
A Design Method for Look-up Table Type FPGA

by Pseudo-Kronecker Expansion

Tsutomu Sasao Jon T. Butler

Kyushu Institute of Technology Naval Postgraduate School

Iizuka 820, Japan Monterey, CA 93943, U.S.A.

April 15, 1994

1 Introduction.
Field programmable gate arrays (FPGA's) are very

useful in rapid prototyping as well as small volume pro-
duction [3]. A look-up table (LUT) type FPGA shown
in Fig. 1.1 consists of LUT's and programmable in-
terconnection. Both LUT's and programmable inter-
connections are controlled by static RAMs. We as-
sume that each FPGA has q LUT's, and each LUT
can realize an arbitrary logic function of k binary vari-
ables. We also assume that interconnection resources
are su�cient, i.e., any logical network with q LUT's
can be realized. Note that wiring is implemented by
pass transistors, and the delay time for interconnec-
tion will often be larger than for the LUT's. Consider
the realization of a moderately complex function. If
k is small, e.g., k = 2 or 3, the LUT's are e�ciently
used, but the interconnections will be complex. This
will be especially ine�cient since interconnections are
often more expensive than logic. If k is large, e.g.,
k = 7 or 8, the interconnections will be simpler, but
the LUT's are not e�ciently used. Thus, there ex-
ists an optimum value for k between 3 and 7. One
study [20] shows that when k = 3 or 4, FPGA's re-
quire the smallest chip area. However, these results
have not been used by manufacturers. For example,
for the XILINX 4000 Series FPGA's, k = 5, and for
the AT&T ORCA FPGA's, k = 6 [1]. Various design
methods for LUT-based FPGA's are known:

1) Technology mapping from AND-OR multi-level
logic circuits [3].

2) Technology mapping from binary decision dia-
grams (BDD's) [2].

3) Functional decomposition [27, 12, 32].

Commercially available FPGA's contain many LUT's,
but the interconnections are much slower than other
standard mask type gate-arrays. Thus, it is often more
important to reduce the propagation delay than to re-
duce the number of LUT's [5, 16]. To reduce the prop-
agation delay, we have to reduce the number of the
levels in the networks. Also, if the interconnections
and layout are regular, then the propagation delay will
be smaller.

In this paper, we propose a design method for LUT-
based FPGA's that produces LUT networks having the

Figure 1.1: LUT type FPGA

1

23r-2X

f

2valued

4valued
X

X

X

Figure 1.2: LUT network

structure shown in Fig. 1.2. We assume that each
LUT has 6 binary inputs. By pairing variables of two-
valued input functions, we can obtain four-valued input
functions. By using four-valued logic, we can reduce
the number of variables to consider, and can design a
network having a regular structure. We use the pseudo-
Kronecker expansion for four-valued input two-valued
output functions to design compact and regular LUT
networks. The proposed method is also promising for
the four-valued LUT based FPGA's [26, 14, 31].

2 Realization of Two-Valued Input

Functions With 3-input LUT's
Before studying the realization of logic functions

with 6-input LUT's, it is convenient to review the

(a) S

1f

0f

X

(b) pD

2f

0f

X

2f

1f

(c) nD

X

Figure 2.1: Logic circuits corresponding to three types
of expansions

realization for two-valued input functions by 3-input
LUT's. Consider three expansions:

f = �x1f0 � x1f1; (2.1)

f = f0 � x1f2; and (2.2)

f = f1 � �x1f2; where f2 = f0 � f1: (2.3)

(2.1), (2.2), and (2.3) are called the Shannon expan-
sion, the positive Davio expansion, and the negative
Davio expansion, respectively. Fig. 2.1 shows the logic
circuits realizing these three expansions; they are de-
noted by S, pD, and nD, respectively. Note that a
3-input LUT directly realizes these circuits.

When the Shannon expansions are used to expand
f0 and f1, we have

f0 = �x2f00 � x2f01; and

f1 = �x2f10 � x2f11; respectively:

In the similar way, we can expand the new sub-
functions as follows:

f00 = �x3f000 � x3f001;

f01 = �x3f010 � x3f011;

f10 = �x3f100 � x3f101; and

f11 = �x3f110 � x3f111:

Fig. 2.2 is the binary decision tree corresponding to
the above expansion. If we replace each node by a
two-input multiplexer (Fig. 2.1(a)), we have the net-
work shown in Fig. 2.3. To reduce the number of the
multiplexers, we use the following rules:

1) If a sub-function is a constant 0 or 1, terminate
that branch.

2) If two sub-functions are the same, i.e., if f0 = f1,
then extend the branch down to the next level (i.e.,
do not use a multiplexer).

3) If the current sub-function (fi) is the same as one
already generated (fj), move the current branch
(for fi) over to the other branch (fj). For example,
if f01 is the same as f10, move the f10 branch over,
thus merging the two nodes.

A decision diagram simpli�ed by the above rule is
called a (reduced ordered) binary decision diagram
(BDD). For a given function and a given order of the
input variables, the BDD is unique.

S

S

S

f001f000

S

f011f010

S

f101f100

S

f111f110

S

X3

X2

X1

f01
f00

f1f0

f11f10

X2

X3 X3 X3

Figure 2.2: Representation of logic functions using the
Shannon expansion

X3

X2

X1

f001f000

S

f011f010

S

f101f100

S

f111f110

S

S S

S

Figure 2.3: Realization of a logic function using multi-
plexers

If we use the positive Davio expansion instead of the
Shannon expansion, then we have (2.2). When we use
the same expansion for f0 and f2, we have

f0 = f00 � x2f02; and

f2 = f20 � x2f22:

Fig. 2.4 is the tree corresponding to this expansion.
Also, in this case, we can reduce the diagram. Such
a diagram is called the functional decision diagram
(FDD) [11]. For a given function and a given order
of the input variables, the FDD is unique. In a simi-
lar way, we can consider the expansion using only the
negative Davio expansion. Also, we can consider an
expansion using either the positive or negative Davio
expansions for each variable [13].

Next, consider the expansion where any one of the
three expansions is permitted for each variable . For
example, in Fig. 2.5, the Shannon expansion is used
for x1, the positive Davio expansion is used for x2,
and the negative Davio expansion is used for x3. Such
an expansion is called a Kronecker expansion [6, 28].
The reduced diagram is the Kronecker decision dia-
gram (KDD) [18]. For a given function and a given
order of the input variables, there are at most 3n dif-
ferent KDD's. A minimum KDD is one with the fewest
nodes.

f 002f000 f022f020 f202f200 f222f220

X3

X2

X1

f02
f00

f2f0

f22f20

X2

X3 X3 X3

pD

pD

pD pD pD pD

pD

Figure 2.4: Representation of a logic function using the
positive Davio expansion

f 002f001 f022f021 f102f101 f122f121

X3

X2

X1

f02
f00

f1f0

f12f10

X2

X3 X3 X3

pD

S

nD nD nD nD

pD

Figure 2.5: Representation of a logic function using the
Kronecker expansion

Furthermore, we can consider the following expan-
sion: Any one of the three expansions is permitted for
any node. For example, in Fig. 2.6, the Shannon ex-
pansion is used for x1, the positive and negative Davio
expansions are used for x2, and all the three expan-
sions are used for x3. Such an expansion is called a
pseudo-Kronecker expansion [24, 28], and the reduced
diagram is called a pseudo-Kronecker decision diagram
(PKDD). For a given function f and the given order
of the input variables, the PKDD with the minimum
number of nodes (LUT's) is the minimum PKDD for

f . There are at most 3(2
n

�1) di�erent PKDD's.
The relation among BDD, FDD, KDD and PKDD

is shown in Fig. 2.7. This shows that KDD's are a
special case of PKDD's, and that BDD's and FDD's
are each a special case of KDD's. It follows that when
we realize a given function by 3-input LUT's, a method
based on a PKDD requires the fewest LUT's. Fig. 2.8
is a realization of the function in Table 2.1 by 3-input
LUT's. In this case, we used only the Shannon expan-
sion for each LUT. However, in general, we can use
any one of the three expansions to reduce the number
of LUT's.

3 De�nitions and Basic Properties
We assume that functions to be realized have n = 2r

inputs. LetX = (x1; x2; � � � ; xn) be the input variables,

S

S

f010f000

pD

f022f020 f112f111

S

f121f120

X3

X2

X1

f02
f00

f1f0

f12f11

X2

X3 X3 X3

pD nD

nD

0 1 0 2 1 2 0 1

Figure 2.6: Representation of a logic function using the
Pseudo-Kronecker expansion

BDD FDD

KDD

PKDD

Figure 2.7: Relation among BDD's, FDD's, KDD's and
PKDD's

where xi(i = 1; 2; ::; n) takes on two values.

De�nition 3.1 Let Q = f0; 1; 2; 3g and B = f0; 1g.
f : Qr ! B is a four-valued input two-valued out-
put function.

An arbitrary logic function of n variables f(X) can
be converted into a four-valued input two-valued out-
put function as follows: f(X1; X2; � � � ;Xr) = f(X),
where Xi = (x2i�1; x2i) takes either 0,1,2, or 3 i�
(x2i�1; x2i) = (0,0), (0,1), (1,0), or (1,1), respectively.

Example 3.1 The logic function shown in Table 2.1
can be converted into the four-valued input two-valued
output function in Table 2.2, where X1 = (x1; x2) and
X2 = (x3; x4).

From now on, a four-valued input two-valued out-
put function will be simply called a function, and an
ordinary two-valued input function will be called a two-
valued input function.

De�nition 3.2 Let S � Q. X
S is a literal of X,

where

X
S =

�
0 if X =2 S

1 if X 2 S:

When S contains only one element, X
fig is de-

noted by X
i. A product of literals X

S1
1 X

S2
2 � � �XSn

n
is a product term that is the AND of the literals

X
S1
1 ;X

S2
2 ; � � � ; and X

Sn
n . A sum of products

_
(S1;S2;���;Sn)

X
S1
1 X

S2
2 � � �XSn

n

x1

x2

x3

x4

1 0

1 010

S

S

S

S

S

SS

f 1f 0

f 01f 00 f 10 f 11

f 000 f 001

f = x1 x10f f 1..

Figure 2.8: Realization of the function in Table 2.1

Table 2.1:
x1 x2 x3 x4 f

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Table 2.2:
X1 X2 f

0 0 1
0 1 0
0 2 0
0 3 1
1 0 1
1 1 0
1 2 1
1 3 0
2 0 0
2 1 1
2 2 0
2 3 1
3 0 1
3 1 1
3 2 0
3 3 0

is a sum-of-products expression (SOP), where
_(S1;S2;���;Sn) denotes the inclusive-OR of product
terms. If the inclusive-OR is replaced by exclusive-OR,
the result is an exclusive-OR of productsX

�

(S1;S2;���;Sn)

X
S1
1 X

S2
2 � � �XSn

n ;

which is called an exclusive-OR sum-of-products
expression (ESOP).

Lemma 3.1 An arbitrary r-variable function can be
expanded as

f(X1;X2; � � � ;Xr) = X
0
1f(0;X2; � � � ;Xr)

_X1
1f(1; X2; � � � ;Xr) _X

2
1f(2;X2; � � � ;Xr)

_X3
1f(3; X2; � � �Xr): (3.1)

This is the Shannon expansion with respect to X1.

Lemma 3.2 f is uniquely represented as

f = _
(a1;a2;���;an)

f(a1; a2; � � � ; an)X
a1
1 X

a2
2 � � �X

a
n

n ;

where _(a1;a2;���;an) is the inclusive-OR for all the com-

binations such that ai 2 Q, and f(a1; a2; � � � ; an) = 0
or =1. f can be also uniquely represented by an ex-
pression:

f =
X

�

(a1;a2;���;an)

f(a1; a2; � � � ; an)X
a1
1 X

a2
2 � � �Xan

n ;

where
P
�(a1;a2;���;an)

represents the exclusive-OR for

all the combinations of ai 2 Q.

4 Design of FPGA's Using the Shan-

non Expansion
First, we will show a naive method to design LUT

networks, where each LUT has six inputs. We can
realize a function f by using the Shannon expansion,

f(X1;X2;X3; X4) = X
0
1f0_X

1
1f1_X

2
1f2_X

3
1f3: (4:1)

Fig. 4.1 shows a realization of the expansion in (4.1).
It consists of one LUT that drives the output (called
the output LUT) and four other LUT's, each realizing
fi. It is convenient to view the two binary control
inputs as a single four-valued input. In this example,
the control input of the output LUT is driven by X1,
while X2 drives the control inputs of the other four
LUT's. Fig. 4.1 shows that some combination of X3

and X4 drives the primary inputs of these four LUT's.
The following observations will reduce the number

of LUT's:

1. If fi(i = 0; 1; 2; or 3) is a constant function, then
the corresponding LUT's are not needed. That is,
no special hardware is necessary for the constants.

2. If fi = fj(i 6= j), then one LUT can be used for
both fi and fj .

The diagram corresponding to the LUT network is
called a QDD (Quarternary Decision Diagram). We
can design an LUT network using an algorithm that
is similar to that used for Binary Decision Diagrams
(BDD's): If two sub-functions are the same, realize
only one sub-function. If a sub-function involves 6 or
fewer variables, stop (it is realized by a single LUT).

Example 4.1 Let f be the following function:

f(X1;X2;X3; X4) = X
0
1 (X

3
2 �X

3
3) _X

1
1 (X

3
3 �X

3
4)

_X2
1 (X

3
2 �X

3
4) _X

3
1X

3
4 ;

where � is the modulo 2 sum:

If f is represented in the form (4.1), we have

f0 = X
3
2�X

3
3 ; f1 = X

3
3�X

3
4 ; f2 = X

3
2�X

3
4 ; f3 = X

3
4 :

In this case, all the sub-functions are non-constant and
distinct. Fig. 4.1 shows a realization for f .

1

2

f

X

X
3X

3X

4X

4X

4X

0f

1f

2f

f 3

Figure 4.1: Realization of a logic function by the Shan-
non expansion

61

f

62

63

64

16

1

2

3

4

1

1

2

3

4

1

x1x2

x5x6

x5x6

x3x4

Figure 4.2: Network structure for k = 6

5 Enumeration of LUT's to Realize

Given Functions.
Here, we consider the question of how many LUT's

are required in the realization of a given function.

Theorem 5.1 Let f be an arbitrary r-variable four-
valued input two-valued output function. When r � 3,
f can be realized by a single LUT with six two-valued
inputs. When r � 4, f can be realized with at most
4r�2

�1
3

LUT's.

(Proof) Because an LUT realizes any function with 3
inputs, a single LUT is su�cient. Any r-variable func-
tion, where r � 3 can be realized by an LUT tree
structure of the type shown in Fig. 4.2, where one
four-valued variable is applied at each level, except the

leftmost level, where three variables are applied. The
number of LUT's required is at most

1 + 41 + 42 + � � � + 4r�3 =
4r�2 � 1

3
:

Q.E.D.
The above theorem gives an upper bound. However,

in many cases, given functions can be realized with
fewer LUT's.

Theorem 5.2 Given a function f(X1;X2; � � � ;Xr),
let � be the number of distinct functions of the form
f(a1; a2; � � � ; ar�3;Xr�2;Xr�1;Xr), where ai 2 Q, i =
1; 2; � � � ; r � 3. Then, f can be realized with at most

4r�3 � 1

3
+ � LUT's:

(Proof) f can be expanded as

f(X1;X2; � � � ;Xr) =

_ X
a1
1 X

a2
2 � � �X

ar�3

r�3 f(a1; a2; � � � ; ar�3;Xr�2; Xr�1;Xr);

where ai 2 Q; i = 1; 2; � � � ; r � 3:

We can realize a selector circuit that selects one
out of 4r�3 inputs by using 4r�3

�1
3

LUT's. Be-
cause there are � distinct functions of the form
f(a1; a2; � � � ; ar�3;Xr�2;Xr�1;Xr), we need to realize
only � such functions. Q.E.D.

6 A Design Method Using the Pseudo-

Kronecker Expansion.
The design method using the Shannon expansion is

simple, but requires many LUT's. This is because each
LUT is only used as a multiplexer, while it can realize
any of 264 di�erent functions. To reduce the number
of LUT's, we can use the theory of pseudo-Kronecker
expansions, which was developed for the optimization
of ESOPs with four-valued inputs [23, 24].

De�nition 6.1 Let S be a set of logic values, where
S � Q. The characteristic vector of S is a =
(�0; �1; �2; �3), where �j is a logic value such that

�i =

�
0 if i =2 S

1 if i 2 S:

De�nition 6.2 A matrix M

M =

2
64
a0

a1

a2

a3

3
75

of characteristic vectors ai is non-singular if there
exists a unique matrix M�1 such that

MM
�1 =

2
64
1000
0100
0010
0001

3
75 = I;

where multiplication is AND and addition is exclusive-
OR.

If one expands a given function f : Qr ! B about
variable X using the Shannon decomposition,

f = X
0
f0 �X

1
f1 �X

2
f2 �X

3
f3;

then f0, f1, f2, and f3 are unique. The next theorem
[23] shows that for certain other forms of XS , the sub-
functions are also unique. The same theorem can be
also found in [19] and [24].

Theorem 6.1 (Expansion Theorem) An arbitrary
function f : Qr ! B can be expanded with respect
to a variable X as

f = X
S0h0 �X

S1h1 �X
S2h2 �X

S3h3; (6:1)

where h0, h1, h2, and h3 are unique if and only if M
is non-singular, where

M =

2
64
a0

a1

a2

a3

3
75 , and ai (i = 0; 1; 2; 3) are

the characteristic vectors of Si:
(6:2)

(Proof) By (6.1), we have

f = X
S0h0 �X

S1h1 �X
S2h2 �X

S3h3:

On the other hand, by the Shannon expansion of f , we
have

f = X
0
f0 �X

1
f1 �X

2
f2 �X

3
f3:

Let I be the unit 4�4 matrix. Since the two expansions
above represent the same function,

[h0; h1; h2; h3]M = [f0; f1; f2; f3]I:

(if) When M is non-singular, the inverse matrix M
�1

exists, and the function can be uniquely represented
with

[h0; h1; h2; h3] = [f0; f1; f2; f3]M
�1
:

(only if) When M is singular, [h0; h1; h2; h3] cannot be
uniquely represented. Q.E.D.

Corollary 6.1 Let A, B, C, D, A0, B0, C 0 and D0 be
subsets of Q = f0; 1; 2; 3g, and let a, b, c, d, a0, b0,
c
0 and d0, respectively, be the characteristic vectors for
them.

Let M =

2
64
a

b

c

d

3
75 ;

R = [a0
t
; b

0t
; c

0t
;d

0t] , and MR = I (unit matrix).
Then, an arbitrary four-valued input two-valued output
function f can be uniquely represented in the forms

f = X
f0g

ff0g �X
f1g

ff1g �X
f2g

ff2g �X
f3g

ff3g or

= X
A
fA0 �X

B
fB0 �X

C
fC0 �X

D
fD0 ; where

fA0 =
X
i2A0

�ffig; fB0 =
X
i2B0

�ffig; fC0

=
X
i2C0

�ffig; fD0 =
X
i2D0

�ffig:

Example 6.1 Consider the four-valued input two-
valued output function f in Table 2.2. By the Shannon
expansion, it can be represented as

f = X
f0g

ff0g �X
f1g

ff1g �X
f2g

ff2g �X
f3g

ff3g:

Let us consider the expansion of the form f = X
A
fA0�

X
B
fB0 � X

C
fC0 � X

D
fD0. In this case, the sub-

functions obtained by EXORing sub-functions are as
follows:

ff0g = X
f0;3g
2 ; ff1g = X

f0;2g
2 ;

ff2g = X
f1;3g

2 ; ff3g = X
f0;1g

2 ;

ff0;1g = X
f2;3g
2 ; ff0;2g = X

f0;1g
2 ; ff0;3g = X

f1;3g
2 ;

ff1;2g = X
f0;1;2;3g

2 ; ff1;3g = X
f1;2g

2 ; ff2;3g = X
f0;3g

2 ;

ff1;2;3g = X
f2;3g

2 ; ff0;2;3g = 0;

ff0;1;3g = X
f0;1;2;3g
2 ; ff0;1;2g = X

f1;2g
2 ;

ff0;1;2;3g = X
f0;2g

2 :

The number of products needed to represent the above
sub-functions are 0 for ff023g, and 1 for the others.
The characteristic vectors for the four sub-functions
ff023g, ff1g, ff2g and ff3g are (1011), (0100), (0010),

and (0001), respectively. Note that these vectors are
linearly independent of each other. Hence, f can be
uniquely represented by these four sub-functions. Be-
cause

R =

2
64
1000
0100
1010
1001

3
75 and M = R

�1 =

2
64
1000
0100
1010
1001

3
75 ;

f can be represented as

f = X
A
1 fA0 �X

B
1 fB0 �X

C
1 fC0 �X

D
1 fD0 ;

= X
f0g

1 ff0;2;3g �X
f1g

1 ff1g �X
f0;2g

1 ff2g �X
f0;3g

1 ff3g;

= X
f1g
1 X

f0;3g
2 �X

f0;2g
1 X

f1;3g
2 �X

f0;3g
1 X

f0;1g
2 :

Note that this expansion has only three product terms.
(End of Example)

A computer enumeration shows that, out of the
(24)4 = 216 possible 4 � 4 matrices, 20160 are non-
singular [23]. If we ignore the labeling of logic values for
one of the variables, there are essentially 20160

4!
= 840

di�erent expansions, of which the Shannon expansion
is one. This leads to the question of which expansion
reduces the complexity of the network. We can select
an expansion that reduces the complexity of the net-
work.

De�nition 6.3 Pseudo-Kronecker decision dia-
grams (PKDD's) of n-variable four-valued input two-
valued output functions are de�ned recursively as fol-
lows:

1) A PKDD is a terminal node v labeled by value(v),
where value(v) 2 f0; 1g.

2) A PKDD is a non-terminal node v that has four
children, h0(v), h1(v), h2(v), and h3(v), that are
also PKDD's, where v is labeled by
(a) index(v), where index(v) 2 f1; 2; � � � ; rg, and
by
(b) a 4� 4 regular matrix M , where M is de�ned
in (6.2).

The correspondence between a PKDD and a Boolean
function is de�ned as follows:

A PKDD G having a root node v denotes a function
fv de�ned recursively as:

3) If v is a terminal node:
(a) If value(v) = 1, then fv = 1.
(b) If value(v) = 0, then fv = 0.

4) If v is a nonterminal node with index(v) = i, then
fv is a function

X
S0
i fh0(v) �X

S1
i fh1(v) �X

S2
i fh2(v) �X

S3
i fh3(v),

such that

M =

2
64
a0

a1

a2

a3

3
75 is non-singular,

where ai is a characteristic vector for Si (i = 0; 1; 2; 3).
Xi is called the decision variable for node v.

De�nition 6.4 A reduced ordered PKDD is a
PKDD such that:

1) In De�nition 6.3, for any non-terminal node v,
if hi(v) is also nonterminal, then
index(v) <index(hi(v)).

2) No two subgraphs in the PKDD are identical.

The PKDD for f is said to be minimum if it contains
the least number of nodes.

It is very di�cult to obtain an exact minimum
PKDD, so we will consider a heuristic method which
obtains a good solution quickly. In this case, we have
to consider the following 15 sub-functions:

ff0g; ff1g; ff2g; ff3g;

ff01g = ff0g � ff1g; ff02g = ff0g � ff2g; ff03g

= ff0g � ff3g;

ff12g = ff1g � ff2g; ff13g = ff1g � ff3g ; ff23g

= ff2g � ff3g;

ff012g = ff0g � ff1g � ff2g; ff013g

= ff0g � ff1g � ff3g;

ff023g = ff0g � ff2g � ff3g; ff123g

= ff1g � ff2g � ff3g;

ff0123g = ff0g � ff1g � ff2g � ff3g:

Algorithm 6.1 (Generation of a PKDD : Simple
method)

0) For i = 1 to r � 3 do the following:

1) Let f be the function. Expand it in the form

f = X
S0
i h0 �X

S1
i h1 �X

S2
i h2 �X

S3
i h3

that minimizes the cost of the expansion, where

COST (f) =

3X
j=0

COST (hj); and

COST (hj) =

8><
>:
0 if hj is constant
0 if hj is already realized
k if hj is not realized previously

and depends on k variables

:

2) Create the nodes for new functions if they do not
exist. Record that they are realized.

3) Expand the remaining nodes in the same way.

Example 6.2 Consider the 4-valued input function f
in Example 3.1.

f(X1;X2; X3;X4) = X
f0g
1 (X3

2 �X
3
3) _X

f1g
1 (X3

3 �X
3
4)

_X
f2g

1 (X3
2 �X

3
4) _X

f3g

1 X
3
4 :

This expansion has four non-zero sub-functions. How-
ever, we can reduce the number of non-zero sub-
functions by considering an expansion with the form

f = X
A
1 fA0 �X

B
1 fB0 �X

C
1 fC0 �X

D
1 fD0 :

To �nd a good expansion, we calculate the costs for all
the 15 sub-functions.

ff0g = ff1;2g = X
3
2 �X

3
3 ; cost = 2:

ff1g = ff0;2g = X
3
3 �X

3
4 ; cost = 2:

ff2g = ff0;1g = X
3
2 �X

3
4 ; cost = 2:

ff3g = ff0;1;2;3g = X
3
4 ; cost = 1:

ff0;3g = ff1;2;3g = X
3
2 �X

3
3 �X

3
4 ; cost = 3:

ff1;3g = ff0;2;3g = X
3
3 ; cost = 1:

ff2;3g = ff0;1;3g = X
3
2 ; cost = 1:

ff0;1;2g = 0 ; cost = 0:

Note that fA0 , fB0, fC0 , and fD0 have smaller costs,
where A0 = f2; 3g, B0 = f1; 3g, C 0 = f3g, and D

0 =
f0; 1; 2g. The characteristic vectors for A0, B0, C 0, and
D

0 are: (0,0,1,1), (0,1,0,1), (0,0,0,1), and (1,1,1,0),
and they are linearly independent. Thus, we have R

and M as follows:

R =

2
64
0001
0101
1001
1110

3
75 and M = R

�1 =

2
64
1010
1100
0111
1000

3
75 :

Because A = f0; 2g, B = f0; 1g, C = f1; 2; 3g, and
D = f0g, f can be represented as

f = X
A
1 fA0 �X

B
1 fB0 �X

C
1 fC0 �X

D
1 fD0 ;

= X
f0;2g
1 ff2;3g �X

f0;1g
1 ff1;3g �X

f1;2;3g
1 ff3g

�X
f0g
1 ff0;1;2g;

= X
f0;2g

1 X
f3g

2 �X
f0;1g

1 X
f3g

3 �X
f1;2;3g

1 X
f3g

4 :

Note that the last expansion contains only three non-
zero subfunctions. (End of Example)

7 Experimental Results [29]

7.1 For 3-input LUT's (2-valued case)
Table 7.1 compares the number of non-terminal

nodes for BDD's, FDD's, KDD's, and PKDD's. For
FDD's, the column headed with "pD" denotes the case
where only positive Davio expansions are used, and
"both" denotes the case where both positive and nega-
tive Davio expansions are used. For each diagram, we
obtained an ordering of input variables that reduce the
number of nodes. The orderings of the input variables
are obtained by a simulated annealing method similar
to [8]. Note that the orderings that minimize the size
of BDD's do not always minimize the size of FDD's,
KDD's or PKDD's.

Let size(BDD), size(FDD), size(KDD) and
size(PKDD) be the numbers of non-terminal nodes for
optimized BDD, FDD, KDD and PKDD for a func-
tion, respectively. The experimental results show that

size(PKDD)�size(KDD)�size(BDD),

size(KDD)�size(FDD:both)�size(FDD:pD),

size(FDD:both)�size(FDD:nD).

These results are consistent with the relation of deci-
sion diagrams in Fig. 2.7. The bottom row of the Table
7.1 shows the relative sizes of the diagrams. On the av-
erage, PKDD's require 29% fewer nodes than BDD's.
However, the nodes for BDD's and FDD's are compa-
rable.

7.2 For 6-input LUT's (4-valued case).

The bit pairing algorithm [22] for PLA's with de-
coders was used to produce four-valued input two-
valued output functions. Table 7.1 also compares the
number of non-terminal nodes for QDDs (Quarternary
Decision Diagrams) and 4-valued PKDD's. QDDs were
obtained by the 4-valued extension of Shannon Expan-
sion in (3.1). Details of the optimization algorithm is
shown in Appendix. On the average, QDDs require
37% fewer nodes than BDD's, and 4-valued PKDD's
require 51% fewer nodes than BDD's. Also, 4-valued
PKDD's require 23% fewer nodes than QDDs.

8 Conclusions and Comments
In FPGA design, interconnections are often more

expensive than logic. FPGA's using 3-input LUT's re-
quire many logical levels and complex interconnections.
On the other hand, FPGA's using 6-input LUT's re-
quire fewer interconnections and fewer logical levels.

In this paper, we showed a method to represent
logic functions by using pseudo-Kronecker diagrams
(PKDD's). Experimental results show that 2-valued
PKDD's require 29% fewer nodes than BDD's, and 4-
valued PKDD's require 23% fewer than QDDs, the 4-
valued extension of BDD's. Thus, this method is useful
for the design of FPGA's with 6-input LUT's. How-
ever, when LUT's have less than 6 inputs, this method
is not applicable.

In the practical design of FPGA's, we can further
reduce the number of LUT's as follows:

1) Use complement edges [15, 7].
Consider the decision diagrams where each edge
can complement the sub-function. This corre-
sponds the fact that LUT's can complement the
inputs with no extra cost. In the case of 2-valued
BDD's, complement edges can reduce the number
of nodes by 30 to 50% [15].

2) Remove redundant LUT's.
For a 3-input LUT, if both of two sub-functions are
constants, then it realizes a variable or its comple-
ment. Thus, this LUT can be removed, and the
variable is used as the output. If an LUT depends
on at most three variables, then it can be realized
with one LUT. For a 6-input LUT, if it depends
on at most six variables, then it can be realized
with one LUT.

3) Merge several LUT's into one.
For 6-input LUT's, if any of the sub-functions
is a constant, then the function is realize by an
LUT with 5 or fewer inputs. In AT&T ORCA
series FPGA's, an LUT can be con�gured to real-
ize either a 6-input function, or a pair of 5-input
functions, or four 4-input functions. Thus, LUT's
with fewer inputs can be merged. Except for the
6-input case, some of the inputs must be shared
among the functions.

We assumed that the FPGA's are all binary, but
the control inputs for LUT's can be four-valued inputs
instead of pairs of binary variables. This will signif-
icantly reduce the connections. Thus, this method is
also useful for a design of multiple-valued LUT type
FPGA's.

[9] shows a method to realize a logic function by
using multiple-valued multiplexers, where only circuits
with tree type structure are generated. Also, intercon-
nections are more complex, since each level may have
di�erent control variables.

Acknowledgments
This work was supported in part by a Grant in Aid

for Scienti�c Research of the Ministry of Education,
Science and Culture of Japan, and the Naval Research
Laboratory, Washington, DC through direct funds at
the Naval Postgraduate School, Monterey, CA U.S.A.
M. Matsuura, K. Hara, and Y. Yamashita developed
software and did experiment.

Appendix
Algorithm 8.1 (4-valued PKDD Simpli�cation)

1. Simplify QDDs by permuting the input variables
(Algorithm 8.2).

2. Simplify 4-valued KDD's by changing the method
of expansion for each variable (Algorithm 8.3).

3. Simplify 4-valued PKDD's by changing the method
of expansion for each node (Algorithm 8.4).

Algorithm 8.2 (Optimization of input ordering for
QDDs).

Table 7.1: Number of nodes in Decision Diagrams

function in out BDD FDD KDD PKDD 4-valued

pD both QDD PKDD
9sym 9 1 33 27 27 27 26 17 17
add6 12 7 47 23 23 23 23 17 12
adr4 8 5 29 15 15 15 15 11 8
alu2 10 6 61 94 77 60 59 48 38
apla 10 12 103 188 124 103 94 78 76
bw 5 28 108 116 106 103 90 71 56
clip 9 5 97 87 85 85 69 52 34
co14 14 1 27 26 26 26 26 13 13
con1 7 2 15 17 17 15 14 11 11
dc2 8 7 64 77 71 63 54 44 37
dist 8 5 152 167 163 152 127 75 71
dk17 10 11 63 98 71 63 62 47 45
dk27 8 9 25 24 23 23 22 25 25
duke2 22 29 373 367 351 332 269 257 221
f51m 8 8 67 38 35 35 28 46 22
inc 7 9 70 78 75 65 58 41 37

misex1 8 7 36 42 39 35 31 27 24
misj 35 14 43 46 44 43 43 26 26
mlp4 8 8 141 108 108 108 99 81 57
radd 8 5 29 15 15 15 15 11 8
rd53 5 3 23 13 13 13 13 11 7
rd73 7 3 43 21 21 21 21 21 11
rd84 8 4 59 29 29 29 29 30 15
risc 8 31 67 62 59 59 56 57 51
rot8 8 5 75 89 83 74 60 41 36
sao2 10 4 85 98 97 84 69 50 36
sex 9 14 47 46 45 41 41 38 35
sqr8 8 16 233 201 201 201 169 147 109
t481 16 1 32 23 17 17 17 15 10
tial 14 8 690 543 494 456 381 392 212
ts10 22 16 146 156 156 132 132 148 148
xor5 5 1 9 5 5 5 5 5 3

z5xp1 7 10 68 53 41 41 33 40 24
total 3160 2992 2756 2564 2250 1993 1535
ratio 1.00 0.95 0.87 0.81 0.71 0.63 0.49

1. Let X1, X2, � � �, Xr be the original ordering for
the QDD.

2. For i = 1 to r � 1
fFor j = 2 to r

exchange Xi with Xj , and count the number of
nodes in QDD.
Adopt the ones that minimize the number of
nodes g

3. Repeat 2. while the number of nodes is reduced.

Algorithm 8.3 (Simpli�cation of 4-valued KDD's).

1. Let X1, X2, � � �, Xr be the ordering obtained by
Algorithm 8.2.

2. Construct a PDD (Pentadecimal Decision Dia-
gram) that has 15 children for each non-terminal
node, where each child corresponds to one of 15
sub-functions.

3. Let QDD be the initial 4-valued KDD.

4. For i = 1 to r � 1
Expand the sub-functions with respect Xi in 840
di�erent ways, and �nd one that minimizes the
number of nodes.

5. Repeat 4. while the number of nodes is reduced.

Algorithm 8.4 (Simpli�cation of 4-valued PKDD's).

1. Let X1, X2, � � �, Xr be the ordering. Let the 4-
valued KDD obtained by Algorithm 8.3 be the ini-
tial 4-valued PKDD.

2. For i = 1 to r � 1
For each node for Xi, expand the sub-functions in
840 di�erent ways, and �nd ones that minimizes
the number of nodes.

3. Repeat 2. while the number of nodes is reduced.

References
[1] AT&T, AT&T ORCA (Optimized Recon�gurable

Cell Array) Series FPGA, Product Brief, April.
1993.

[2] H. Bouzouzou, G. Saucier, F. Pirot, and R. Roane,
\Use of binary decision diagrams for logic design",
International Workshop on Logic Synthesis, May
1993.

[3] S. D. Brown, R. J. Francis, J. Rose, and
Z. G. Vranesic, Field Programmable Gate Arrays,
Kluwer Academic Publishers, Boston 1992.

[4] R. E. Bryant, \Graph-based algorithms for
Boolean function manipulation," IEEE Trans.
Comput. Vol. C-35, No. 8, Aug. 1986, pp. 677-691.

[5] J. Cong and Y. Ding, \An optimal technology
mapping algorithm for delay optimization in look-
up table based FPGA designs", Proc. ICCAD, pp.
48-53, 1992.

[6] M. Davio, J-P. Deschamps, and A. Thayse, Dis-
crete and Switching Functions, McGraw-Hill In-
ternational, 1978.

[7] R. Drechsler, A. Sarabi, M. Theobald, B. Becker
and M.A. Perkowski, \E�cient representation and
manipulation of switching functions based on or-
dered Kronecker Functional Decision Diagrams",
Fachbereich Informatik, Universitat Frankfurt, In-
terner Bericht 14/93.

[8] N. Ishiura, H. Sawada, and S. Yajima, \Mini-
mization of binary decision diagrams based on
exchange of variables", ICCAD-91, pp. 472-475,
Nov. 1991.

[9] M. Kameyama and T. Higuchi, \Synthesis of
multiple-valued logic networks based on tree-type
universal logic module", IEEE Trans. Comput.
Vol. C-26. No. 12, Dec. 1977.

[10] K. Karplus, \Xmap: a technology mapper for
table-lookup �eld-programmable gate arrays",
DAC-91, pp. 240-243, June 1991.

[11] U. Kebschull, E. Schubert and W. Rosenstiel,
\Multilevel logic synthesis based on functional de-
cision diagrams", EDAC 92, 1992, pp. 43-47.

[12] Y-T. Lai, M. Pedram and S. B. K. Vrudhula,
\BDD based decomposition of logic functions with
application to FPGA synthesis", 30th ACM/IEEE
Design Automation Conference, June 1993.

[13] L. McKenzie, L. Xu and A. Almaini, \Graphical
representation of generalized Reed-Muller Expan-
sions", IFIP 10.5 Workshop on Applications of the
Reed-Muller Expansion in Circuit Design, Ham-
burg, Sept. 16-17, 1993.

[14] D. M. Miller,\Multiple-valued logic design tools",
ISMVL-93, May 1993, pp. 2-11.

[15] S. Minato, N. Ishiura, and S. Yajima, \Shared
binary decision diagram with attributed edges
for e�cient Boolean function manipulation", 27th
Design Automation Conference, pp. 52-57, June,
1990.

[16] R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentelli, \Performance di-
rected synthesis for table look up programmable
gate arrays", ICCAD-91, pp. 564-567, Nov. 1991.

[17] M.A. Perkowski, \The generalized orthnormal ex-
pansion of functions with multiple-valued inputs
and some of its applications", ISMVL-92, Sendai
pp. 442-450, May 1992.

[18] M. A. Perkowski, A. Sarabi, and F. R. Beyl, \XOR
canonical forms of switching functions", IFIP 10.5
Workshop on Applications of the Reed-Muller Ex-
pansion in Circuit Design, Hamburg, Sept. 16-17,
1993.

[19] M. A. Perkowski, \A fundamental theorem for
EXOR circuits", IFIP WG 10.5 Workshop on Ap-
plications of the Reed-Muller Expansion in Circuit
Design, September 16-17, 1993.

[20] J. Rose, R. J. Francis, D. Lewis, and P. Chow,
\Architecture of �eld-programmable gate arrays:
the e�ect of logic block functionality on area e�-
ciency", IEEE Journal of Solid-State Circuits, vol.
25, No.5. pp. 1217-1225, 1990.

[21] A. Sarabi, P. F. Ho, K. Iravanni, W. R. Daasch,
and M. A. Perkowski, \Minimal multi-level re-
alization of switching functions based on Kro-
necker functional decision diagrams", Interna-
tional Workshop on Logic Synthesis, Lake Tahoe,
May 1993.

[22] T. Sasao, \Input variable assignment and output
phase optimization of PLA's", IEEE Trans. on
Comput. vol. C-33, No. 10, pp. 879-894, Oct. 1984.

[23] T. Sasao, \A transformation of multiple-valued
input two-valued output functions and its ap-
plication to simpli�cation of exclusive-or sum-of-
products expressions", ISMVL-91, May 1991, pp.
270-279.

[24] T. Sasao, \Optimization of multiple-valued AND-
EXOR expressions using multiple-place decision
diagrams", ISMVL-92, May 1992, pp. 451-458.

[25] T. Sasao and J. T. Butler, \On the Analysis
of an FPGA Architecture", International Sympo-
sium on Logic Synthesis and Microprocessor Ar-
chitecture, July 1992, pp. 162-168.

[26] T. Sasao, \Logic design of ULSI systems", Post
Binary Logic Workshop, Sendai, Japan, May 1992.

[27] T. Sasao, \FPGA design by generalized functional
decomposition", in (Sasao e.d.) Logic Synthesis
and Optimization, Kluwer Academic Publishers,
pp. 233-258, 1993.

[28] T. Sasao, \AND-EXOR expressions and their op-
timization", in (Sasao e.d.) Logic Synthesis and
Optimization, Kluwer Academic Publishers, pp.
287-312, 1993.

[29] T. Sasao and M. Matsuura, (to be published)
[30] C. E. Shannon, \The synthesis of two-terminal

switching circuits", Bell Syst. Tech. J. 28, 1,
pp.59-98, 1949.

[31] K. C. Smith and P. G. Gulak, \Prospects
for multiple-valued integrated circuits", IEICE
Trans. Electron., Vol. E.76-C, No.3, March 1993,
pp.372-382.

[32] Wei Wan and M. Perkowski, \A new approach to
the decomposition of incompletely speci�ed multi-
output functions based on graph coloring and lo-
cal transformations and its application to FPGA
mapping", Euro DAC'92.

