
ar
X

iv
:c

s/
02

06
02

4v
1

 [c
s.

LO
]

15
 J

un
 2

00
2

Sierpinski Gaskets for Logic Functions Representation

Denis V. Popel
Department of Computer Science,
Baker University, Baldwin City,

KS 66006-0065, U.S.A.
Denis.Popel@bakeru.edu

Anita Dani
Department of Computer Science,

University of Wollongong (Australia),
Dubai Campus, U.A.E.,

AnitaDani@uowdubai.ac.ae

Abstract

This paper introduces a new approach to represent logic
functions in the form ofSierpinski Gaskets. The structure
of the gasket allows to manipulate with the corresponding
logic expression using recursive essence offractals. Thus,
the Sierpinski gasket’s pattern has myriad useful proper-
ties which can enhance practical features of other graphic
representations like decision diagrams. We have covered
possible applications of Sierpinski gaskets in logic design
and justified our assumptions in logic function minimiza-
tion (both Boolean and multiple-valued cases). The exper-
imental results on benchmarks with advances in the novel
structure are considered as well.

1 Introduction

Over the years, many important problems in digital cir-
cuits synthesis have been approached using graph-based
data structures: decision trees, decision diagrams. . . etc.
The superior example isBinary Decision Diagram(BDD)
which has become the advanced structure in VLSI CAD
for representation and manipulations of logic functions [1].
The applications of BDD techniques cover practically all
stages of digital circuits design from the initial represen-
tation of Boolean functions [7] to the synthesis of the de-
sirable circuit [5]. But still originally introduced BDDs
cannot be directly applied to synthesize circuits derived
from AND/EXOR expressions. Such circuits are demanded
by VLSI CAD, because of economical implementation (in
terms of gates and interconnections) and high testability.
This is particularly efficient for error control and arithmetic
circuits, encrypting and coding schemes. In this paper,
we address the problem of representation of the general
class of AND/EXOR expressions, namedExclusive Sum-
Of-Products(ESOP). Following the above problem, we in-
troduce another graph-based structure popular infractal
theory to represent ESOP expressions and their multiple-

valued counterparts.
One is familiar with the useful properties ofPascal tri-

anglewhich represents binomial coefficients. Another ad-
vanced mathematical structure, which is used frequently in
fractal theory, isSierpinski gasket[6]. It should be men-
tioned that Sierpinski gasket is Pascal triangle modulo two–
the EXOR operation is used instead of addition [3]. Sierpin-
ski gasket also referred to as Sierpinski triangle has a num-
ber of interesting properties that W.Sierpinski discussedin
his paper [9]. Areas of application of Sierpinski fractals
are graphic design (Figure 1 shows (a) Sierpinski gasket
and (b) Sierpinski pyramid as the samples of fractals imple-
mentation) [6], telecommunication (the antenna of cellular
phone has fractal square structure), tautology mapping [11],
symmetry handling in logic design [2, 12]. . . etc. In this
paper, we propose a new approach to utilize the structure of
Sierpinski gasket to represent ESOP expressions. Prelimi-
nary case study results have been published in [3]. We also
generalize this approach to multiple-valued functions.

The rest of the paper is organized as follows. In Sec-
tion 2, we collect necessary definitions and provide basic
terminology. Section 3 introduces the structure of Sierpin-
ski gasket and describes the techniques of constructing Sier-
pinski gasket using different function descriptions. The cor-
respondence between Sierpinski gaskets and logic expres-
sions is outlined in this Section. Section 4 is dedicated
to a minimization algorithm and experimental results on
Boolean and multiple-valued functions. Finally, Section 5
concludes the paper.

2 Basic Concepts

We consider amultiple-valued functionf : Mn → M
over the variable set X = {x1, · · · , xn}, where
M={0, 1, . . . , r − 1}, n is the number ofr-valued vari-
ables. f|xi=v = f(x1, . . . , xi−1, v, xi+1, . . . , xn) is called
acofactorof f , whenxi takes valuev ∈ {0, 1, . . . r − 1}.

In the Galois field representation of MVL functions,p
complements of ap−valued variable are usually consid-

http://arxiv.org/abs/cs/0206024v1

(a) (b)

Figure 1. Sierpinski gasket and pyramid

ered. They are defined byi−x = x + i, i = 1, . . . , p− 1,
where ’+’ denotes the addition in the considered Galois
field. Therefore, for functions over GF(4), we consider four
literalsx, 1−x, 2−x, 3−x for each variablex.

For simplicity, the presentation in this paper is restricted
to Boolean and 4-valued functions. However, our method
can be applied to logic functions of any radix. Let us review
the representation forms of logic functions.

2.1 Boolean functions

It has been shown in [8] that restricted classes of
AND/EXOR expressions, like Fixed Polarity Reed-Muller
(FPRM) expressions, can be represented efficiently.

Definition 1. FPRM is an exclusive OR of AND product
terms, where each variable appears either complemented
or uncomplemented, but not both.

Based on Sierpinski gasket we are able to represent gen-
eral class of AND/EXOR expressions – ESOP.

Definition 2. ESOP is EXOR sum of product terms with
complemented and uncomplemented variables.

Observe that in ESOP expression a variable may appear
in a product term in complemented or uncomplemented
forms. In case of ESOP, the polarity vector[c0c1 . . . cn]
is associated with given functionf , where the entryci =
{0, 1, d} is 0 if xi appears always in uncomplemented form,
the entry is 1 for the variable in complemented form and is
d if xi is used in complemented as well as uncomplemented
forms (mixed mode) [4]. Note that different polarity vectors
for the same function cause different cost characteristicsof
AND/EXOR expressions (number of product terms, num-
ber of literals) [5].

Example 1. For the functionf = x1 ∨ x3 · x2 with the
truth vector[10001111], FPRM with polarity vector[111]
is f = 1⊕ x1 ⊕ x1x2x3 (3 product terms), and ESOP with

polarity vector[d11] is f = x1⊕x1x2x3 (2 product terms).
The effect in number of product terms has been obtained for
different polarity vectors.

2.2 Multiple-valued functions

The fixed polarity expansion for 4-valued function can
be introduced.

Definition 3. (D. Green [4]) Reed-Mullerexpansion of 4-
valued function takes the form

f = c0 + c1x+ c2x
2 + c3x

3,

where operations are fulfilled in GF(4).

In our approach, we extend the representation of 4-
valued functions using mixed polarities:

f = c0 + c1
1−x+ c2

1−x2 + c3
1−x3,

f = c0 + c1
2−x+ c2

2−x2 + c3
2−x3,

f = c0 + c1
3−x+ c2

3−x2 + c3
3−x3.

All possible combinations of four expansions specified
above can be represented using Sierpinski pyramid.

3 Sierpinski Gasket

Definition 4. Sierpinski gasketin our study is a recursively
connected graph with the vertex set and the edge set, where:

(i) Each vertex is labeled by a product termp assigned, as
a decision term. Each vertex associated with product
termp has at least two connected vertexesp1 andp2
correspondingly which are related using the following
triangle rule:

p⊕ p1 ⊕ p2 = 0. (1)

(ii) Each triangle contains three sub-triangles except the
primitive one. The biggest equilateral triangle in Sier-
pinski gasket encloses three equilateral triangles with
the base one third of the size of the original, and with
hole in the center. Replacement of each of those sub-
triangles gives three more sub-triangles, to obtain the
gasket as nine triangles, each with a base of length 1/9.
The repeating of this replacementn−1 times produces
the final gasket.

The vertexes of Sierpinski gasket are addressed accord-
ing to acoordinate convention(Section 3.1).

Example 2. The gasket for the functionf from Example 1
is given in Figure 2.

(2,2,2)

d

d

0

d

d d

d

0 d
(2,2,3) (2,3,2) (2,3,3)

(2,2,1)

(2,1,2)

(2,1,1)

(2,3,1)

(2,1,3)

(3,2,2)

d

d

1

d

d d

d

1 d
(3,2,3) (3,3,2) (3,3,3)

(3,2,1)

(3,1,2)

(3,1,1)

(3,3,1)

(3,1,3)

(1,2,2)

d

d

d

d

1 d

d

d d
(1,2,3) (1,3,2)

(1,3,3)

(1,2,1)

(1,1,2)

(1,1,1)

(1,3,1)

(1,1,3)

Figure 2. Sierpinski gasket for Example 1

As well as other fractals, Sierpinski gasket can be defined
as a recursive procedure. We propose to use the following
recursive procedure to build Sierpinski Gasket (SG) for the
functionf (see Definition 4 for details):

SG(f) = SG(f|x=0) ∪ SG(f|x=1) ∪ SG(f|x=d)

Another technique for building Sierpinski gasket is to
use the truth vector of the functionf :

Step 1. Start building by arranging elements of the truth
vector at the base level (level = 0).

Step 2. Select all pairs of elements, starting from the left
side, EXOR them, and than write them down at the
upper level.

Step 3. Repeat the second step until the level contains one
element only.

Example 3. Consider a two variables functionf specified
by truth vector[abcd]. Figure 3(a) shows the base level
(truth vector) for constructing Sierpinski gasket. The coef-
ficients{a⊕ b ⊕ c⊕ d, b⊕ d, c⊕ d, d} of positive polarity
Reed-Muller expression for given function are represented
by the right side of the triangle (Figure 3(b)), coefficients
{a⊕ b ⊕ c ⊕ d, a ⊕ c, a⊕ b, a} of negative polarity Reed-
Muller expression are located on the left side of the triangle
(Figure 3(c)).

3.1 Properties

To manipulate with Sierpinski gasket as regular fractal
structure, we need to apply a coordinate convention. Two
options can be analyzed.

Coordinate convention 1. Each element (vertex) of the
Sierpinski gasket can be addressed as two-dimentional
array(i, j), where the firsti index corresponds to the

(a)

a⊕b⊕c⊕d

a⊕c b⊕d

c⊕d a⊕b f

a b c d

a⊕c

a⊕b f

a b c d

(b)

a⊕b⊕c⊕d

b⊕d

c⊕d

b⊕d

c⊕d f

a b c d

(c)

a⊕b⊕c⊕d

a⊕c

a⊕b

Figure 3. Sierpinski gasket and the coeffi-
cients of positive polarity and negative po-
larity Reed-Muller expressions

binary code of the product term of variables without
negation, and the secondj is equivalent to the binary
code of the product term with complemented variables.

Lemma 1. The sum of both coordinatesi and j is
equal to level number of the Sierpinski gasket.

Theorem 1. The total memory size (in elements) that
is needed to represent a functionf using Sierpinski
gasket and the coordinate axes described above is
equal to4

n

2
− 2

n

2
.

Theorem 2. The number of vertexes in Sierpinski gas-
ket is equal to3n for then-variable functionf .

Corollary 1. The number of empty elements in Sier-
pinski gasket is equal to4

n

2
− 2

n

2
− 3n.

Coordinate convention 2. Another coordinate convention
assumes that each element of Sierpinski gasket hasn-
dimensional coordinates. For Boolean functions, we
have to encode three states of the variablex: d (the
variable is not present in an expression),x (variable

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

f

(0,0)

i j

(0,1) (1,0)

(2,0) (0,2)

(0,3) (1,2) (2,1) (3,0)

0 0

1 1

2 2

3 3

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

f

(1,1)

(2,1) (3,1)

(1,3) (1,2)

(2,2) (3,2) (2,3) (3,3)

(a) (b)

Figure 4. Different coordinate systems

with complement) andx (variable without comple-
ment). The following values are assigned for variable’s
states: ’1’ for d, ’2’ forx and ’3’ forx. Such encoding
has been chosen to provide the similarity to the triangle
rule (Equation 1):1⊕ 2⊕ 3 = 0.

Theorem 3. The total memory size (in elements)
needed to represent an-variable Boolean functionf
using Sierpinski gasket and then-dimensional coordi-
nates is3n.

These coordinate systems are shown in Figure 4. To min-
imize the space complexity, we have selected the second
coordinate convention to manipulate with Sierpinski gas-
ket (Boolean function) and Sierpinski pyramid (4-valued
function). Recall that coordinate convention assumes that
each element of Sierpinski gasket can be addressed using
n-dimensional coordinates.

3.2 Applications

3.2.1 Logic Expansions

Generally, a decomposition of a Boolean functionf with
respect to arbitrary variablex, or, in other words, an expan-
sion off givenx, can be represented by the formula:

f = (C0 · x · f0) ◦ (C1 · x · f1) ◦ (Cd · fd), (2)

whereC = [C0C1Cd] is a vector of coefficients, and symbol
< ◦ > denotes a logical operation, EXOR for AND/EXOR
expressions. Below we will utilize the following expan-
sions derived from possible combinations of coefficients
C0, C1, Cd: Shannon(S) expansion (C = [110]); positive
Davio (pD) expansion (C = [011]), andnegative Davio
(nD) expansion (C = [101]). The expansion rules and their
multiple-valued counterparts in GF(4) are given in Table 1.

The main difference between the proposed structure of
Sierpinski gasket and the original one (Figure 1(a)) is that
the novel structure reflects the properties of the whole set
of expansions. The simple manipulations with Sierpinski
gasket yield to the rules with triangles (Figure 5).

3.2.2 ESOP

Sierpinski gasket contains complete information to recon-
struct the function in the form of AND/EXOR expression.
Thus, all coefficients of ESOP expression can be obtained
from Sierpinski gasket. And vice versa, ESOP expression
can be uniquely represented by Sierpinski gasket.

Each vertex of Sierpinski gasket has the equivalent in
the form of logic expression (product term): (i) the ones as-
signed to vertexes of Sierpinski gasket correspond to prod-
uct terms of ESOP expression; (ii) zeros andd values are
considered for manipulations only. Final expressions can

Table 1. Shannon and Davio expansions and
their analogues in GF(4)

Type Rule of Expansion
S f = x · f|x=0 ⊕ x · f|x=1

pD f = f|x=0 ⊕ x · (f|x=0 ⊕ f|x=1)

nD f = f|x=1 ⊕ x · (f|x=0 ⊕ f|x=1)

4−S f = J0(x) · f|x=0 + J1(x) · f|x=1+
J2(x) · f|x=2 + J3(x) · f|x=3,

4−pD f = f|x=0 + x · (f|x=1 + 3f|x=2 + 2f|x=3)
+x2 · (f|x=1 + 2f|x=2 + 3f|x=3)
+x3

· (f|x=0 + f|x=1 + f|x=2 + f|x=3)

1−4−nD f = f|x=1 + 1−x · (f|x=0 + 2f|x=2 + 3f|x=3)
+1−x2

· (f|x=0 + 3f|x=2 + 2f|x=3)
+1−x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

2−4−nD f = f|x=2 + 2−x · (3f|x=0 + 2f|x=1 + f|x=3)
+2−x2 · (2f|x=0 + 3f|x=1 + f|x=3)
+2−x3 · (f|x=0 + f|x=1 + f|x=2 + f|x=3)

3−4−nD f = f|x=3 + 3−x · (2f|x=0 + 3f|x=1 + f|x=2)
+3−x2 · (3f|x=0 + 2f|x=1 + f|x=2)
+3−x3

· (f|x=0 + f|x=1 + f|x=2 + f|x=3)

be formed using EXOR operation applied for product terms.
We interpretd as an unspecified coefficient of ESOP expres-
sion. For arbitrary functionf we can build a set of Sierpin-
ski gaskets with different costs (number of product terms,
number of literals). Valued allows us to manipulate with
the set of gaskets, for example, to find the gasket and re-
ferred ESOP expression with the minimal cost. The manip-
ulation rules which can lead to extension and simplification
of the logic expression are presented in Figure 6(a).

Example 4. The gasket from Figure 2 contains the follow-
ing ones coordinates: (1,2,2), (3,1,3) and (3,3,2). These
coordinates produce ESOP expression:x2 · x3 ⊕ x1 · x3 ⊕
x1 · x2 · x3.

3.2.3 Multiple-valued Functions

The approach that is presented above has been generalized
for multiple-valued functions. Figure 7(b) gives a graphi-
cal representation of Sierpinski gasket for 4-valued function
(fixed polarity4 − pD in GF(4)). One can conclude that
this graph denotes Sierpinski pyramid. Another pyramid
of a Sierpinski kind will serve as a representation of mixed
polarity expression for 4-valued function (Figure 7(c)). Ma-
nipulation rules are given in Figure 6(b). We have consid-
ered 4-valued functions, hence this approach can be gener-
alized for functions with any radix.

(a)

1

x1 x1

x2 x2

(b)

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

(c)

1

x1

x2

1

x3

1

1

x2

x2

2

x3

2

x1
x3

1

x2

1

x2

1
x2

2

x3

1
x3

2
 x

1
x

2

x3

1
x2

2

x2

1
x3

2

x
1
x2

2

x2

1
x

2

x
1
x3

2
 x3

1
x

2

1

x1

x2

1

x3

1

1
1

1

2-x2

1

3-x3

1
 1-x

1

3-x2

1

2-x3

1

1-x2

1

2-x
1

1-x3

1
 3-x

1

f

f

Figure 7. The evolution of Sierpinski gasket representatio ns for Boolean and 4-valued functions

f

(1,…)

(1,…) (1,…)

(3,…) (2,…)

(2,…) (2,…) (3,…) (3,…)

Shannon

f|x=0 f|x=1

f

(1,…)

(1,…) (1,…)

(3,…) (2,…)

(2,…) (2,…
)

(3,…) (3,…)

positive Davio

f|x=0

f|x=0⊕f|x=1

f

(1,…)

(1,…) (1,…)

(3,…) (2,…)

(2,…) (2,…) (3,…) (3,…)

negative Davio

f|x=1

f|x=0⊕f|x=1

Figure 5. Representation of expansions using
Sierpinski gasket

4 Minimization Algorithm and Experiments

The sketch of theSierpinski − GFSOP algorithm is
depicted below.

4.1 Algorithm Sierpinski − ESOP
(Sierpinski−GFSOP)

1. Generate non-zero vertexes of Sierpinski

Gasket (Sierpinski Pyramid);

2. Apply simplification or extension

rules to existing Sierpinski Gasket

(Sierpinski Pyramid);

3. Calculate the cost function (number of

product terms or literals);

4. Choose backtracking if no improvements.

Note that this algorithm manipulates with non-zero co-
efficients only applying rules of fractal geometry.

Example 5. The steps of ESOP minimization for the func-
tion f = x1 ∨ x1 · x2 with truth vector[1011] are given

(a)

(b)

Extension

I
Extension

Simplification

II

d d

1

1 1

0

1 d

d

d 1

1

Simplification

d

1

d

d

Extension

Simplification

3

0

1

2

3

d

d

d

d

0

1

2

Extension

Simplification

Figure 6. Manipulation rules for 4-valued func-
tions represented by Sierpinski gasket

in Figure 8. Finally, the gasket contains the following ones
coordinates: (2,3) and (1,1). These coordinates produce
ESOP expression:1⊕ x1x2.

4.2 Complexity

Minimization algorithm presented here is similar to
EXORCISM − MV 3 developed in [10]. It should be
mentioned that the algorithmEXORCISM − MV 3 al-
lows to minimize only multiple-valued input, two-valued
output functions. However, in this paper, we are consid-
ering multiple-valued input, multiple-valued output func-
tions. Our manipulation technique is based on fractal no-
tations and graph simplifications.

The space required to store the entire Sierpinski gasket
for Boolean functionf and ESOP minimization isO(3n)
memory locations,O(4n) to represent and manipulate with
fixed polarity expressions in GF(4), andO(16n) – for mixed
polarity representations of 4-valued functions.

4.3 Experimental Results

OurSierpinski− ESOP (Sierpinski−GFSOP for
multiple-valued functions) program in C++ implements the
above described algorithm to minimize ESOP expressions
and multiple-valued functions. All the experiments have
been carried out on a 800MHz Pentium PC with 128Mb
of memory.

4.3.1 ESOP minimization

In the first series of experiments, we have selected sev-
eral LGSynth93 benchmarks to build Sierpinski gaskets and
minimize ESOP expressions. Thus, forxor5 with 5 in-
puts, the number of ones vertexes in the gasket is 5, and
therefore there is 5 product terms in ESOP expression. For
9sym with 9 inputs, the number of ones vertexes is equal to
84, which is the number of product terms of ESOP expres-
sion. Table 2 contains the details of comparison between
the proposed approach and two techniques: (i) symbolic
manipulation EXORCISM-MV3 [10] and (ii) DD based
Est/Greedy [5]. In many cases, our program demon-
strated superior results. Memory allocation for the selected
set of benchmarks using Sierpinski gaskets is 1.4 times ef-
fective than using BDDs (for instance, 14 bytes forxor5
and 292 bytes for9sym instead of 96 bytes and 400 bytes
correspondingly in case of BDDs).

4.3.2 Minimization in GF(4)

In the second series of experiments, we have tested
Sierpinski−GFSOP on several 4-valued benchmarks
(Table 3). The 4-valued benchmarks were generated by
pairing inputs and outputs of MCNC benchmarks. The ex-
perimental results demonstrate thatSierpinski−GFSOP
produces the fewer number of terms and literals against the
program based on information theoretic measuresInfo−
MV PSDRMGF (see [13] for details), however the program
Info−MV is extremely faster.

5 Concluding Remarks

We have presented a novel approach for representing
logic functions using fractals, namely the structures of Sier-
pinski gasket and Sierpinski pyramid are used. Several re-
lated issues such as coordinate convention and memory al-
location have been discussed. Due to the recursive nature
of Sierpinski gasket, the proposed techniques for construct-
ing triangles are efficient in both run-time and storage. It
becomes possible to develop manipulation algorithms, like
ESOP minimization or minimization of multiple-valued
functions in GF(4), using representation in the form of Sier-
pinski gasket.

References

[1] R. Bryant. Graph - based algorithm for Boolean function
manipulation. IEEE Trans. on Computers, C-35(8):667–
691, 1986.

[2] J. Butler, G. Dueck, V. Shmerko, and S. Yanushkevich.
Comments on ”Sympathy”: Fast exact minimization of fixed
polarity Reed-Muller expansion for symmetric functions.
IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(11):1386–1388, 2000.

[3] A. Dani, D. Popel, and A. Tomaszewska. Minimizing esop
expressions using fractals. InProc. 10th Int. Workshop on
Post-Binary Ultra-Large Scale Integration, 2001.

[4] D. Green. Reed-Muller expansions with fixed and mixed
polarities over GF(4).IEE Proceedings, Pt. E., 137(5):380–
388, 1990.

[5] P. Lindgren, R. Drechsler, and B. Becker. Look-up table
FPGA synthesis from minimized multi-valued Kronecker
expressions. InProc. IEEE Int. Symp. on Multiple-Valued
Logic, pages 95–100, 1998.

[6] B. Mandelbrot. The Fractal Geometry of Nature. Freeman
& Co, 1982.

[7] D. Popel. Towards efficient calculation of information mea-
sures for reordering of Binary Decision Diagrams. InProc.
IEEE Int. Symp. on Signals, Circuits and Systems, pages 509
– 512, 2001.

[8] T. Sasao. Switching Theory for Logic Synthesis. Kluwer
Academic Publishers, 1999.

[9] W. Sierpinski. On a curve every point of which is a point of
ramification.Prace Mat. Fiz. (In Polish), 27:77–86, 1916.

[10] N. Song and M. Perkowski. New fast approach to approxi-
mate ESOP minimization for incompletely specified multi-
output functions. InProc. IFIP 10.5 Workshop on Appli-
cation of Reed-Muller Expansions in Circuit Design, pages
61–72, 1997.

[11] P. St.Denis and P. Grim. Fractal images of formal systems.
The Journal of Philosophical Logic, 26:181–222, 1997.

[12] V. Suprun. Fixed polarity Reed-Muller expressions of sym-
metric Boolean functions. InProc. IFIP 10.5 Workshop on
Application of Reed-Muller Expansions in Circuit Design,
pages 246–249, 1995.

[13] S. Yanushkevich, D. Popel, V. Shmerko, V. Cheushev, and
R. Stanković. Information theoretic approach to minimiza-
tion of polynomial expressions over GF(4). InProc. IEEE
Int. Symp. on Multiple-Valued Logic, pages 265–270, 2000.

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

x2 x2

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2

f

1 0 1 1

d 0

0 d

d

f

1 0 d d

f

1 0 d d

1 0

0 d

1

f

d 1 d d

d 0

0 d

1

I II III IV

d 1

d

0 d

Figure 8. Steps of ESOP minimization using Sierpinski gaske t

Table 2. Experimental results in ESOP minimization
EXORCISM −MV 3 [10] Est/Greedy [5] Sierpinski−ESOP

I/O T/L T/L T/L
xor5 5/1 5/10 - 5/5
rd53 5/3 14/57 - 17/48
bw 5/28 22/319 20/- 26/122
inc 7/9 26/176 31/- 32/153
5xp1 7/10 32/170 47/- 55/166
9sym 9/1 51/426 - 84/449
apex4 9/19 439/6181 - 438/3692
sao2 10/4 28/288 41/- 55/370
ex1010 10/10 670/7466 - 879/7014
duke2 22/29 78/909 108/- 91/793
x6dn 39/5 - 104/- 113/1026
x7dn 66/15 - - 594/4610

Table 3. Comparison of Info−MV [13] and Sierpinski−GFSOP on 4-valued benchmarks
Info−MV PSDRMGF Info−MV PSDKGF Sierpinski−GFSOP

I/O T/L/t T/L/t T/L/t
5xp1 3/5 165/521/0.04 142/448/0.39 140/453/4.53
9sym 5/1 246/800/0.12 201/776/0.29 193/764/30.87
bw 3/14 54/144/0.02 44/132/0.02 42/140/5.91
clip 5/3 825/3435/4.50 664/2935/4.51 606/2802/40.03
con1 4/1 50/138/0.53 19/50/0.42 18/48/12.75
ex1010 5/5 1018/4076/8.06 997/4985/8.61 912/3977/145.80
inc 4/5 146/493/0.36 65/216/0.82 60/198/15.49
misex1 4/4 48/108/3.6 15/38/0.02 15/43/9.76
rd84 4/2 207/656/0.85 207/656/1.05 207/656/9.96
sao2 5/2 252/1133/4.8 96/437/0.24 81/365/37.06
squar5 3/4 51/135/0.01 48/128/0.03 42/112/10.15

(a)

1

x1 x1

x2

x2

1

1

f

x1 x1
T

x2
T

1
x2

1
x2 x2

T

x2 x2

(b)

x1 x1

1

x1x2 x1 x2 x1x2 x1 x2 T

f

f

1

f

x1 x1
T

