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Abstract

This paper tries to identify the basic problems en-
countered wn automated theorem proving in many-
valued logics and demonstrates to which extent they
can be currently solved. To this end a number of re-
cently developed techniques are reviewed. We list the
avenues of research in many-valued theorem proving
that are in our eyes the most promising.

1 Introduction

The purpose of this note is to review a number of
techniques that lead to a computationally adequate re-
presentation of the search space of many-valued logics
and to identify the avenues of research in many-valued
theorem proving that are in our eyes the most promi-
sing. We do not mention the large number of possi-
ble applications of many-valued theorem proving, but
refer to [15] for an extensive list of applications and
to [18] for a case study.

If one 1s doing many-valued deduction, typically a
number of problems that are not as much prominent
in classical deduction have to be addressed:

1. The number of case distinctions is much larger
due to the increased number of truth values.

2. The amount of redundancy in deductions is much
bigger. Typically, many-valued connectives show
a certain degree of regularity and one has to find
ways of how to exploit this.

3. In general, internal normal forms (that is, normal
forms based solely on connectives from the logic
under consideration) are not available.

4. In the case of infinitely-valued logics there is the
problem to find a finite representation of the se-
arch space.

Throughout this paper we assume that the reader is
familiar with the basic notions of computational logic
and with the semantic tableau proof procedure in par-
ticular. A good reference for the required background
is [10]. We will use a standard syntax for propositio-
nal and first-order logic, here and there enriched with
some new unary and binary operator symbols. We
use p,q, 7, p1,4q1,71, ... for propositional variables and
predicate names; ¢, ¢;, ¢, ;, ... for constants and terms;
¢,1, ... for propositional and first-order formulas; F
for unspecified connectives.

2 Many-Valued Logic

Definition 1 (Syntax) L is a propositional langua-
ge with propositional variables Ly and finitary connec-
tives F. ]

Definition 2 (Truth Values, Semantic, Logic)
Let N be the set of truth values; for definiteness in
the finitely-valued case, take equidistant rational num-

bers, 1.e. N = {0 L ..., n=2 1} and set n = |N|;

'n—17 'n—17
in the infinitely-valued case let N = Q N[0,1] and
n = oo. Connectives F' € F are interpreted as functi-
ons with range and domain over N, in other words, if
k is the arity of F we associate a function f : N* — N
with F' which we call the interpretation of F'. Let
f be the family of functions over N associated with
connectives in F. Then we call A = (N, f) an n-valued
matriz for L and £ = (L, A} an n-valued proposi-
tional logic. n

Definition 3 (Valuation) Let £ be an n-valued pro-
positional logic. A valuation for L is a function
v : Lo — N. As usual, v can be uniquely extended
to a homomorphism from L to N wvia

v(F(61,- -, 01)) = f(0(61), .., v(6r))

where f is the interpretation of F. [



Definition 4 (S-Satisfiability, -Consequence) If
S C N, and L s an n-valued propositional logic then
call a formula ¢ € L S-satisfiable iff there is a valua-
tion v such that v(¢) € S. Call ¢ an S-tautology iff
v(¢) € S for all valuations. ¢ € L is an S-consequence
of ® C L, denoted by ® Fg ¢, if every valuation that
S-satisfies @ also S-satisfies 9. [

We can extend our presentation to quantified logic
in the following way:

Definition 5 (First-Order Syntax) L! is a first-
order language which is constructed from a proposi-
tional language L in the usual way by replacing the
set of propositional variables with atoms of the form
p(t1, ..., tm), the t; being from a term language T
made up of sets E; that contain function symbols of
arity i for i > 0 and object variables V; p € P, where
P = U;jsoPs is a non-empty set of predicate sym-
bols and each P; contains i-ary predicates. Moreover,
we allow quantified formulas: if x € V, ¢ € L' and

QE{Q1,...,Q.} then (Qu)p € L. =

Definition 6 (First-Order Semantics/Logic) A
domain D, a variable assignment /3, an interpre-
tation 7, ¢ model M = (D, I}, a first-order valua-
tion vy g, first-order satisfiability, and validity
are defined as in classical logic (just note that predi-
cates are evaluated in N, hence I(p) : D' — N ). The
semantics of quantifiers is given via their distribu-
tion dg : 2N N of truth values as the quantified
variable runs through D:

vmp((Qr)d) = do({vm px(8)| u € D})

Given d = {dg,,...,dg,} and an n-valued propo-
sitional logic £, an n-valued first-order logic £!
associated with L is defined by the triple (L', A /d) m

Example 7 Consider the propositional logic with
a unary negation connective —, binary connectives
@, U, M called truncated sum, disjunction and con-
junction, respectively. For arbitrary N, the seman-
tics is given by =i := 1 — ¢, ¢ ® j := min{l,i + j},
iUj:=max{i,j}, iMNj:=min{sj}.

In the finitely-valued case we can specify a first-
order logic based on these connectives and V¥ and 3
by stipulating d3 := max and dy := min (where max,
min are interpreted naturally). We call the family of
logics just defined Lukasiewicz Logics. n

The general problem in many-valued deduction can
now be formulated as follows: given a collection of sets

of truth values S1,...,S; C N, a many-valued (first-
order) logic £ and closed formulas ¢1,..., ¢ €L, is
there a model M which simultaneously S;-satisfies ¢;
for all 1 < ¢ < k 7 Hence, we assume that there
is some kind of deduction theorem which gives us a
translation Tr : 28 x L — 257 from S-consequence
to (simultaneous) S-satisfiability such that ® Fg o
iff Tr(®, ) is satisfiable. Such deduction theorems
indeed exist for many logics. See [8] for some non-
trivial examples and further references.

3 Sets as Signs

If one is seeking for efficient many-valued deduction
a simple, but very useful device is needed: analogously
to the signs T and F in classical semantic tableaux [27]
one introduces subsets of the set of truth values as a
meta-logical notation in order to denote restrictions
on the truth value a formula may take on.

Definition 8 (Signed Formula) Let S C N and
¢ € L. Then we call the expression S ¢ a signed
formula and we denote the set of all signed formulas

with L*. S ¢ is satisfiable iff ¢ 1s S-satisfiable. ]

A semantic tableau-based proof procedure for fini-
tely-valued logics based on truth value sets as signs
was first introduced in [12].

Let us look at the example in Table 1 in order to
see what the sets-as-signs approach (as we prefer to
call it) can gain.

Semantic tableau rules correspond to a classical
DNF representation of the premise. Each rule exten-
sion i1s a conjunction of signed subformulas and re-
presents a partial covering of those truth table entries
that occur in the sign of the formula in the premise
(in the example indicated by the arcs). The union of
all partial coverings (that is the collection of all rule
extensions) characterizes exactly those entries.

Obviously, using sets-as-signs (in contrast to single
truth values) can shorten the rules considerably. The
rule from Table 1, but with singleton signs only, beco-
mes
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It is clear that nested application of such rules can
result in exponential differences between sets-as-signs
and singleton signs.



Table 1: Sets-as-signs rule and truth table for U and n = 3.

{3} oUw
{#}o |{0,%} 0
{0,534 | {3}v

Although the effect of using sets-as-signs is drama-
tic also in practice (cf. Section 7) the idea was not
systematically exploited before [12].1

Note that a tableau for a many-valued formula em-
ploying sets-as-signs 1s still a classical tableau on the
meta level. Hence, truth value sets as signs are just
meta connectives which are suitably chosen in order
to allow for an efficient representation of many-valued
models.? Therefore, the sets-as-signs approach is use-
ful not only in the context of tableau-based theorem
proving, from where it evolved, but also, as we shall
see in Sections b and 6, within the scope of other theo-
rem proving paradigms. See [15] for more examples.

In the presence of quantifiers the usefulness of sets-
as-signs becomes even more striking. Let us first give
a computational description of the distribution of a
quantifier @: If v((Qx)¢(x)) = ¢ holds due to the fact
that dg({¢1,...,4x}) = @ for a certain distribution of
truth values, where {iy,...,74} C N and i € N, this
means that

1. v(¢(t1)) = i1,...,v(¢(tr)) = i must hold for

certain terms 1, ...,%;, and

2. v((t)) € {i1,..

., i+ must hold for any term {.

These conditions can be conveniently expressed in
rule format with Skolem terms and signs:

1(Qu)(x)

{i11} ¢(c1) {im1} ¢(c1)

(e} Oler,) (i} Olc,)
I ¢(t1) L, ¢(tm)

1129, 23] are the only approaches employing the idea at all
that we are aware of. Both, however, are restricted to specific
logics. For a complete historical account and bibliography on
many-valued theorem proving, see [15].

?In non-classical theorem proving the existence and choice
of a suitable meta language is crucial, cf. [9, 25].
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Here dg'(I) = {L1,.. ., In}, I = {iji, - ik ),
the c¢1,cq,... are new Skolem constants®, and the
t1,...,1, are arbitrary terms.

For each I; such that dg(I;) € I there is a rule ex-
tension wherein Condition 1 above is expressed by the
first k; formulas and Condition 2 by the last formula.
We note that in the case of I; = {i;} for some j for
the corresponding extension it is sufficient to contain
the single signed formula I; ¢(¢), and one can always
delete tautological signed formulas of the form N ¢(¢).
We stress that condition 2 above is extremely compli-
cated to formulate as a rule when only singleton signs
are available, cf. [7]. Again, the use of sets-as-signs can
lead to exponential speed-ups. On the other hand, in
the formulation above we have still up to 2" — 2 ex-
tensions in a rule since for each set of truth values in
dél(I) exactly one extension must be generated.

If we compute, for example, the tableau rule for
{0, £} (Va)é(x) in three-valued logic we obtain the rule
shown in Table 2.

This rule is obviously not the simplest possible one.
In order to obtain it, we encoded each truth value set
in d7*({0,%}) with Skolem conditions. If we turn this
process around, and ask ourselves which distributi-
ons of truth values can be encoded using conjuncti-
ons of Skolem conditions of the form I ¢(c¢) or J ¢(t),
where I,J C N, we see that this “Skolem language”
i1s quite powerful. We may encode, for instance, the
family of truth value sets defined through the expres-
sion 2V —{X|X C {i+-L5,..., 1}} by {0,...,i} ¢(c)
for each ¢ € N. Hence, the rule shown in Table 2 can
be simpified to

{0, 3} (Va)é(x) *)
{0,3} ¢(c)

As has already been pointed out by Carnielli [6,
p. 488], even for singleton signs it is as yet an unsolved
problem to find minimal rules for distribution quan-
tifiers automatically in a feasible way that is without

3Tt is sufficient for Skolem constants to be new only wrt to
the current branch [27].



Table 2: Tableau rule for {0, 1} (Vz)¢(x) in three-valued logic.

{0, 5} (Vo)o(x)

{0} é(c)
{3} o(d)

{0} o(t1) | {0, 3} (t2)

{0} é(c)
{3} o(d)
{1} é(e)

enumerating all possible rules. What would be nee-
ded is a sound and complete set of rewrite rules over
the “Skolem language” defined above. In the next sec-
tion, however, we develop a notion which, at least in
the case of the standard quantifiers V and 3, leads to
a satisfactory solution.

4 Regular Logics

It turns out that a number of many-valued lo-
gics have particularly simple computational proper-
ties. Working with sets-as-signs is again useful for
identifying them. Let us start with the observation
that if we omit the & connective in the logic defined
in Section 2 and consider only the following signs

= [j,1]nN =

then all tableau rules have either the shape of «
rules or of 3 rules in the sense of Smullyan [27]. Mo-
reover, the signs occurring in the conclusion of the
rules are again of the form , . Let us call
these signs regular signs.

The main reasons for this very simple shape are
(i) the restricted form of the signs; (ii) the truth va-
lues corresponding to the truth table entries are mo-
notonically increasing or decreasing, starting from one
corner. We express these constraints in a formal defi-
nition:

[0.51nN

Definition 9 (Circle, Corner [13]) A metric d on
N* can be defined by

W59 = jgeg b vl

for &, € N*. Forr € N we define the circle in
NF with center ¥ and radius v as the set

ez, = {4 ¥ € N¥ and d(Z,9) = r}.
We define the corner set of N* as

IF = {# 2 € {0,1},1 <i < k}={0,1}*.

{1} ¢(d)
{0,1} o(ta) | {3} 0(ts) | {5,1} &(t6)

{0} ¢(c) {3} o(c)
{1} é(d

~—

Definition 10 (Regular Logic [13]) A k-ary con-
nective f is called regular iff there is an £ € I* such
that

1. forallr € N the set { f(§)|y € cz,} is a singleton,
say {x,}, and

2. the sequence xg,... &1 composed of these x, is
monotonic (either increasing or decreasing) wrt
the natural order on N.

We call ¥ the starting point of f.

A many-valued logic with only regular connectives,
standard quantifiers, and queries restricted to regular
signs is called regular logic. [

The logic defined in Section 2 without the & connec-
tive 1s regular. In regular logics all tableau rules for
propositional connectives are « rules or G rules, all
quantifier rules are 4 or é rules in the sense of Smul-
lyan [27], see below. Moreover, these rules can be com-
puted straightforwardly in a schematic manner from
the semantics, see [13, 15] for details.

The attractive feature of regular logics is that they
can be handled almost like classical logic, but they still
are quite expressive.? For instance, the connective @
defined above is not regular, however it can be easily
composed of regular connectives. To see this, we first
define for n = 3 the connective A via the truth table
on the left. On the right the truth table of the target
function &:

ENENENEN ElEERIN
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It is easy to see that (¢ B ) = (¢ L) U (¢ A ¢))
holds for n = 3.5

4In [15] it is shown that for each n there is a functionally
complete regular n-valued logic.

5Note, however, that the definition of @ becomes increasin-
gly more complex while the number of truth values is growing.
Also the size of a formula can increase exponentially during the
translation into a regular formula. A remedy to this are the
techniques introduced in Section 6.




In the presence of regular signs the standard quan-
tifier rules become also extremely simple (cf. the clas-
sical rules in [27]):

where ¢ is an arbitrary term, ¢ a new Skolem constant,

(Vac)<b and (Elac)<b are formulas of type -, and
(3z)¢ and (Yz)¢ are formulas of type §.

A full soundness and completeness proof of these
rules, which generalize (*), is given in [15].

It turns out that the notion of a regular sign can
be naturally extended to arbitrary partially ordered
sets and they coincide with the well-known notions of
upset and downset from lattice theory.

Definition 11 (Partially Ordered Set) A parti-
ally ordered set (briefly, poset) is a pair (P, <),
where P 1s a nonempty set, < a binary relation on P

and (P1)-(P3) below hold:
(P1) Foranyax € P: o X x.

(P2) For any z,y,2 € P: If e < y and y < z then
r =<z

(P3) For any 2,y € P: If ¢ < y and y < « then
r=y. n

Definition 12 (Up-, Downset) Let (P, <) be a po-
sel. We define fora € P: | a:={2|a g 2,z € P},
la:={z|z< a2 P} ]

For example, if < is the natural order on N, we
have =14, =114, {i} = 1¢ N |4 Natural
candidates for a weaker structure to try out would be
finite (complemented and/or distributive) lattices.

Here close connections to work done in theorem pro-
ving in paraconsistent annotated logics show up [23].

5 Normal Forms

So far we have mainly talked about short repre-
sentations of semantic tableau rules for many-valued
logic. We have, however, promised that the presented
techniques are universally applicable. In order to see
this we emphasize the normal form aspect of tableau
rules. It has been already remarked that a tableau
rule corresponds to a DNF representation of the si-
gned formula in the premise. As an example, let us
rewrite the conclusion of the rule for {3} (¢ U ¢) from

Table 1 as ({3} ¢ A{0,3} )V ({0,3} oA {3} ¢). Note

that A, V are classical connectives and the literals S'¢
in this DNF are interpreted classically in the obvious
way: S ¢ is classically satisfiable iff ¢ is S-satisfiable.

Hence recursive application of tableau rules to sub-
formulas transforms any finitely-valued signed formula
into a classical DNF representation based on signed
atoms as literals.® Such a DNF clause is a conjunc-
tion of signed atoms and its satisfiability can be easily
checked: C' = Sy p1 A+ A Sy, pm 18 unsatisfiable iff
there are Si, pi,, ..., Si, pi, such that p;, = --- = p;,
and ﬂlstkSij =0.

With the two basic ingredients (i) DNF transfor-
mation and (ii) satisfiability checking of conjunctive
paths (which is just another name for a DNF clause)
we can apply the techniques of the previous sections
to a lot of well-known proof procedures which rest on
these properties, for instance, to the connection me-
thod, model elimination, model generation, path dis-
solution, decision diagrams. See [15] for some worked
out examples.

On the other hand, the seemingly most successful
theorem provers for classical first-order logic are wor-
king with CNF-based resolution. In order to achieve a
signed CNF instead of DNF, all we have to do is to pro-
vide tableau rules that relate to CNF instead of DNF
and use free variable versions [10, 3] of the rules for V
and 3 of the previous section (for other quantifiers the
free variable problem is more complex). For the ex-
ample from the beginning of this section we have the
picture summarized in Figure 1. Each rule extension
corresponds to a region of the truth table that covers
all fields with entries that occur in the premise. The
intersection of all such coverings (the darkly shaded
fields in the table on the righthand side in Figure 1)
comprise exactly those fields. The double vertical bars
in the rule indicate that it is a CNF rule.

Several optimizations of this approach to CNF
transformation are possible. For instance, one can de-
sign a structure preserving algorithm extending Tsei-
tin’s work [30] for classical logic. The result of such an
algorithm is always polynomially bounded wrt to the
length of the input [16] in the case of finitely-valued
first-order logics with standard quantifiers.

Finally, a number of sound and complete resolution
rules can be defined on signed clauses. We give one

possible formulation and refer the reader to [16, 25,
24, 1] for further details.

Resolution, parallel version:

6In the first-order case we do not know the required number
of applications of quantifier rules beforehand, so we can speak
only of a DNF approximation.
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Figure 1: Illustration of CNF sets-as-signs rule for U and n = 3.
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If we deal with regular logics, only regular signs
occur in the literals. In this case a binary resolution
rule 1s sufficient.

An important feature of signed resolution is that
many resolution refinements known from classical lo-
gic can be either directly applied or can be extended in
a suitable way (this has been done in [1] for singleton
signs). Examples are deletion of tautologies and pure
clauses, UR-resolution, lock resolution, ordered reso-
lution; as a concrete example we state subsumption.

Definition 13 (Signed Subsumption) Let D E
be signed clauses. D is subsumed by E iff there is
a substitution o such that for each literal Sy p1 in F
there is a literal So py in D such that S; C Sy and

P10 = ps2. u

6 Integer Programming

Let us restrict our attention to classical proposi-
tional logic for the moment. The correspondence bet-
ween classical propositional formulas in CNF and 0—1
integer programs is well known and has led to some
research on the relationship between logic satisfiabi-
lity checking and linear optimization [20]. Tt turns
out that a semantic tableau based view leads to a ge-
neralization of this relationship. The key idea is to
use regular signs and leave the variables in the signs
uninstantiated. Hence, we allow rules as the following:

F(61,62)
F(61,62)
F(61,62)

For most instances of ¢, 71, i3 such a rule does not re-
flect the semantics of F', hence we must impose some

additional constraints in order to make it sound. Tt
turns out that constraints in the form of linear in-
equalities over the variables occurring in the signs are
sufficient to produce extremely concise tableau rules
for classical as well as for many-valued logics, inclu-
ding the otherwise difficult to handle Lukasiewicz sum.

For classical propositional logic the rules summari-
zed in Table 3 constitute a sound and complete rule
set. The variables in the signs run over {0,1}. In the
case of many-valued logics they would run over N.

It can be easily shown that for each instance of
the variables that solve the annotated integer program
(IP), a rule that is sound in the usual sense (that is,
it preserves satisfiability) results. On the other hand,
the conclusions of all instances of a rule with a sol-
ved annotated IP together form a complete set of rule
extensions in the usual sense (that is, one of them pre-
serves unsatisfiability).

Regarding branch closure we may view atomic for-
mulas (=propositional variables) as object variables
ranging over the set of truth values. We can take ad-
vantage of the fact that the (meta-)variables in the
signs and the (object-)variables in the formulas are
of the same type and merge them into a single con-
straint. Specifically, if p is atomic and p is present
on the current (and only) branch we simply add the
constraint p > i to the IP already associated with the
branch, and we add the constraint ¢ < j, when q
is present. Branch closure is then encoded in the fact
that all generated constraints cannot be solved simul-
taneously.

Note that all rules are linear, so we can extract from
the fully expanded tableau together with the closure
conditions a single IP problem whose number of va-
riables is not greater than the length of the input for-
mula. There 1s ample room for improvements of va-
rious sorts. For example, two of the rules in Table 3
can be improved in the following way:

gl Bl
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Table 3: Classical Tableau Rules in Constraint Formulation.

<ia Sila
a1 Zl—|—22§l—|—1 a1

In the conclusion only one new variable is intro-
duced instead of two. The price is to admit linear
expressions in the signs, but that is no problem.

As said before, this approach works well also for
finitely-valued logics and even for some oo-valued lo-
gics. In the case of co-valued logics, some of the va-
riables are over the rationals, some are binary. Let us
give a linear constraint rule formulation for the signed
formula q/) @ 1 in the co-valued case. If we plot
the three-dimensional region which is spanned by the
triples (¢, 4, ) for which ¢ @ ¢ is true (the hypo-
graph of @) we obtain the union of the two regions
depicted in Figure 2.

?

¢
Figure 2: Hypograph of & in co-valued logic.

The resulting region is not convex, so it cannot be
represented as a linear program. We can, however,
introduce a new binary variable and represent it con-
veniently with a mixed 0 — 1 program resulting in the
tableau rule shown in Table 4.

Table 4: Linear rule for and ¢ using MIP con-

straints.

[<i]¢®y
Bt
Eaf

y<i igtiy <y+i
y<ig, y<iy

There, iy and %y are rational variables, while y is
a binary control variable which selects the lighter
shadowed convex region if y = 1, the (partly hidden)
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darker shadowed convex region if y = 0.

The tableau-based translation from formulas to in-
teger problems can be extended to the first-order case
with appropriate free variable quantifier rules [10, 3].
Two main problems have to be addressed then: first,
as usual in semantic tableaux, one does not know be-
forehand how many copies of a v formula (correspon-
ding to the number of different instances in Herbrand’s
theorem) are needed in order to get a refutation. Se-
cond, the resulting integer programs from such a trans-
lation contain free first-order variables which have to
be instantiated somehow. On the other hand, simi-
lar problems have to be addressed in most theorem
proving systems and it may have certain advanta-
ges to use integer programming as a ground solver
besides the capability to handle many-valued logic.
See [26] for a more detailed account of first-order is-
sues and [14, 15] on integer programming methods for
many-valued logic.

7 Implementation

What recommendations concerning the logical basis
can we give to somebody who is willing to build a
many-valued theorem prover for real applications?

The answer strongly depends on the expressive po-
wer of the logics under consideration and, to a certain
degree, on the intended application.

For propositional oco-valued logics an MIP-based
implementation as sketched in Section 6 is probably
best. For other logics, the state-of-the-art approach
in the two-valued case should be taken and modi-
fied using the sets-as-signs technique. In particular,
for propositional finitely-valued logics a modification
of the Davis-Putnam procedure seems best if tauto-
logy checking is the aim [5] and decision diagrams
if simplification of large and unstructured expressi-
ons is desired [4]. For first-order finitely-valued lo-
gics a resolution framework as sketched in Section b
is very interesting. In the future also refinements of
tableaux might turn out to be competitive [22] or per-
haps a tableau-based approach incorporating integer



programming [26].

For the time being two tools are under development
at University of Karlsruhe. The tableau-based many-
valued theorem prover’ 3P [17, 2] can in principle
handle arbitrary finitely-valued first-order logics and
makes use of sets-as-signs, regularity properties and
optimized standard quantifier rules. In addition it in-
corporates other state-of-the-art features of classical
tableau-based provers such as lemma generation (also
for many-valued logic, see [15]) and unification [3].

To gain some insight into how much is achieved
in practice with the sets-as-signs concept, two imple-
mentations of the three-valued first-order logic used
in [11] were provided. The first version runs with ru-
les which use only singleton signs. The second ver-
sion has a full set of signs and rules, that is, for each
0¢gScdo, %, 1} and each connective a rule is compu-
ted. In Table 5 statistical figures of runs in both ver-
sions are summarized for various first-order problems
from [11].

Run times are roughly proportional to the number
of generated branches, thus there is a very clear ad-
vantage for the sets-as-signs approach. All run times
required in this case are within fractions of a second.
Note that the sample problems are not particularly
hard and the underlying logic has only three truth va-
lues. For logics with a larger number of truth values
the difference becomes even more spectacular.

The second tool is a mixed integer programming im-
plementation (written in CT1) together with a trans-
formation algorithm from logic into MIP along the
lines in Section 6 (written in PROLOG). The perfor-
mance for classical propositional logic is not quite as
good as state-of-the-art satisfiability checkers [5], but
the system is still under development (including the
extension to first-order logic) and moreover works for
all finitely-valued and most oco-valued logics. We hope
to put a first version of this system into the public
domain during this year.

For prototyping purposes, a constraint logic pro-
gramming (CLP) approach offers an easy way to im-
plement finitely-valued and infinitely-valued logics.
Consider the rule from Table 4. It can be written
more compactly as the top left rule in Table 6. To the
right and below of it the rules for and for negation
are shown.

These rules can be translated one to one into the
following constraint logic program (in CLP(R) syn-
tax, cf. [19]):

74P is available without charge to research institutions.
Please contact the author if you are interested in receiving a
copy. sIPP is written in PROLOG and runs on Quintus Prolog
3.1 and higher and Sicstus Prolog 2.1.8 and higher.

Table 6: Improved rules for & and negation.

BiLEL iéev
[foin]s vsi [ole
EENES 5]

Gl [Ew
BT

leq(plus(Phi,Psi),I) :- leq(Phi,I-J+Y),
leq(Psi, J+Y),
truth_var(J),
control_var(Y),

Y<=I, J<=I.
legq(neg(Phi),I) :- geq(Phi,1-I).
leq(atom(Phi),I) :— truth_value(Phi),

Phi<=T.

geq(plus(Phi,Psi),I) :- geq(Phi,I-J),
geq(Psi,J),
truth_var(J).

geq(neg(Phi),I) :- leq(Phi,1-I).
geq(atom(Phi),I) :— truth_value(Phi),
I<=Phi.

control_var(0).
control_var(1l).

truth_var(J) - 0<=J, J<=1.

In order to test, for instance, the formula —p ® p
for validity, it is sufficient to verify that the following
query fails:

?- Phi = plus(neg(atom(P)),atom(P)),
leq(Phi,C), truth_var(C), C<1.

To avoid operator definitions, we write the input
as a PROLOG term, where the unary function atom
denotes that its argument is an atomic formula. If
the query fails, then the truth value of Phi cannot be
smaller than 1 under any valuation, hence, Phi must
be a {1}-tautology of the infinitely-valued logic over
@ and —. We assume, of course, that strict inequality
constraints are implemented properly (otherwise, we
have to minimize ', and we can no longer use CLP,
but only a proper MIP implementation).

The same program can also be used for finding sa-
tisfying valuations. If Phi is {1}-satisfiable, then the

query



Table 5: Some Test Results with 377P.

Problem Closed branches when using
singleton signs Sets-as-Signs
Unlinked®  Linked® Unlinked  Linked
Lemma 5.1 225 119 7 7
Theorem 5.3 225 82 23 13
Lemma 5.9 —10 33 4 4
Figure 5.14 254 254 10 8
Figure 5.17 — — — 8
Axiom MVEQ4 46 33 6 4

?- Phi = ..., leq(Phi,1), geq(Phi,1).

vields a satisfiable constraint system over the va-
riables occurring in Phi, such that every solution to
this system forces Phi to evaluate to 1, in other words,
the solution {1}-satisfies Phi.

We obtain a theorem prover for n-valued logic
simply by changing the definition of the predicate
truth_var/1 as follows:

truth_var(0).
truth_var(1/(<n>-1)).

truth_var(1).

Finally, we would like to mention that [24] report
an experimental resolution prover for finitely-valued
logics that operates on signed clauses.

8 Conclusion and Outlook

In this paper we have reviewed some recently de-
veloped techniques for automated deduction in first-
order and propositional many-valued logics. Where
are the main prospects for future research that can
lead to further improvements and new applications?

The computational properties of many-valued lo-
gics are still only understood in special cases. Tools
like the translation technique to MIP could be used to
identify classes of logics with interesting computatio-
nal properties as, for instance, the existence of strong
cutting planes for the resulting MIP [20].

Another interesting topic 1s the development of re-
solution or tableau closure rules that can exploit orde-
ring of the truth values to prune the search space. This

8 All formulas are present on the initial branch.
?0Only formulas with links into the formula in focus are fet-
ched from the knowledge base on demand.
10No proof found after several minutes.

could be done by generalizing sets-as-signs to ordered-
sets-as-signs as in Definition 12. Exploiting the order
could then lead either to more concise rules (in the
tableau setting) or to less resolvents (in the resolution
setting). Looking at up- and downsets in truth value
lattices seems to be a good starting place. See also [9]
for a related approach in the domain of substructural
logics.

Finally, the upsets and downsets occurring in the
MIP translation can be considered as a natural genera-
lization of positive and negative formulas in the sense
of logic programming. Hence, a constraint tableau rule
might be interpreted as (a) clause(s) of a constraint lo-
gic program (with linear arithmetic constraints). This
line of thought would lead to many-valued analoga
of Horn formulas, definite Horn formulas, etc. Also
there are connections to the work of Subrahmanian
et al. on implementing non-monotonic reasoning with
constraint logic programs using linear arithmetic con-
straints [21] which have not been explored yet. In this
context 1t is also interesting to note that there has
recently been established a close relationship between
many-valued logics and non-monotonic logics [28].
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