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Abstract

Many computational problems arising in artificial intel-
ligence, computer science and elsewhere can be represented
as constraint satisfaction and optimization problems. In this
short survey we discuss an approach that is related to the
algebraic component of multiple-valued logic and that has
proved to be very succesful in studying the complexity of
constraint satisfaction.

1. Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) is a power-
ful general framework in which a variety of combinato-
rial problems can be expressed [12, 31, 32, 44]. The aim
in a constraint satisfaction problem is to find an assign-
ment of values to the variables subject to specified con-
straints. In artificial intelligence, this framework is widely
acknowledged as a convenient and efficient way of mod-
elling and solving a number of real-world problems such
as planning [26] and scheduling [45], frequency assign-
ment problems [16] and image processing [34], program-
ming language analysis [35] and natural language under-
standing [1]. In database theory, it has been shown that the
key problem of conjunctive-query evaluation can be viewed
as a constraint satisfaction problem [19, 30]. Furthermore,
some central problems in combinatorial optimization can be
represented as constraint problems [12, 28]. Finally, CSPs
have attracted much attention in complexity theory because
various versions of CSPs lie at the heart of many standard
complexity classes, and because, despite their great expres-
siveness, they tend to avoid “intermediate” complexity; that
is, they tend to be either tractable or complete for stan-
dard complexity classes [12, 17]. On a more practical side,
constraint programming is a rapidly developing area with

its own international journal and an annual international
conference, and with new programming languages being
specifically designed (see, e.g., [32]).

The standard toy example of a problem modelled as
a constraint satisfaction problem is the 8-queen problem:
place eight queens on a chess board so that no queen can
capture any other one. One can think of the horizontals of
the board as variables, and the verticals as the possible val-
ues, so that assigning a value to a variable means placing a
queen on the corresponding square of the board. The fact
that no queen must be able to capture any other queen can
be represented as a collection of binary constraints � �� , one
for each pair of variables �� �, where the constraint � �� al-
lows only those pairs ��� �� such that a queen at position
��� �� cannot capture a queen at position ��� ��. It is easy to
see that every solution of this constraint satisfaction prob-
lem corresponds to a “legal” placing of the 8 queens.

Now let us give a formal definition of the CSP.

Definition 1 An instance of a constraint satisfaction prob-
lem is a triple ����� �� where

� � is a finite set of variables,

� � is a set of values (sometimes called a domain), and

� � is a set of constraints ���� 	 	 	 � ���,

in which each constraint �� is a pair �
�� ��� with 
�
a list of variables of length ��, called the constraint
scope, and �� an ��-ary relation over the set � called
the constraint relation.

The question is whether there exists a solution to ����� ��,
that is, a function from � to� such that, for each constraint
in �, the image of the constraint scope is a member of the
constraint relation.



In this paper we consider only CSPs with a finite do-
main of values, so we will always assume that � � � �
��� �� 	 	 	 � � � � ��, � � �. Now we give some examples of
natural problems and their representations as CSPs.

Example 1 An instance of the standard propositional SAT-
ISFIABILITY problem [18, 36] is specified by giving a for-
mula in propositional logic, that is, a conjunction of clauses,
and asking whether there are values for the variables which
make the formula true.

Suppose that � � ��	
 
 
	�� is such a formula, where
the �� are clauses. The satisfiability question for � can be
expressed as the instance ����� �� of CSP, where � is the
set of all variables appearing in the clauses ��, and � is the
set of constraints ��
�� ���� 	 	 	 � �
�� ����, where each con-
straint �
�� ��� is constructed as follows: 
� is the list of
variables appearing in �� and �� consists of all tuples that
make �� true. The solutions of this CSP instance are exactly
the assignments which make the formula � true. Hence,
any instance of SATISFIABILITY can be expressed as an in-
stance of CSP. �

Example 2 An instance of GRAPH UNREACHABILITY

consists of a graph � � ���� and a pair of vertices,
�� � � � . The question is whether there is no path in �

from � to �. This can be expressed as the CSP instance
����� �� where � is the following set of constraints:

���� ���� ��� ��� ������ � ������� ������� ����� �������	

�

Many other examples of well-known problems expressed
as CSPs can be found further in this paper and also in [23].

Example 1 suggests that any instance of CSP can be
represented in a logical form. Indeed, using the stan-
dard correspondence between relations and predicates, one
can re-write an instance of CSP as a first-order formula
���
��	 	 	 		���
�� where �� (� � � � �) are predicates on
� and ���
�� means �� applied to the tuple 
� of variables.
The question then would be whether this formula is satisfi-
able [42]. In this paper we will be working with this logical
form of CSP. This form is commonly used in database the-
ory because it corresponds so closely to conjunctive query
evaluation [30].

Another important reformulation of CSP is the HOMO-
MORPHISM problem: whether there exists a homomor-
phism between two relational structures (see [17, 19, 30]).

2. Related Constraint Problems

As with many other computational problems, it is not
only the decision version of CSP (that is, whether or not a
solution exists) which is of interest. There are many related

problems that have been studied, and in this section we give
a brief overview of some of these.

� Counting Problem
How many solutions does a given instance have?

A standard natural problem associated with every com-
putational decision problem [12].

� Quantified Problem
Given a fully quantified instance of CSP, is it true?

Problems of this form have been fundamental exam-
ples of PSPACE-complete problems [12, 14, 42]. Any
instance of ordinary CSP can be viewed as an instance
of this problem with all quantifiers existential.

� Minimal Solution
Given an instance and some solution to it, is there a
solution that is strictly less (point-wise) than the given
one?

This problem is connected with propositional circum-
scription, a framework used in artificial intelligence to
formalize common-sense reasoning [29].

� Equivalence
Given two instances, do they have the same sets of so-
lutions?

In database theory, this corresponds to the question of
whether or not two queries are equivalent [2].

� Inverse Satisfiability
Given a set of �-tuples, is it the set of all solutions of a
CSP instance of some certain type?

This problem is related to efficient knowledge repre-
sentation issues in artificial intelligence [27].

� Listing Problem
Generate all solutions of a given instance.

A standard natural problem associated with every com-
putational decision problem [12].

� MAX CSP
Maximize the number of satisfied constraints in an in-
stance.

A number of optimization problems, e.g., maximum
cut, can be expressed as MAX CSP problems [12, 28].

� Maximum Solution
Maximize the sum of values in a solution of an in-
stance.

Many optimization problems including maximum
clique are of this form; in the Boolean case this prob-
lem is known as MAX ONES [12, 28].



� Maximum Hamming Distance
Find two solutions that are distinct in a maximal num-
ber of variables.

The “world difference” in the blocks world problem
from knowledge representation can be modelled in this
way [13].

3. Parameterization of the CSP

The main object of our interest is the complexity of con-
straint satisfaction problems. We refer the reader to [36] for
a general background in complexity theory and the defini-
tions of standard complexity classes. In general, the stan-
dard decision-problem form of the CSP is NP-complete, as
one can see from Example 1, so it is unlikely to be computa-
tionally tractable. However, certain restrictions on the form
of the problems can ensure tractability, that is, solvability in
polynomial time (see, e.g., [37]).

With any CSP instance one can associate two natural pa-
rameters: a hypergraph, showing which variables constrain
which others, and a set of relations reflecting the way in
which the values are constrained. The hypergraph is defined
on the set of variables used in the instance, each hyperedge
consisting of all variables appearing in one constraint scope.
The set of relations consists of the constraint relations used
in the instance. Therefore the general CSP can be restricted
by fixing the set of hypergraphs or the set of relations that
are allowed to be used in instances.

The case when the set of hypergraphs is fixed has been
studied in connection with databases [19, 30]. In this pa-
per we concentrate on the case when the set of relations
allowed in instances is fixed, but there is no restriction on
the form of the associated hypergraphs. Let � ���

� denote
the set of all �-ary relations (or predicates) on �, and let
�� �

�
�

����
���
� .

Definition 2 A constraint language over � is a subset � of
��.

The constraint satisfaction problem over �, denoted
CSP���, is the subclass of CSP defined by the following
property: any constraint relation in any instance must be-
long to �.

Of course, such a parameterization can be considered for
all the related constraint problems discussed above.

We now give some examples of well-known problems
expressible as CSP��� for suitable sets �.

Example 3 The NOT-ALL-EQUAL SATISFIABILITY prob-
lem [18, 42] is a restricted version of the standard SATIS-
FIABILITY problem which remains NP-complete. In this
problem the clauses are ternary, and each clause is satisfied
by any assignment in which the variables of the clause do
not all receive the same truth value.

This problem corresponds to the problem CSP�����
where � is the following ternary relation on ��� ��:

� � ��� ��� � ���� �� ��� ��� �� ���	

�

Example 4 An instance of GRAPH �-COLORABILITY

consists of a graph �. The question is whether the vertices
of � can be labelled with � colours so that adjacent vertices
are assigned different colours.

This problem corresponds to the problem CSP������
��

where ����
is the disequality relation on � given by

����
� ���� �� � �

� � � �� ��	

This problem is tractable if � � � and it is NP-complete for
any � � 	 (see [18]).

�

Example 5 An instance of LINEAR EQUATIONS is a sys-
tem of linear equation over a field. It is easy to see that this
problem can be expressed as CSP��� where � consists of
all relations expressible by a linear equation. This problem
is tractable. �

Following a seminal work by Schaefer in 1978 [42],
many researchers have studied the following problem:

Problem 1 Determine the complexity of a given constraint
problem for all possible values of the parameter �.

Most progress has been made in the Boolean case (that
is, when the set of values is �), such problems are some-
times called “generalized satisfiability problems”. Schae-
fer obtained a complete classification for the ordinary CSP
over � [42], which is described in Section 6. Over the last
decade, classifications for many related Boolean constraint
problems, including all of the problems mentioned in Sec-
tion 2, have been completed [2, 12, 13, 14, 27, 29]. Some
of these classifications are also described in Section 6.

Classifying the complexity in the non-Boolean case has
proved to be a very difficult task. However, the approach
described in the next two sections has made it possible to
obtain strong results in this direction; we discuss these re-
sults in Section 7.

4. Expressive Power of Constraint Languages

In any constraint satisfaction problem instance some of
the required relationships between variables are given ex-
plicitly in the constraints, whilst others generally arise im-
plicitly from interactions of different constraints. For any
instance in CSP���, the explicit constraint relations must
be elements of �, but there may be implicit restrictions on



some subsets of the variables for which the corresponding
relations are not elements of �, as the next example indi-
cates.

Example 6 Let � be the set containing a single binary re-
lation, �, over the set �, where � is defined as follows:

� � ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���	

One element of CSP��� is the instance

� � ����� ��� ��� ���� �� ���� ��� ��� ��� �����

where
� �� � ����� ���� ��;

� �� � ����� ���� ��;

� �� � ����� ���� ��;

� �� � ����� ���� ��.

� �� � ����� ���� ��.

�
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Figure 1. The CSP instance �

Note that there is no explicit constraint on the pair
���� ���. However, by considering all solutions to �, it
can be shown that the possible pairs of values which can
be taken by this pair of variables are precisely the elements
of the relation �� � �  ���� ���. �

We now define exactly what it means to say that a constraint
relation can be expressed in a constraint language.

Definition 3 A relation � can be expressed in a constraint
language � over � if there exists a problem instance
����� �� in CSP���, and a list, 
, of variables, such that
the solutions to ����� �� restricted to 
 give precisely the
tuples of �.

For any constraint language �, the set of all relations which
can be expressed in � will be called the expressive power of
�.

This set can be characterised in a number of different
ways [25]. For example, it is equal to the set of all relations
that may be obtained from the relations in � using the rela-
tional join and project operations from relational database

theory [20]. Alternatively, it can be shown to be equal to
the set of relations definable by primitive positive formulas
involving the relations of � and equality, which is defined
as follows.

Definition 4 For any set of relations � over �, the set ���
consists of all relations that can be expressed using

1. relations from �, together with the binary equality re-
lation on � (denoted ���

),

2. conjunction, and

3. existential quantification.

Example 7 Example 6 demonstrates that the relation� � be-
longs to the expressive power of the constraint language
� � ���. It is easy to deduce from the construction given
in Example 6 that

����� �� � �������� ��	���� ��	���� ��	���� ��	���� ��	

Hence, �� � �����. �

5. Polymorphisms and Complexity

In this section we shall explore how the notion of ex-
pressive power may be used to simplify the analysis of the
complexity of the constraint satisfaction problem.

We first note that any relation that can be expressed in a
language � can be added to � without changing the com-
plexity of CSP���.

Proposition 1 For any constraint language � and any
relation � belonging to the expressive power of �,
CSP��  ���� is reducible in polynomial time to CSP���.

This result can be established simply by noting that, given
any problem instance in CSP��  ����, we can obtain an
equivalent instance in CSP��� by replacing each constraint
� that has constraint relation � with a collection of con-
straints that have constraint relations chosen from� and that
together express the constraint �.

By iterating this procedure we can obtain the following
corollary.

Corollary 1 For any constraint language �, and any finite
constraint language �	, if �	 is contained in the expressive
power of �, then CSP��	� is reducible to CSP��� in poly-
nomial time.

Corollary 1 implies that for any finite constraint language�,
the complexity of CSP��� is determined, up to polynomial-
time reduction, by the expressive power of �, and hence
by ���. This raises an obvious question: how can we ob-
tain sufficient information about the set ��� to determine
the complexity of CSP���?



A very successful approach to this question has been de-
veloped in [10, 23, 24], using techniques from universal al-
gebra and multiple-valued logic [33, 39]. To describe this
approach, we need to consider arbitrary �-valued operations
(or functions). We will use �

���
� to denote the set of all �-

ary operations on the set � (that is, the set of mappings
� 
�

� � �), and �� to denote the set
�
�

����
���
� .

An operation � � �
���
� will be called essentially unary

if there exists some � in the range � � � � �, and some op-
eration � � �

���
� such that the following identity is satisfied

����� ��� 	 	 	 � ��� � �����	

An essentially unary operation with � being the identity op-
eration is called a projection. Any operation (of whatever
arity) which is not essentially unary will be called essen-
tially non-unary.

Any operation on � can be extended in a standard
way to an operation on tuples over �, as follows. For
any operation � � �

���
� , and any collection of tu-

ples �������� 	 	 	 ���� � �
� , where ��� � ������ 	 	 	 ������

�� � � 	 	 	 ��, define ������ 	 	 	 ����� to be the tuple
� ������� 	 	 	 ������� 	 	 	 � ������� 	 	 	 ������ �	

Definition 5 For any relation  � �
���
� , and any oper-

ation � � �
���
� , if ������ 	 	 	 ����� �  for all choices of

���� 	 	 	 ���� �  , then  is said to be invariant under � , and
� is called a polymorphism of  .

The set of all relations that are invariant under each opera-
tion from some set � � �� will be denoted Inv(�). The
set of all operations that are polymorphisms of every rela-
tion from some set � � �� will be denoted Pol(�). The op-
erators Inv and Pol form a Galois correspondence between
�� and �� (see Proposition 1.1.14 of [39]). A basic intro-
duction to this correspondence can be found in [38], and a
comprehensive study in [39].

∅

Sets of 
relations

Sets of 
operations

Rk

G

Pol(G)Inv(Pol(G))

Pol

Inv
= ·GÒ

Ok

∅

Figure 2. The operators Inv and Pol

Sets of operations of the form Pol(�) are known as
clones and sets of relations of the form Inv(�) are known

as relational clones [39]; they have received much atten-
tion in multiple-valued logic (see, e.g., [41]). Moreover,
the following useful characterisation of sets of the form
Inv(Pol(�)) is given in [39].

Theorem 1 For every set � � ��, Inv(Pol(�)) � ���.

This result was combined with Corollary 1 to obtain the fol-
lowing result in [23].

Theorem 2 For any constraint language � � ��, and any
finite constraint language �	 � ��, if Pol(�) � Pol(�	),
then CSP��	� is reducible to CSP��� in polynomial time.

This result implies that, for any finite constraint language �
over a finite set, the complexity of CSP��� is determined,
up to polynomial-time reduction, by the polymorphisms of
�.

Now we are faced with a new question: how can we
obtain sufficient information about Pol(�) to determine the
complexity of CSP���? Happily, it can be shown that this
question can itself be formulated as a particular form of con-
straint satisfaction problem.

Definition 6 Let � be a constraint language over �.
For any natural number � ! �, the indica-

tor problem for � of order � is defined to be the
constraint satisfaction problem instance ������� �
��

� � �� ���� ��� 	 	 	 � ����, where � �
�

��
 ���
�, and

the constraints ��� ��� 	 	 	 � �� are defined as follows.
For each � � �, and for each sequence "�� "�� 	 	 	 � "�

of tuples from �, there is a constraint �� � �
�� �� with

� � ���� ��� 	 	 	 � ���, where � is the arity of � and �� �
�"����� "����� 	 	 	 � "����� for � � � to �.

Note that for any set of relations � over a set �, the indica-
tor problem ������� has �� variables, and each variable
corresponds to an �-tuple over �. It is straightforward to
check that the solutions to ������� are precisely the map-
pings from �

� to � under which every element of � is
invariant, that is, the polymorphisms of �.

Several concrete examples of indicator problems and
their solutions can be found in [22].

Example 8 Consider the constraint language � � ���,
where � is the binary ”not-all-equal” relation over � de-
fined in Example 3.

The indicator problem for � of order 3, ����� 	�, has 8
variables and 216 constraints, and has exactly 6 solutions.
Each of these solutions is an essentially unary operation.

Hence Pol(�) contains only six distinct ternary opera-
tions, which are all essentially unary. Using general results
from clone theory [43], it can be shown that this implies
that in this case Pol(�) contains essentially unary operations
only. �



Example 9 Consider the constraint language � � ��� #�,
where � is the binary relation over � defined in Example 6
and # is the ternary relation over � containing the single
tuple ��� �� ��.

The indicator problem for � of order 3, ����� 	�, has
27 variables and 217 constraints, but has only 3 solutions.
Each of these solutions is a projection operation.

Hence Pol(�) contains only three distinct ternary opera-
tions, which are the three ternary projection operations. Us-
ing general results from clone theory [43], it can be shown
that this implies that in this case Pol(�) contains only pro-
jections. �

6. Complexity of Boolean Problems

In this section we describe some of the results that have
been obtained concerning the complexity of Boolean con-
straint problems, that is, problems over a two-valued do-
main.

The first result of this kind was a complete classifica-
tion of the complexity of the ordinary Boolean constraint
satisfaction problem obtained by Schaefer in 1978 [42].
A computational problem is called tractable if there is a
polynomial-time algorithm deciding every instance of the
problem.

Theorem 3 For any set of relations � � ��, CSP��� is
tractable when one of the following conditions holds:

1. Every � in � contains the tuple ��� �� 	 	 	 � ��.

2. Every � in � contains the tuple ��� �� 	 	 	 � ��.

3. Every � in � is definable by a CNF formula in which
each conjunct has at most one negated variable.

4. Every � in � is definable by a CNF formula in which
each conjunct has at most one unnegated variable.

5. Every � in � is definable by a CNF formula in which
each conjunct has at most two literals.

6. Every � in � is definable by a system of linear equa-
tions over the field with two elements.

In all other cases CSP��� is NP-complete.

This result establishes a dichotomy for versions of this prob-
lem parameterised by the choice of constraint language:
they are all either tractable or NP-complete. Dichotomy
theorems of this kind are of particular interest because, on
the one hand, they determine the precise complexity of par-
ticular constraint problems, and, on the other hand, they
demonstrate that no problems of intermediate complexity
can occur in this context.

Using the algebraic approach developed in the previous
sections, together with the knowledge of possible clones on
a two-element set obtained in [40], Schaefer’s result can be
reformulated in the following much more concise form.

Theorem 4 For any set of relations � � ��, CSP��� is
tractable when Pol(�) contains any essentially non-unary
operation or a constant operation. Otherwise it is NP-
complete.

Example 10 Recall the relation � over � defined in Ex-
ample 3. It was shown in Example 8 that Pol(���) contains
essentially unary operations only, and hence, by Theorem 4,
CSP����� is NP-complete. �

Schaefer’s result has inspired a series of analogous in-
vestigations for many related constraint problems, includ-
ing those listed in Section 2. We will now list the complex-
ity classification results that have recently been obtained for
these problems in the Boolean case. Surprisingly, for a wide
variety of such related problems it turns out that the poly-
morphisms of the constraint language are highly relevant to
the study of the computational complexity.

Theorem 5 Let � � �� be a Boolean constraint language.
Then the following is true about constraint problems pa-
rameterized by �.

� The Counting Problem is tractable if Pol(�) contains
the unique affine operation on�, ���$. Otherwise
it is #P-complete [11, 12].

� The Quantified Problem is tractable if Pol(�) con-
tains an essentially non-unary operation. Otherwise it
is PSPACE-complete [12, 14].

� The Equivalence problem is tractable if Pol(�) con-
tains an essentially non-unary operation or a constant
operation. Otherwise it is coNP-complete [2].

� The Inverse Satisfiability problem is tractable if
Pol(�) contains an essentially non-unary operation.
Otherwise it is coNP-complete [27].

� The Maximum Hamming Distance problem is
tractable if Pol(�) contains either a constant, or the
affine operation and the negation operation on �[13].

A full description of these results requires the careful def-
inition of the relevant complexity classes and reductions,
which is beyond the scope of this short review, so we refer
the reader to the cited papers for details.

Example 11 Recall the relation � over � defined in Ex-
ample 3. It was shown in Example 8 that Pol(���) contains
essentially unary operations only. Hence, by Theorem 5, we
can immediately conclude that:



� Counting the number of solutions to an instance of
CSP����� is #P-complete;

� Deciding whether a quantified Boolean formula in-
volving only conjunctions of the relation � is true is
PSPACE-complete.

� Deciding whether two instances of CSP����� have
the same solutions is coNP-complete;

� Deciding whether a given set of �-tuples is the set
of solutions to some instance of CSP����� is coNP-
complete.

�

7. Complexity of Non-Boolean Problems

Obtaining a complete complexity classifications for a
constraint problem over an arbitrary set of values contain-
ing more than 2 elements, remains a very challenging open
problem, even for the standard decision-problem version
of the CSP set out in Definition 1. One reason for this is
that in the Boolean case the number of relational clones
is countable and they are all fully characterized [39, 40],
but for � � 	 the number of relational clones is continuum
(see, e.g., [39]), and there is strong evidence that a descrip-
tion similar to the � � � case is impossible to obtain (see,
e.g., [4]).

However, using the algebraic approach described above a
large number of tractable and NP-complete cases have now
been identified for constraint problems over arbitrary finite
sets of values. To describe these cases we need to define a
number of special operations.

Definition 7

� A binary operation � is said to be a semilattice opera-
tion if it satisfies the following identities:

(a) ���� �� � �; (idempotency)

(b) ���� �� � ���� ��; (commutativity)

(c) ������ ��� $� � ���� ���� $��. (associativity)

� An operation � is said to be a near-unanimity opera-
tion if it satisfies the following identities

���� �� 	 	 	 � �� � ���� �� �� 	 	 	 � �� � 	 	 	

� ���� 	 	 	 � �� �� � �	

� A ternary operation � is said to be a Mal’tsev opera-
tion if it satisfies the following identities

���� �� �� � ���� �� �� � �	

� An �-ary operation � is said to be conservative if
����� 	 	 	 � ��� � ���� 	 	 	 � ��� for all ��� 	 	 	 � ��.

Theorem 6 Let � � �� be a constraint language.
If Pol(�) contains one of the following operations then

CSP��� is tractable: a constant operation [24]; a semi-
lattice operation [24]; a near-unanimity operation [24]; a
Mal’tsev operation [6]; or a binary commutative conserva-
tive operation [8].

If Pol(�) contains essentially unary surjective opera-
tions only, then CSP��� is NP-complete [24].

Example 12 Recall the binary disequality relation ����
de-

fined in Example 4. It is straightforward to check that
Pol(�����

�) contains the unique ternary near-unanimity op-
eration on �. Hence, by Theorem 6, CSP������

��, which
corresponds to the GRAPH 2-COLORABILITY problem, is
tractable.

However, it is shown in [39] that for any � � 	,
Pol(�����

�) contains essentially unary surjective operations
only. Hence, by Theorem 6, CSP������

��, which corre-
sponds to the GRAPH �-COLORABILITY problem, is NP-
complete for any � � 	. �

Example 13 Let � be a prime number, and consider � as
a finite field. For any set of relations � over �, where each
� � � is definable by a linear equation, Pol(�) will contain
the Mal’tsev operation � given by

���� �� $� � �� �  $	

Hence, by Theorem 6, CSP���, which corresponds to the
LINEAR EQUATIONS problem, is tractable. �

Example 14 Recall the relations � and # over � de-
fined in Examples 6 and 9. It is straightforward to check
that Pol(���) contains the constant operation with value
0, hence, by Theorem 6, CSP����� is tractable. More-
over, Pol(�#�) contains the semilattice operation ��� 

�
� � �, which returns the maximum of its two argu-

ments. Hence, by Theorem 6, CSP��#�� is tractable.
However, it was shown in Example 9 that Pol(��� #�)

contains only projections. Hence, by Theorem 6,
CSP���� #�� is NP-complete. �

We remark that the technique discussed in this paper is
based on clone theory, but it has been extended in [6, 7, 9,
10, 15] to involve more powerful machinery from universal
algebra [21, 43]. Using this approach, the following result
was proved in [5].

Theorem 7 Let � be an arbitary constraint language over
�. Then CSP��� is either tractable or NP-complete.



In fact, [5] contains a precise description of all tractable and
NP-complete constraint languages over �, and an algo-
rithm for distinguishing them; we refer the reader to that
paper for details.

Finally, we consider what is known in the non-Boolean
case about two of the related constraint problems described
in Section 2: the Counting Problem and the Quantified
Problem. For both of these problems it has been shown
that the complexity of the parameterized version depends
entirely on the polymorphisms of the constraint language.

We denote the problem of counting the number of solu-
tions to an instance of CSP��� by #CSP���. The following
result was obtained in [7].

Theorem 8 For any constraint language � � ��, and any
finite constraint language �	 � ��, if Pol(�) � Pol(�	),
then #CSP��	� is reducible to #CSP��� in polynomial time.

Using this result it has been shown that Mal’tsev operations
play a key role for the complexity of the Counting Problem.
The following (partial) classification result for the parame-
terized Counting Problem was obtained in [7].

Theorem 9 For any constraint language� � ��, if Pol(�)
contains no Mal’tsev operations, then #CSP��� is #P-
complete.

Conversely, if � � 	 and Pol(�) contains a Mal’tsev op-
eration, then #CSP��� is tractable.

Example 15 Recall the binary disequality relation ����
de-

fined in Example 4. It is straightforward to check that
Pol(�����

�) contains the Mal’tsev operation on � which
returns the sum of its 3 arguments modulo 2. Hence, by
Theorem 9, it is tractable to count the number of solu-
tions to CSP������

��, which corresponds to the GRAPH 2-
COLORABILITY problem.

However, it is shown in [39] that for any � � 	,
Pol(�����

�) does not contain any Mal’tsev operations.
Hence, by Theorem 6, for any � � 	 it is #P-complete to
count the number of solutions to CSP������

��, which cor-
responds to the GRAPH �-COLORABILITY problem. �

We denote the problem of deciding the truth of a quantified
Boolean formula involving only conjunctions of relations
from � by QCSP���. For this problem, it has recently been
shown that the complexity is determined by the surjective
polymorphisms. We denote the set of all surjective poly-
morphisms of a constraint language � by s-Pol(�). The
following result was obtained in [3].

Theorem 10 For any constraint language � � ��, and
any finite constraint language �	 � ��, if s-Pol(�) �
s-Pol(�	), then QCSP��	� is reducible to QCSP��� in
polynomial time.

Using this result, the following (partial) classification result
was obtained in [3].

Theorem 11 For any constraint language � � ��:

� If s-Pol(�) contains the affine operation � � �  $ of
an Abelian group with base set � , then QCSP��� is
tractable.

� if s-Pol(�) contains the ternary near-unanimity oper-
ation % on � given by

%��� �� $� �

�
� if � � $

� otherwise	

then QCSP��� is in NL.

� If � � 	, and s-Pol(�) contains only essentially unary
operations, then QCSP��� is PSPACE-complete.

Example 16 Let &� be the �-ary “not-all-distinct” rela-
tion over � consisting of all tuples ���� 	 	 	 � ��� such that
����� 	 	 	 � ���� ' �. Note that &� � ���� 	 	 	 � �� �
� � ��, so every instance of the standard CSP prob-
lem CSP��&��� is trivially satisfiable by assigning the same
value to all variables.

However, by Lemma 2.2.4 of [39], the set Pol(�&��) con-
sists of all non-surjective operations on �, together with
all operations of the form ����� 	 	 	 � ��� � ����� for some
� � � � � and some permutation � on �. This implies
that s-Pol(�&��) contains essentially unary operations only.
Hence, by Theorem 11, QCSP��&��� is PSPACE-complete.
Similar arguments can be used to show that QCSP��&��� is
PSPACE-complete, for any � in the range 	 � � � �. �
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