem, this will be
established atj = i, if not, we may go on forever. This contradicts the assumption that
the non-theorems ofC are not r.e. (C is undecidable and the theorems are r.e.).

5.4. EXAMPLE This shows that a result similar to that forIPC cannot be obtained for
full propositional linear logic.

If C is not approximable (e.g., if it is undecidable), then the intersection of all cov-
ers forC is a proper superset of Thm(C). This intersection has interesting properties.

5.5. DEFINITION Themany-valued closureMC(C) of a calculusC is the set of formu-
las which are true in every many-valued cover forC.

MC(C) is unique, since it obviously equals
⋂

M∈S Taut(M) whereS is the set of all
covers forC. It is also approximable, an approximating sequence is given by

M1 = M′
1

Mi = Mi−1×M′
i

whereM′
i is an enumeration ofS.

The many-valued closure, however, need not be trivial (i.e., equal to Frm(L))—
even for undecidableC.

5.6. PROPOSITION If C is analytical thenMC(C) is decidable.
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Proof. AssumeC is analytical. A decision procedure forA ∈ MC(C) is given by
the following: Enumerate all many-valued logicsMi in order of increasing number of
truth values. Check ifC is strongly sound forMi (decidable by Proposition 3.4). If
it is strongly sound, then check whetherMi |= A. If not, terminate withA /∈ MC(C).
By Proposition 2.13, we only have to search until all many-valued logics with number
of truth values≤ ξ(A) have been checked, providedC is strongly sound forM′ =
Φ(M,A). SinceA must be a non-tautology of some coverM of C for A /∈ MC(C) to
hold, we can assume thatM is a cover ofC. Since Taut(M) ⊆ Taut(M′), all axioms
of C are tautologies inM′. Let

A1 . . .An

A
r

be a rule inC, and letJ be an interpretation inM′ making eachA j true. If J maps no
variable to⊤, J is also an interpretation inM. Then, sinceC is sound forM, A is true
underJ (in bothM andM′). Otherwise, ifJ assigns⊤ to some variableX , A is true
underJ sinceX occurs inA (recall thatC is analytical). SoC is strongly sound forM′.

5.7. COROLLARY The many-valued closure of cut-free propositional linear logic LL
is decidable.

5.8. COROLLARY If C is analytic and decidable, thenMC(C) = Thm(C).

Proof. Certainly Thm(C) ⊆ MC(C). Let A /∈ Thm(C). Then the (infinite-valued)
Lindenbaum logicL(C) [14, Satz 3] forC falsifiesA. SinceC is decidable,L(C) is
effectively given.L(C) satisfies (∗). It is easy to see thatΦ(L(C),A) also satisfies (∗).
By Proposition 2.13 and the argument of the above proof, there is a finite-valued cover
for C falsifying A. Hence,A /∈ MC(C).

The last corollary can be used to uniformly obtain semanticsfor decidable analytic
Hilbert calculi.

6 Sequential Approximations of Other Representations

Propositional logic can also be given by effective representations other than calculi.
A decidable logic, for instance, may be represented by a decision procedure. Logics
with Kripke semantics which have the finite model property can be given by the r.e.
sequence of their finite models. In this section, we investigate the question of sequential
approximation for these representations.

6.1. PROPOSITION For every decidable propositional logicL there is a sequenceA of
many-valued logicsMi satisfying

(1) A is given by a recursive procedure,

(2) Mi ✂ M j iff i ≥ j, and
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(3) L ⊆ Taut(Mi),

s.t. L =
⋂

i≥2Taut(Mi).

Proof. The proof uses an argument similar to that of Lindenbaum [14,Satz 3]. Let
Frmi(L) ⊂ Frm(L) be the set of formulas of depth≤ i (which is finite up to renaming
of variables). To every formulaF ∈ Frm(L) we assign a code⌈F⌉, yielding the sets
⌈Frmi(L)⌉ for all i ∈ ω. We construct a sequential approximation ofL as follows:
V (Mi) = ⌈Frmi(L)⌉∪{⊤}, with the designated valuesV+(Mi) = ⌈Frmi(L)⌉∩⌈L⌉∪
{⊤}. The truth tables forMi are given by:

�̃Mi(v1, . . . ,vn) =

=

{
⌈�(F1, . . . ,Fn)⌉ if v j = ⌈Fj⌉ for 1≤ j ≤ n

and�(F1, . . . ,Fn) ∈ Frmi(L)
⊤ otherwise

Mi is constructed in such a way as to agree withL on all formulas of depth≤ i, and
to make all formulas of depth> i true. Hence, Taut(Mi) ⊇ L, andMi ✂ Mi+1. Every
formulaF false inL is also false in someMi (namely in allMi with i ≥ the depth ofF).

Note that it is in general impossible to algorithmically construct a✂-minimal m-
valued logicM with L ⊆ Taut(M), because, e.g., it is undecidable whetherM is empty
or not: e.g., take

L =

{
{�k(⊤)} if k is the least solution ofD(x) = 0
/0 otherwise

whereD(x) = 0 is the diophantine representation of some undecidable set.
The following definitions are taken from [4].

6.2. DEFINITION A modal logicL has as its languageL the usual propositional con-
nectives plus two unarymodal operators:� (necessary) and✸ (possible). AKripke
modelfor L is a triple〈W,R,P〉, where

(1) W is any set: the set ofworlds,

(2) R ⊆W 2 is a binary relation onW : theaccessibility relation,

(3) P is a mapping from the propositional variables to subsets ofW .

A modal logicL is characterized by a class of Kripke models forL.

This is called thestandard semanticsfor modal logics (see [4, Ch. 3]). The seman-
tics of formulas in standard models is defined as follows:

6.3. DEFINITION Let L be a modal logic,KL be its characterizing class of Kripke
models. LetK = 〈W,R,P〉 ∈ KL be a Kripke model andA be a modal formula.

If α ∈W is a possible world, then we sayA is true inα, α |=L A, iff the following
holds:
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(1) A is a variable:α ∈ P(X)

(2) A ≡ ¬B: notα |=L B

(3) A ≡ B∧C: α |=L B andα |=L C

(4) A ≡ B∨C: α |=L B or α |=L C

(5) A ≡�B: for all β ∈W s.t. α R β it holds thatβ |=L B

(6) A ≡✸B: there is aβ ∈W s.t. α R β andβ |=L B

We sayA is true in K, K |=L A, iff for all α ∈ W we haveα |=L A. A is valid in L,
L |= A, iff A is true in every Kripke modelK ∈ KL. By Taut(L) we denote the set of
all formulas valid inL.

Many of the modal logics in the literature have thefinite model property (fmp): for
everyA s.t.L 6|= A, there is a finite Kripke modelK = 〈W,R,P〉 ∈ K (i.e.,W is finite),
s.t. K 6|=L A (whereL is characterized byK ). We would like to exploit the fmp to
construct sequential approximations. This can be done as follows:

6.4. DEFINITION Let K = 〈W,R,P〉 be an effectively given finite Kripke model. We
define the many-valued logicMK as follows:

(1) V (MK) = {0,1}W , the set of 0-1-sequences with indices fromW .

(2) V+(MK) = {1}W , the singleton of the sequence constantly equal to 1.

(3) ¬̃MK , ∨̃MK , ∧̃MK , ⊃̃MK are defined componentwise from the classical truth func-
tions

(4) �̃MK is defined as follows:

�̃MK (〈wα〉α∈W )β =

{
1 if for all γ s.t.

β R γ, wγ = 1
0 otherwise

(5) ✸̃MK is defined as follows:

✸̃MK (〈wα〉α∈W )β =

{
1 if there is aγ s.t.

β R γ andwγ = 1
0 otherwise

Furthermore,IK is the valuation defined byIK(X)α = 1 iff α∈ P(X) and= 0 otherwise.

6.5. LEMMA Let L andK be as in Definition 6.4. Then the following hold:

(1) Every valid formula ofL is a tautology ofMK .

(2) If K 6|=L A thenIK 6|=MK A.
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Proof. Let B be a modal formula, andK′ = 〈W,R,P′〉. We prove by induction that
valIK′ (B)α = 1 iff K ′ |=L B:

B is a variable:P′(B) =W iff IK(B)α = 1 for all α ∈W by definition ofIK .
B ≡ ¬C: By the definition of¬̃MK , valIK (B)α = 1 iff valIK (C)α = 0. By induction

hypothesis, this is the case iffα 6|=L C. This in turn is equivalent toα |=K B. Similarly
if B is of the formC∧D, C∨D, andC ⊃ D.

B≡�C: valIK (B)α = 1 iff for all β with α R β we have valIK (C)β = 1. By induction
hypothesis this is equivalent toβ |=L C. But by the definition of� this obtains iff
α |=L B. Similarly for✸.

(1) Every valuationI of MK defines a functionPI via PI(X) = {α | I(X)α = 1}.
Obviously,I = IPI . If L |= B, then〈W,R,PI〉 |=L B. By the preceding argument then
valI(B)α = 1 for all α ∈W . Hence,B takes the designated value under every valuation.

(2) A is not true inK. This is the case only if there is a worldα at which it is not
true. Consequently, valIK (A)α = 0 andA takes a non-designated truth value underIK .

The above method can be used quite in general to construct many-valued log-
ics from Kripke structures for not only modal logics, but also for intuitionistic logic.
Kripke semantics forIPL are defined quite similar, with the exception thatα |= A ⊃ B
iff β |= A ⊃ B for all β ∈ W s.t. α R β. IPL is then characterized by the class of all
finite trees [7, Ch. 4, Thm. 4(a)]. Note, however, that for intuitionistic Kripke seman-
tics the form of theassignmentsP is restricted: Ifw1 ∈ P(X) andw1 R w2 then also
w2 ∈ P(X) [7, Ch. 4, Def. 8]. Hence, the set of truth values has to be restricted in
a similar way. Usually, satisfaction for intuitionistic Kripke semantics is defined by
satisfaction in theinitial world. This means that every sequence where the first entry
equals 1 should be designated. By the above restriction, theonly such sequence is the
constant 1-sequence.

6.6. EXAMPLE The Kripke tree with three worlds

w2 w3

տ ր
w1

yields a five-valued logicT3, withV (T3)= {000,001,010,011,111},V+(T3)= {111},
the truth table for implication

⊃ 000 001 010 011 111
000 111 111 111 111 111
001 010 111 010 111 111
010 001 001 111 111 111
011 000 001 010 111 111
111 000 001 010 011 111

⊥ is the constant 000,¬A is defined byA ⊃ ⊥, and∨ and∧ are given by the compo-
nentwise classical operations.

The Kripke chain with four worlds corresponds directly to the five-valued Gödel
logic G5. It is well know that(X ⊃ Y )∨ (Y ⊃ X) is a tautology in allGm. SinceT3
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falsifies this formula (take 001 forX and 010 forY ), we know thatG5 is not the best
five-valued approximation ofIPL.

Furthermore, let

O5 =
∧

1≤i< j≤5

(Xi ⊃ X j)∨ (X j ⊃ Xi) and

F5 =
∨

1≤i< j≤5

(Xi ⊃ X j).

O5 assures that the truth values assumed byX1, . . . , X5 are linearly ordered by im-
plication. Since neither 010⊃ 001 nor 001⊃ 010 is true, we see that there are only
four truth values which can be assigned toX1, . . . , X5 makingO5 true. Consequently,
O5 ⊃ F5 is valid in T3. On the other hand,F5 is false inG5.

6.7. THEOREM Let L be a modal logic characterized by a r.e. set of finite Kripke mod-
els, and〈A1,A2, . . .〉 an enumeration of its non-theorems. A sequential approximation
of L is given by〈M1,M2, . . .〉 whereM1 = MK1, andMi+1 = Mi ×MKi+1 whereKi is
the smallest finite model s.t.Ki 6|=L Ai

Proof. (1) Taut(Mi)⊇ Taut(L): By induction oni: For i = 1 this is Lemma 6.5 (1).
For i > 1 the statement follows from Lemma 2.12, since Taut(Mi−1) ⊇ Taut(L) by
induction hypothesis, and Taut(MKi)⊇ Taut(L) again by Lemma 6.5 (1).

(2) Mi ✂ Mi+1 from A∩B ⊆ A and Lemma 2.12.
(3) Taut(L) =

⋂
i≥1Taut(Mi). The⊆-direction follows immediately from (1). Fur-

thermore, by Lemma 6.5 (2), no non-tautology ofL can be a member of all Taut(Mi),
whence⊇ holds.

6.8. Remark Note that Theorem 6.7 does not hold in general ifL is not finitely ax-
iomatizable. This follows from Proposition 5.3 and the existence of an undecidable
recursively axiomatizable modal logic which has the fmp (see [17]). Note also the
condition in Theorem 6.7 that there is an enumeration of the non-theorems ofL. Since
finitely axiomatizable logics with the fmp are decidable ([11]), there always is such an
enumeration for the logics we consider.

This theorem can also be used to show that the many-valued closure of a calculus
for a modal logic with the fmp equals the logic itself, provided that the calculus contains
modus ponens and necessitation as the only rules. (All standard axiomatizations are of
this form.)

7 Conclusion

The main open problem, especially in view of possible applications in computer sci-
ence, is the complexity of the computation of optimal covers. One would expect that
it is tractable at least for some reasonable classes of calculi which are syntactically
characterizable, e.g., analytic calculi.
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A second problem is in how far approximations can be found forfirst-order log-
ics and calculi. One obstacle, for instance, is that it is difficult to check whether a
matrix is normal for a given calculus, in particular if the rules of the calculus are not
“monadic” in the sense that they manipulate more than one variable at a time. In any
case, a systematic treatment only seems feasible for many-valued logics with, at most,
distribution quantifiers [3].
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