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On structures of weak interlaced bilattices
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Abstract
We sutdy fundamental properties of weak interlaced bilattices and show that

1. For any bounded lattice L, there exists an interlaced bilattice B such that K(L) =
Cons(B); )

2. For any interlaced bilattice B with negation, there exists a lattice L such that
K(L) = Cons(B).

1 Introduction

It is well-known the Kleene’s 3-valued logic in the field of multiple-valued logics. The logic
has three values false, true, and 1 (unknown) as truth values. These values have two
informal orderings concerning ”amount of knowledge” and "degree of truth”. For example,
if we think of a certain proposition such as Riemann’s conjecture assigned L as truth value,
then it is possible that we can conclude the truth value of the proposition as true or false
with increasing knowledge. Thus in the ordering of knowledge, L is smaller than true and
false. A sentence with L is between false and true in the ordering of degree of truth.
In this way it can be considered that the three valued logic has two orderings. Belnap
([2]), Ginsberg([5]), and others proposed concept of a bilattice which has two orderings and
proved some fundamental results ([1, 3, 4]). It is shown by Fitting ([3]) that bilattices can
give a uniform semantics for many lanuages of logic programming. Since then the theory of
bilattices is a hot reserach field.

On the other hand, as in Fuzzy logics, a truth value can be taken as a closed interval
[a,b]. Let L be a lattice and (L) be the set of all closed intervals of L. In this case we also
define two orderings. For [a,b], [c,d] € K(L), if [a,b] C [c,d] then the knowledge in [a,b] is
greater than that in [c,d]. Thus we set [a,b] Ck [c, d] if [a, ] C [c,d]. Likewise we also define
[a,b] C¢ [c,d] if @ < ¢ and b < d, because [c,d] is greater than [a,b] in the ordering degree
of truth. The structure X(L) =< K(L), C¢, Cx> which precise definition is given below has
the property of weak interlaced bilattice.

In 3, 4], Fitting, Font and Moussavi have investigated the strucutre of X(L) and proved
some results :

1. If L is a bounded lattice, then (L) is a weak interlaced bilattice ([4]) ;

2. If L is a complete lattice with an involution, then X(L) & Cons(B), where Cons(B)
is the set of all consistent elements of an interlaced bilattice B with negation and

conflation ([3]) ;
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3. If B is a distributive bilattice with commutative negation and conflation, then C'ons(B) £
K(L) for some complete distributive lattice L ([3]).

Now it is natural to ask the following questions :
Q1 Is there a lattice L such that W = K(L) for every weak interlaced bilattice
w7

Q2 Is there an interlaced bilattice B such that K(L) 2 Cons(B) for every
bounded lattice L ?

Q3 Is there a lattice L such that X(L) = Cons(B) for every interlaced bilattice
with negation B ?

In the following, we study properties of X(L) and answer the questions above.

2 Definition of (L)

We define a structure K(L) for any lattice L. Let L = (L, <) be a lattice and K(L) be the
set of all closed intervals of L, that is,

K(L) = {[a,b]la < b,a,b e L}
[a,b] = {z|a < = < b}.

For any [a,b)],[c,d] € K(L), we define two orderings C;, Cx on K (L) as follows :

[a,b] C: [e,d] <= a < ¢c,b<d

[a,b) Ck [c,d] <= a < c,b>d
We set K(L) =< K(L),C¢,Cg>. It is obvious from definition that [0,0] ([1,1]) is the
minimum (maximum) element with respect to C;. On the other hand, while [0, 1] is the
minimum element, there is no maximum element with respect to the ordering Cx. This

means that (L) is a lattice with respect to C; and is a semi-lattice concering Cx. Four
operators MMy, Uz, Mk, Lk are defined by »

infc {a,b} =al: b
supc,{a,b} =all b
infc, {a,b} =aMrd
supc,{a,b} =aMgb (if it is defined)

A relational system < B, <, <x> is called an interlaced bilattice if it satisfies
1. B is a non-empty set
2. < B,<;>, < B, <;> are bounded lattices and satisfy

() 2<y=>2®2<:Y®2,2025: YDz
(b)) z<ry=>zAz<pyAz,cV2<pyVz
By 0(1) , we mean the minimum (maximum) element with respect to the ordermg <t

We also denote by L(T) the minimum (maximum) element concering to <.
Any interlaced bilattice is called distributive when it satisfies
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zo(yez)=(zoz)e(yoz)
for o,e € {A,V,®,®}. This means twelve equations such as

cA(YVz)=(zAy)V(zA2)
z®(YA2)=(zDY)A(zD2)

A map - from B into itself is called a negation if
Tty= Yt T
T <kYy=>"T kY
——r=212.

For lattices Ly =< L3, A1,V1 > and Ly =< L3, A2, V2 >, we define operations A, V, ®, ®
on the product L, x Ly : For (a,b), (c,d) € Ly x Lo,

(a,b) A (¢,d) = (a A1 ¢c,bVad)
(a,b) V (¢,d) = (a V1 ¢,bA2 d)
(a,b) ® (c,d) = (a A1 ¢c,bA2d)
(a,b) @ (c,d) = (a V1 ¢,b V2 d).

The structure Ly ® Ly =< L; x L2, A,V,®,® > is called a Ginsberg product. There are
some fundamental results about the structure :

Proposition 1 (Fitting). If L1, Ly are bounded lattices then the Ginsberg product L, ©
Ly =< Ly x Ly, A\, V,®,® > is an interlaced bilattice. Espectially, L © L i3 an interlaced
bilattice with negation -, where — is defined by —(a,b) = (b, a).

It is proved that the converse holds by Avron ([1]).

Proposition 2 (Avron). For any interlaced bilattice B, there are bounded lattices Ly, Lo
such that B = L1 © Ly. In particular, for any interlaced bilattice B with negation, there is
a bounded lattice L such that B= L® L.

It is clear from definition that orderings C;,Cx on (L) are the same as <;, <x on
Ginsberg product L ® L, respectively :

CirinK(L)<= <xinLOL

Next we give a definition of a weak interlaced bilattice according to Font ([4]). A structure
W =< W, <;, <k> is called a weak interlaced bilattice if

1. < W, <> : lattice

2. < W, <i> : meet semilattice
.a<ibcec<kd=aAc<igbAd,aVc<gbVd
4. a<ibc<id=a®c<:b®d,

5. a<:bc<id=>a®c<;bdd if ad®cand b d exist.
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3 Properties of weak interlaced bilattices

For any weak interlaced bilattice W, if we define

={xéW|z$k0}=[l,0]k
Ly={zeW|z <k 1} =[L,1],

then we have
Proposition 3.

Ly = [1,0]x = [0, L],
L2 = [J., llk = [_L, l]t

Proof. Let x € [L,0]x. Since L <4 z<x0,wehave LV 1 <pzV1<,0VL by definition
of weak interlaced bilattice. From LV L =0V L = 1, it follows that zV L = 1 and hence
that z <; L. This means [L,0]x C [0, L];.

Conversely, suppose = € [0, L];. If we put u = 0 ® z, then it is clear that » <x 0 and
u <t z. Since 0 <; z, we have 0® z <; 2® z =  and hence u <; z. It follows from 1 <kt u
that zA L <g zAwu. Since z <; L, we also have A L = z. On the other hand, since u <; z,
we get u A z = u. Theses imply that 7 <i u and hence that z = u. Thus we have z <; 0.
Namely, we have [0, L] C [L, O].

The second equation can be proved similarly.
a

The result implies that L; and L, are lattices with ordering <; and <, in B, respectively,
where <; and <, are defined by
S1=5¢=2
S<o=<¢=Zk

Thus we can consider the Ginsberg product L;® L3, which becomes an interlaced bilattice.
Moreover we can prove

Proposition 4. Let W be any weak interlaced bilattice. For any x € W, we have
z=(zR0)®(xz®1)=(zAL)V(zVvl)

Proof. See Avron [1] Cor.3.8 O

Now we investigate a realtion between a weak interlaced bilattice W and an interlaced
bilattice Ly ® Ly constructed by W.

Lemma 1. A map {: W — L1 x Ly defined by &(z) = (2®1,zQ0) = (xV L,z A L) is an
embedding.

This means that
Theorem 1. Any weak interlaced bilattice can be embedded into an interlaced bilattice.

As to the question Q1, we can give a negative answer by presentiong a counter example.
Let W be the set {0,1,a,b, 1,1} suchthat 0 <;a <; L <; b<;1land L <z a <; 0, L <y
b <i 1. It is obvious that W is a weak interlaced bilattice. Suppose that there is a lattice
L such that W= K(L). If |L| > 3, then there exists an element a € L such that 0 < a < 1.
For that element we have [0, 0], [0,4], [0,1], [a,1], [a,a], [1,1] € X(L) and |K(L)| > 6. Since
|[W| = 5, it must be |L| < 2. But, in this case, we have |K(L)| < 3. This means that there
is no lattice L such that W = IC(L)
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4 Characterization of X(L)

In this section we consider the properties of (L) for a bounded lattice L. Let Z(L) =
{(a,b) | @ < b} C L x L. It is clear that Z(L) is closed under the operations A,® and & but
not closed under V. If we define a map n : K(L) = Z(L) by n([a,d]) = (a,b), then we can
prove that

Lemma 2. n: K(L) = Z(L) : bijection and
n((a, b] e [¢, d]) = n([a, b]) ® n([c, d])
1([a, b] U¢ [c, d]) = n([a, 8]) & n([c, d])
7([a, 8] Mk [¢, d]) = n([a, b]) A n([c,d])
if [a,b] @ [c,d] exists n([a,b] Uk [c,d]) = n([a,b]) V n([c,d])

We call the map 7 a t-k dual isomorphism and identify the isomorphism with the t-k
dual isomorphism, that is,

K(L)=2IZ(L)CLOL
In any interlaced bilattice L ® L, the negation — is defined by
—(a,b) = (b,a).
An element (a,b) in L ® L is called consistent when it satisfies (a,b) <: —(a,b), that is,
(a,b) : consistent <= a < b

If we denote by Cons(B) the set of all consistent elements of an interlaced bilattice B, since
Cons(L ® L) = I(L), then we have

Theorem 2. For any bounded lattice L,
K(L)=Z(L)=Cons(LO L)

This means that we can answer the question Q2 as Yes. Moreover, for the structure
I(L), we can show

Theorem 3. I(L) is the weak interlaced bilattice generated by A = {(a,a) |a € L}.

Proof. Let W be any weak interlaced bilattice such that A C W. For every element (a,b) €
Z(L) (a < b), since (a,a), (b,b) € A C W, we have (a,a) A(b,b) = (aAb,aVbd) = (a,b) e W.
Thus Z(L) C W. O

As to the question Q3, let B be any interlaced bilattice with negation. Since there
is a lattice L such that B & L ® L, by identifying B with L ® L, we have Cons(B) =
Cons(L ® L) = Z(L) = K(L). This means that

Theorem 4. For any interlaced bilattice B with negation, there is a lattice L such that
Cons(B) = K(L)

Therefore we can answer the question Q3 as Yes.
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