
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Mutual Definability of Classes of
Generalized Fuzzy Implications and of Classes

of Generalized Negations and S-Norms

Helmut Thiele

No. CI-28/98

Technical Report ISSN 1433-3325 April 1998

Secretary of the SFB 531 ⋅ University of Dortmund ⋅ Dept. of Computer Science/XI
44221 Dortmund ⋅ Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support
of the Deutsche Forschungsgemeinschaft.



On the Mutual Definability of Classes of Generalized Fuzzy Implications
and of Classes of Generalized Negations and S-Norms∗

Helmut Thiele

Abstract

Given the real functions ν : 〈0,1〉 → 〈0,1〉 and σ,π : 〈0,1〉2 → 〈0,1〉. First we de-
fine a functional operator SIMP where SIMP(σ,ν) : 〈0,1〉2 → 〈0,1〉 and SIMP(σ,ν) is
interpreted as the “S-implication” generated by ν and σ. Secondly, we define functional
operators NEG(π) : 〈0,1〉 → 〈0,1〉 and SNOR(π) : 〈0,1〉2 → 〈0,1〉 where NEG(π) is in-
terpreted as the “negation” generated by π and SNOR(π) is interpreted as the “S-norm”
(T-conorm) generated by π. We investigate under which assumptions these operators
are injective (bijective) and which properties of the “argument functions” are translated
into the “value functions”. Numerous well-known results on negations, S-norms, and
implications can be derived within the framework of this general approach. Further re-
sults concern the mutual definability or R-implications and T-norms.

Keywords: S-implications, S-norms, negations, R-implications, T-norms, QL-
implications.

1 Introduction

In literature one can find numerous papers concerning the generation of implications by
negations and S-norms on the one hand and vice versa, i. e. of negations and S-norms by
implications on the other hand. See [4–14,17,18,20,22–25], in particular [8], for instance.

The presented paper is to deepen these results, in particular, it is to show how by these gen-
eration procedures separate properties of negations and S-norms are translated into certain
separate properties of implications and vice versa.

We start our investigations by recalling the fundamental definition of a negation and of an
S-norm.

Assume that ν : 〈0,1〉 → 〈0,1〉.

Definition 1.1
1. ν is said to be a negation if and only if ν satisfies the following axioms:

NE1 ∀r(r ∈ 〈0,1〉 → ν(ν(r)) = r)

NE2 ν(0) = 1

NE3 ν(1) = 0

NE4 ∀r∀s(r, s ∈ 〈0,1〉 ∧ r ≤ s → ν(s) ≤ ν(r))

2. The set of all negations is denoted by NEGATIONS.

Now, we assume that σ : 〈0,1〉2 → 〈0,1〉.

Definition 1.2
1. σ is said to be an S-norm if and only if σ satisfies the following axioms:

SN1 ∀r(r ∈ 〈0,1〉 → σ(r,0) = r)

SN2 ∀r(r ∈ 〈0,1〉 → σ(r,1) = 1)

SN3 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 ∧ r ≤ s → σ(r,t) ≤ σ(s,t))

∗Long version of a paper originally published in 27th International Symposium on Multiple-Valued Logic
(ISMVL ’97), St. Francis Xavier University, Antigonish, Nova Scotia, Canada, pages 183–188
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SN4 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 ∧ s ≤ t → σ(r, s) ≤ σ(r,t))

SN5 ∀r∀s(r, s ∈ 〈0,1〉 → σ(r, s) = σ(s, r))

SN6 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 → σ(r,σ(s,t)) = σ(σ(r, s), t))

2. The set of all S-norms is denoted by SNORMS.

Finally, we assume that π : 〈0,1〉2 → 〈0,1〉.

Definition 1.3
1. π is said to be an S-implication if and only if π satisfies the following axioms:

SIM1 ∀r(r ∈ 〈0,1〉 → π(π(r,0),0) = r)

SIM2 ∀s(s ∈ 〈0,1〉 → π(0, s) = 1)

SIM3 ∀s(s ∈ 〈0,1〉 → π(1, s) = s)

SIM4 ∀r(r ∈ 〈0,1〉 → π(r,1) = 1)

SIM5 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 ∧ r ≤ s → π(s,t) ≤ π(r,t))

SIM6 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 ∧ s ≤ t → π(r, s) ≤ π(r,t))

SIM7 ∀r∀s(r, s ∈ 〈0,1〉 → π(π(r,0),π(s,0)) = π(s, r))

SIM8 ∀r∀s∀t(r, s,t ∈ 〈0,1〉 → π(r,π(s,t)) = π(s,π(r,t)))

2. The set of all S-implications is denoted by SIMPLICATIONS.

Remark As we are interested in the translation of separate properties into other separate
properties of the functions considered, we do not care about the independence of the axiom
systems formulated in the definitions above.

For solving the axiomatization problem we introduce the following functional operators
SIMP, NEG, and SNOR where

SIMP : FUNCT(2) × FUNCT(1) → FUNCT(2)

NEG : FUNCT(2) → FUNCT(1)

SNOR : FUNCT(2) → FUNCT(2)

where FUNCT(1) =def lϕ ϕ : 〈0,1〉 → 〈0,1〉q and FUNCT(2) =def oψ ψ : 〈0,1〉2 → 〈0,1〉t.
Assume

ν ∈ FUNCT(1)

σ,π ∈ FUNCT(2).

Then we define for every r, s ∈ 〈0,1〉

Definition 1.4
1. SIMP(σ,ν)(r, s) =def σ(ν(r), s)

2. NEG(π)(r) =def π(r,0)

3. SNOR(π)(r, s) =def π(π(r,0), s).
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2 Some fundamental properties of the functional operators SIMP,
NEG, and SNOR

The following theorems and corollaries express fundamental properties of the functional
operators defined above.

Theorem 2.1
If 1. ∀r(r ∈ 〈0,1〉 → ν(ν(r)) = r) and

2. ∀r(r ∈ 〈0,1〉 → σ(r,0) = r)

then

1. NEG(SIMP(σ,ν)) = ν and

2. SNOR(SIMP(σ,ν)) = σ.

Proof

ad 1. We define

LS(r) =def NEG(SIMP(σ,ν))(r).(1)

By definition of NEG we have to prove

LS(r) = SIMP(σ,ν)(r,0),(2)

hence by definition of SIMP it is sufficient to prove

LS(r) = σ(ν(r),0).(3)

By assumption 2, i. e. SN1, we have

σ(ν(r),0) = ν(r),(4)

hence

LS(r) = ν(r).(5)

ad 2. We define

LS ′(r, s) =def SNOR(SIMP(σ,ν))(r, s).(6)

By definition of SNOR we have to prove

LS ′(r, s) = SIMP(σ,ν)(SIMP(σ,ν)(r,0), s),(7)

hence by definition of SIMP it is sufficient to show

LS ′(r, s) = SIMP(σ,ν)(σ(ν(r),0), s) = σ(ν(σ(ν(r),0)), s).(8)

By assumption 2, i. e. SN1, we get

σ(ν(r),0) = ν(r),(9)

hence we obtain

LS ′(r, s) = σ(ν(ν(r)), s).(10)

Because of assumption 1, i. e. NE1, we have

LS ′(r, s) = σ(r, s),(11)

i. e. assertion 2 holds.

�

We denote by

FUNCT(1,NE1)

the set of all functions ϕ ∈ FUNCT(1) which fulfill the axiom NE1, furthermore by

FUNCT(2,SN1) and FUNCT(2,SIM1)

the set of all functions ϕ ∈ FUNCT(2) which fulfill the axioms SN1 and SIM1, respectively.
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Corollary 2.2
SIMP : FUNCT(2,SN1) × FUNCT(1,NE1) → FUNCT(2) is an injection.

By the following theorem we characterize the set of all images SIMP(σ,ν) for
σ ∈ FUNCT(2,SN1) and ν ∈ FUNCT(1,NE1).

Theorem 2.3
If ∀r(r ∈ 〈0,1〉 → π(π(r,0),0) = r) then SIMP(SNOR(π),NEG(π)) = π.

Proof We define

LS(r, s) =def SIMP(SNOR(π),NEG(π))(r, s).(1)

By definition of SIMP we get

LS(r, s) = SNOR(π)(NEG(π)(r), s),(2)

hence by definition of NEG we obtain

LS(r, s) = SNOR(π)(π(r,0), s),(3)

thus by definition of SNOR we obtain

LS(r, s) = π(π(π(r,0),0), s).(4)

By assumption of theorem 2.3 we have

π(π(r,0),0) = r,(5)

hence

LS(r, s) = π(r, s),(6)

i. e. theorem 2.3 holds. �

Corollary 2.4
1. SIMP is a bijection from FUNCT(2,SN1) × FUNCT(1,NE1) onto FUNCT(2,SIM1).

2. [SNOR,NEG] is the inverse mapping of the bijection SIMP.

3 On translating properties of functions by applying the functional op-
erator SIMP

Now, we investigate which properties of the “argument functions” σ and ν are translated to
certain properties of SIMP(σ,ν).

Theorem 3.1
1. If ν fulfills NE1 and σ fulfills SN1, then SIMP(σ,ν) fulfills SIM1.

2. If ν fulfills NE2 and σ fulfills SN2 and SN5, then SIMP(σ,ν) fulfills SIM2.

3. If ν fulfills NE3 and σ fulfills SN2 and SN5, then SIMP(σ,ν) fulfills SIM3.

4. If σ fulfills SN2, then SIMP(σ,ν) fulfills SIM4.

5. If ν fulfills NE4 and σ fulfills SN3, then SIMP(σ,ν) fulfills SIM5.

6. If σ fulfills SN4, then SIMP(σ,ν) fulfills SIM6.

7. If ν fulfills NE4 and σ fulfills SN5, then SIMP(σ,ν) fulfills SIM7.

8. If ν fulfills NE1 and σ fulfills SN1 and SN6, then SIMP(σ,ν) fulfills SIM8.

9. If ν is continuous and σ is continuous, then SIMP(σ,ν) is continuous.
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Proof

ad 1 SIM1

We have to show

SIMP(σ,ν)(SIMP(σ,ν)(r,0),0) = r.(1)

By definition of SIMP it is sufficient to prove

σ[ν(SIMP(σ,ν)(r,0)),0] = σ[ν(σ(ν(r),0)),0] = r.(2)

By SN1 we get

σ(ν(r),0) = ν(r),(3)

hence it is sufficient to show

σ(ν(ν(r)),0) = r.(4)

But (4) holds because of NE1 and SN1.

ad 2 SIM2

We have to show

SIMP(σ,ν)(0, s) = 1.(5)

By definition of SIMP it is sufficient to prove

σ(ν(0), s) = 1.(6)

By NE2, SN2, and SN5 we have

ν(0) = 1,(7)

σ(s,1) = 1,(8)

and

σ(1, s) = σ(s,1),(9)

respectively, hence (6) holds.

ad 3 SIM3

We have to show

SIMP(σ,ν)(1, s) = s.(10)

By definition of SIMP it is sufficient to prove

σ(ν(1), s) = s.(11)

By NE3, SN1, and SN5 we get

ν(1) = 0,(12)

σ(s,0) = s,(13)

and

σ(0, s) = σ(s,0),(14)

respectively, hence (11) holds.

ad 4 SIM4

We have to prove

SIMP(σ,ν)(r,1) = 1.(15)

By definition of SIMP it is sufficient to show

σ(ν(r),1) = 1.(16)

But (16) holds because of SN2.
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ad 5 SIM5

We assume

r ≤ s.(17)

The we have to prove

SIMP(σ,ν)(s,t) ≤ SIMP(σ,ν)(r,t).(18)

By definition of SIMP it is sufficient to show

σ(ν(s), t) ≤ σ(ν(r), t).(19)

By NE4 we get

ν(s) ≤ ν(r)(20)

hence because of SN3 (19) holds.

ad 6 SIM6

We assume

s ≤ t.(21)

Then we have to prove

SIMP(σ,ν)(r, s) ≤ SIMP(σ,ν)(r,t).(22)

By definition of SIMP it is sufficient to show

σ(ν(r), s) ≤ σ(ν(r), t).(23)

But (23) holds because of SN4.

ad 7 SIM7

We have to prove

(24) SIMP(σ,ν)(SIMP(σ,ν)(r,0),SIMP(σ,ν)(s,0))

= SIMP(σ,ν)(s, r).

By definition of SIMP it is sufficient to show

σ[ν(σ(ν(r),0)),σ(ν(s),0)] = σ(ν(s), r).(25)

Because of SN1 we get

σ(ν(r),0) = ν(r)(26)

and

σ(ν(s),0) = ν(s),(27)

hence, in order to prove (25), it is sufficient to show

σ(ν(ν(r)),ν(s)) = σ(ν(s), r).(28)

Because of assumption NE4 we have

ν(ν(r)) = r,(29)

hence (28) holds because of SN5.

ad 8 SIM8

We have to prove

(30) SIMP(σ,ν)(r,SIMP(σ,ν)(s,t))

= SIMP(σ,ν)(s,SIMP(σ,ν)(r,t)).

By definition of SIMP it is sufficient to prove

σ(ν(r),σ(ν(s), t)) = σ(ν(s),σ(ν(r), t)).(31)

But (31) holds because of SN5 and SN6.
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ad 9 This assertion holds because of well-known properties of continuous functions.

�
Corollary 3.2

1. If ν is a negation and σ is an S-norm, then SIMP(σ,ν) is an S-implication.

2. The mapping SIMP is an injection from the class SNORMS×NEGATIONS into the
class SIMPLICATIONS.

Remark Theorem 3.1 makes it possible to derive further “injection theorems”.

4 On translating properties of functions by applying the functional op-
erators NEG and SNOR

In this chapter we investigate which properties of the “argument function” π are translated
into certain properties of NEG(π) and SNOR(π).

From these results we can conclude that SIMP is a surjection, i. e. a mapping onto
SIMPLICATIONS.

Theorem 4.1
1.1. If π fulfills SIM1, then NEG(π) fulfills NE1.

1.2. If π fulfills SIM2, then NEG(π) fulfills NE2.

1.3. If π fulfills SIM3, then NEG(π) fulfills NE3.

1.4. If π fulfills SIM5, then NEG(π) fulfills NE4.

2.1. If π fulfills SIM1, then SNOR(π) fulfills SN1.

2.2. If π fulfills SIM4, then SNOR(π) fulfills SN2.

2.3. If π fulfills SIM5, then SNOR(π) fulfills SN3.

2.4. If π fulfills SIM6, then SNOR(π) fulfills SN4.

2.5. If π fulfills SIM1 and SIM7, then SNOR(π) fulfills SN5.

2.6. If π fulfills SIM1, SIM7, and SIM8, then SNOR(π) fulfills SN6.

2.7. If π is continuous, then NEG(π) and SNOR(π) are continuous.

Proof

ad 1.1 NE1

We have to prove

NEG(π)(NEG(π)(r)) = r.(1)

By definition of NEG it is sufficient to show

π(π(r,0),0) = r.(2)

But (2) holds because of SIM1.

ad 1.2 NE2

We have to prove

NEG(π)(0) = 1.(3)

By definition of NEG it is sufficient to show

π(0,0) = 1.(4)

But (4) holds because of SIM2.
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ad 1.3 NE3

We have to prove

NEG(π)(1) = 0.(5)

By definition of NEG it is sufficient to show

π(1,0) = 0.(6)

But (6) holds because of SIM3.

ad 1.4 NE4

Assume

r ≤ s.(7)

Then we have to prove

NEG(π)(s) ≤ NEG(π)(r).(8)

By definition of NEG it is sufficient to show

π(s,0) ≤ π(r,0).(9)

But (9) holds because of SIM5.

ad 2.1 SN1

We have to prove

SNOR(π)(r,0) = r.(10)

By definition of SNOR it is sufficient to prove

π(π(r,0),0) = r.(11)

But (11) holds because of SIM1.

ad 2.2 SN2

We have to prove

SNOR(π)(r,1) = 1.(12)

By definition of SNOR it is sufficient to show

π(π(r,0),1) = 1.(13)

But (13) holds because of SIM4.

ad 2.3 SN3

We assume

r ≤ s.(14)

Then we have to prove

SNOR(π)(r,t) ≤ SNOR(π)(s,t).(15)

By definition of SNOR it is sufficient to show

π(π(r,0), t) ≤ π(π(s,0), t).(16)

From (14) by SIM5 we get

π(s,0) ≤ π(r,0),(17)

hence (17) implies (16) because of SIM5.

ad 2.4 SN4

We assume

s ≤ t.(18)
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Then we have to prove

SNOR(π)(r, s) ≤ SNOR(π)(r,t).(19)

By definition of SNOR it is sufficient to show

π(π(r,0), s) ≤ π(π(r,0), t).(20)

But SIM6 implies (20).

ad 2.5 SN5

We have to prove

SNOR(π)(r, s) = SNOR(π)(s, r).(21)

By definition of SNOR it is sufficient to show

π(π(r,0), s) = π(π(s,0), r).(22)

From SIM7 we get

π(π(r,0),π(s,0)) = π(s, r),(23)

hence we obtain by the substitution π(s,0) for s

π(π(r,0),π(π(s,0),0)) = π(π(s,0), r),(24)

hence (24) implies (22) because of the assumption SIM1.

ad 2.6 SN6

We have to prove

SNOR(π)(r,SNOR(π)(s,t)) = SNOR(π)(SNOR(π)(r, s), t).(25)

By definition of SNOR it is sufficient to show

π[π(r,0),π(π(s,0), t)] = π[π(π(π(r,0), s),0), t].(26)

Now, by SIM7 we obtain

π[π(π(π(r,0), s),0), t] = π[π(t,0),π(π(r,0), s)],(27)

hence by SIM8

= π[π(r,0),π(π(t,0), s)],

hence by SIM7 and SIM1

= π[π(r,0),π(π(s,0), t)],

hence (26) holds.

ad 2.7 If π is continuous, then NEG(π)(r) =def π(r,0) is continuous, hence
SNOR(π)(r, s) =def π(π(r,0), s) is continuous, trivially.

�

Corollary 4.2
1. If π is an S-implication, then NEG(π) is a negation and SNOR(π) is an S-norm.

2. [SNOR,NEG] is a bijection from the class SIMPLICATIONS onto the class
SNORMS×NEGATIONS.

3. SIMP is a bijection from the class SNORMS×NEGATIONS onto the class
SIMPLICATIONS.

4. SIMP is the inverse mapping of the bijection [SNOR,NEG] and vice versa.

5. If we restrict the classes NEGATIONS, SNORMS, and SIMPLICATIONS by the con-
ditions of continuity, then the restricted classes are invariant with respect to the map-
pings SIMP, [SNOR,NEG].
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Remark Theorem 4.1 (together with theorem 3.1) makes it possible to derive further “bi-
jection theorems”.

5 Further results

For τ,π : 〈0,1〉2 → 〈0,1〉 we define

Definition 5.1
1. RIMP(τ)(r, s) =def Suplt t ∈ 〈0,1〉 ∧ τ(r,t) ≤ sq
2. TNOR(π)(r, s) =def Inflt t ∈ 〈0,1〉 ∧ π(r,t) ≥ sq

Theorem 5.1
For every r, s ∈ 〈0,1〉, TNOR(RIMP(τ))(r, s) ≤ τ(r, s).

Theorem 5.2
If for every fixed r ∈ 〈0,1〉 the function τ(r, s) is monotone and left-hand continuous with
respect to s ∈ 〈0,1〉, then for every r, s ∈ 〈0,1〉,

τ(r, s) ≤ TNOR(RIMP(τ))(r, s).

Denote by FUNCT(2,MLHC2) the set of all functions ϕ : 〈0,1〉2 → 〈0,1〉 such that for every
fixed r ∈ 〈0,1〉 the function ϕ(r, s) is monotone and left-hand continuous with respect to
s ∈ 〈0,1〉.

Corollary 5.3
1. If τ ∈ FUNCT(2,MLHC2), then TNOR(RIMP(τ)) = τ.

2. RIMP : FUNCT(2,MLHC2) → FUNCT(2) is an injection.

Theorem 5.4
If for every fixed r ∈ 〈0,1〉 the function π(r, s) is monotone and right-hand continuous with
respect to s ∈ 〈0,1〉, then for every r, s ∈ 〈0,1〉,

RIMP(TNOR(π))(r, s) ≤ π(r, s).

Theorem 5.5
For every r, s ∈ 〈0,1〉, π(r, s) ≤ RIMP(TNOR(π))(r, s).

Denote by FUNCT(2,MRHC2) the set of all functions ϕ : 〈0,1〉2 → 〈0,1〉 such that for every
fixed r ∈ 〈0,1〉 the function ϕ(r, s) is monotone and right-hand continuous with respect to
s ∈ 〈0,1〉.

Corollary 5.6
1. If π ∈ FUNCT(2,MRHC2), then RIMP(TNOR(π)) = π.

2. TNOR is a bijection from FUNCT(2,MRHC2) onto FUNCT(2,MLHC2).

3. RIMP is the inverse mapping of TNOR and vice versa.

In a forthcoming paper we will investigate which properties of τ and π are trans-
lated by RIMP and TNOR analogously to theorems 3.1 and 4.1, respectively. See
also [1, 2, 8, 15, 19–21].

In a forthcoming second paper we will study relations between QL-implications on the one
hand and negations, T-norms, and S-norms on the other hand, following the “philosophy”
presented in this paper.
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[10] JÁNOS C. FODOR and TIBOR KERESZTFALVI. A characterization of the HAMACHER

family of t-norms. Fuzzy Sets and Systems 65, 51–58, 1994.
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