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Abstract

We present an abstract axiomatization of generalized en-
tropy using the notion of ordinal number and the new con-
cept of systemic set of equivalence relations. The aximoati-
zation applies to arbitrary sets and extends previous results
obtained for the finite case.

1 Introduction

Axiomatizations for entropy and entropy-like character-
istics of probability distributions represent a problem with
a rich history in information theory. Previous relevant work
includes the results of A.I. Khinchin [Khi57], D.K. Fad-
deev [Fad56], R.S. Ingarden and K. Urbanik [IU62], and A.
Rényi [R5́9], who investigated various axiomatizations of
entropy, and Z. Dar´oczy who presented in [Dar70] an uni-
fied treatment of entropy-like characteristics of probability
distributions using the notion of information function.

In our previous work (see [SR93, JS99, SJ02, SJ03a])
we introduced an axiomatization for the notion of func-
tional entropy. This numerical characteristic of functions
is related to the complexity of circuits that realize functions
(see [CA90]) and serves as an estimate for power dissipa-
tion of a circuit realizing a function (see [HW97]) and it is
linked to the notion of entropy for partitions, since every
function � � � �� � between the finite sets��� de-
fines a partition on its definition domain� whose blocks
are������� � � � �������, where������ is the range of
the function� .

Information measures, especially conditional entropy
of a logic function and its variables, have been used
for minimization of logic functions (for further references
see [LRGLRR93] and [CSSY98]).

In a different direction, starting from the notion of im-

purity of a set relative to a partition, we found a common
generalization of Shannon entropy and of Gini index and
we used this generalization in clustering of non-categorial
data (see [SJ03b]). P. A. Devijer used the Gini index in pat-
tern recognition in [Dev74].

Our main result is an an abstract axiomatization of gen-
eralized entropy using the notion of ordinal number and the
new concept of systemic set of equivalence relations. We
believe that this approach clarifies the essence of previous
axiomatizations.

The set of reals and the set of nonnegative reals equipped
with the natural sum, product, and order are denoted by�

and���, respectively.
Let � be a binary relation on a set�. As usual,�

is symmetric if ��� �� � � implies ��� �� � �, transitive
if ��� ��� ��� �� � � implies ��� �� � � and reflexive if
��� �� � � for all �� �� � � �. A reflexive, symmetric and
transitive relation on� is anequivalence relation. We refer
to� as thedomain of � and write� � D�.

If ����� and������ are partially ordered sets, a map
� � � �� � is monotone (also called isotone, order pre-
serving, or an order homomorphism), if for all� �� �� � �,
�� � �� implies ����� �� �����. The map isanti-
monotone if all ��� �� � �, �� � �� implies ����� ��

�����. An order isomorphism between two partially or-
dered sets����� and������ is a bijection� � � �� �

such that�� � �� if and only if ����� �� �����.
A block (also called an equivalence class) of� is a non-

void set�,� 	 � such that��� ��� � � for all �� �� � � and
��� �� 
� � for all � � � and� � ���.

Two equivalence relations aredisjoint (denoted by� �
	) if � � 	 � 
, i.e., if D� �
� � 
. If � � 	, then� � 	

is an equivalence relation (with domainD��� � D� � D�).
For equivalence relations� and	 we write� � 	 if every

block of� is included in a block of	.
Let � be a set of equivalence relations. Clearly,� is a



partial order on�, i.e. a reflexive, transitive and antisym-
metric relation (i.e.� � 	 � � implies� � 	).

For a set� set �� � ��
� 
� � 
 � �� and�� �
��
� �� � 
� � � ��. Clearly, for� 
� 
 both �� and��
are equivalence relations with domain� and�� � �� .

Our presentation makes intensive use of ordinal num-
bers. The notion of ordinal can be constructed starting from
the notion of class and of membership (see, e.g. [Mon69]).
The membership relation is denoted usually by�. A set is
a class� that is a member of another class�. A class�
is �-transitive if � � � � � implies � � �. A class�
is anordinal if it is �-transitive and each member of� is
�-transitive. For a class� we denote by� � 	 the class
� � ���.

Let ORD be the class of all ordinals. For and� � ORD
the relation���� �� � �� � � � and� � � or � � �� is
a well-ordering. Distinct ordinals generate non-isomorphic
partial orders. Furthermore, every well-ordering is isomor-
phic to some well-ordering derived in a standard way from
an ordinal.

Let � be an equivalence relation. We assume the Axiom
of Choice and consequently the blocks of� can be indexed
by the ordinals smaller than an ordinal�, i.e. ����� � ��
is a list of the blocks of�. For example, if� � � � 	,
the list is���� ��� � � � � ���. We refer to� as anindexing
ordinal for �.

2 Systemic Collections of Equivalence Rela-
tions

The following notation will be needed. For an equiva-
lence relation� having an indexing ordinal�, a list ��� �
� � �� of its blocks, and for an ordinal� � �, denote by
�� the equivalence relation having a singleton block�
� for
every
 � �� whenever� � � and the block�� for every
� such that� � � � �. Note that�� � �, while �� � �	 ,
where
 � D
 is the domain of�.

The main notion of this section is introduced next.

Definition 2.1 A non-void set� of equivalence relations is
systemic if for all �� 	 � � we have:

1. � � 	 implies� � 	 � �;

2. �D� � �;

3. the blocks of� can be listed as��� � � � �� so that

(a) �� � � for all � � �;

(b) for every� � � the equivalence relation with
blocks��� � � � � and� 
� �� belongs to�,
and

(c) ���
� � for every� � �.

The support of the systemic collection� is the family of
sets


��� � � �� � �� � ���

Theorem 2.2 Let � be a systemic collection of equivalence
relations. Every block of an equivalence relation � of �
belongs to 
��� �.

Proof. Let �� be a block of� � �. By Property
� we
have���

� �. eh indexing ordinal of���
� � is clearly�.

By Property

 of systemic collections����
�� � ���

� �,
which means that�� � 
��� �.

Let �� 	 be two equivalence relations. We write� � 	

if every block of� is a block of	. If 	 � � 
� 
, then we
write � � 	.

Example 2.3 Let ���� � � � � ����� be a collection on�
pairwise disjoint finite sets and let����� � � � � ������ be �
equivalence relations on each of these sets, respectively.1

Let � be the family of equivalence relations given by the
following inductive definition:

1. every equivalence� ��� belongs to�;

2. if � is a block of an equivalence relation of�, then
�� � �;

3. if �� �� � � and� � ��, then� � �� � �;

4. if 	 � � and� � 	, then� � �;

5. if � � �, then�D�
� �.

We claim that� is a systemic family of equivalence re-
lations. Indeed, the first property of systemic families is
clearly satisfied. If� is a block of an equivalence relation
� � �, then�� � �, so�� � �. Thus propery
��� of
systemic families is also satisfied.

Let � � � be an equivalence relation whose
blocks are��� � � � � ����. Note that �� � ��� �
� � � �����

� ���
� � � � � �����

. The equivalence relations
��� � � � � � �����

� � � � � ���
� � � � � �����

are pairwise disjoint
and belong to�, which implies property
���. Finally, prop-
erty
��� follows from the fact that the equivalence relation
�� that has the blocks��� � � � � ����� ����� � � � � ���� can be
expressed as�� � ��� � � � ������� ������ � � � �������

.

1Note that we use the parenthesized superscript notation for a family of
equivalences to differentiate this notation from the notation introduced at
the beginning of this section.



3 The Notion of Weak ��� �� ��-Entropy

Our notion of abstract entropy is based on the notion of
measure on a family of sets introduced next.

Definition 3.1 A measure on 
��� � is a monotone map
from �
��� ���� into ������� such that for all��� �

��� � we have:

1. ���� � �;

2. � � � � 
 implies��� � � � � ���� � ��� �, and

3. there exists� � 
��� � such that� � � � 
 and
���� � ����.

Usually, the first condition of Definition 3.1 has the form
���� � � if and only if � � 
. However, in our case

 
� 
��� � (as we have not introduced��), and so we
postulate that���� is positive.

Let � � ���, � � � and let� be a monotonic (i.e.,
nondecreasing) self-mapping of�������. Denote by �
the mapping defined by ��
� � ����
�� for all 
 � ���.
If � is fixed, or understood from context, then we simply
write  instead of � .

For��� � 
��� � such that� � � � 
 define

��� �

�
����

��� � � �

��
� (1)

Definition 3.2 Let � be a systemic set of equivalence rela-
tions. A weak ���  � ��-entropy is a map! � � �� ���

satisfying the following conditions:

�"�� !���� �  ��� for all � � 
��� �.

�"�� For all�� 	 � � with � � 	 and� � D�, � � D� we
have:

!���	� � ��� !���� �� �!�	��!��� ��� �� (2)

�"�� If � � � and� is indexed by an ordinal�, where��� �
� � �� is a listing of the blocks of�, then for each
� � � define

d
� �

�
�����

��D
�

��
� (3)

For an ordinal� � � consider the equation:

!��� � !�����
�
���

d
�  ����� (��)

If � � � is a limit ordinal and���� holds for all� � � ,
then��� � holds.

Thus,�"�� allows the extension of����, � � � to ��� �.
We start with the following lemma.

Lemma 3.3 Let � be a systemic family of equivalence re-
lations and let ! be a weak ���  � ��-entropy. We have
!���� � � for all � � 
��� �.

Proof. Let � � 
��� �. By the third part of the def-
inition of measure there exists� � 
��� �, disjoint from
� , such that���� � ����. By Part (2) of Definition 2.1,
we get�� � �� � �. From the second part of the defini-
tion of measure (Definition 3.1) we obtain��� � �� �
��������� � �����. Since��� � ��� � ���, Equal-
ity (2) of Property�"�� yields:

!��� � ��� � ����!���� � !����� � !��� � ����

hence!�����!���� � �. Here!���� � � and!���� �
� and, therefore,!���� � �.

Lemma 3.4 Let � be a systemic family of equivalence rela-
tions, � a measure on 
��� �, 	 � �, and let � � 
��� �

be a set disjoint from � � D� . Then, for the ���  � ��-
entropy ! we have:

!�	 � �� �� !�	 � �� � � �� � �� ��

Proof. Apply Equality (2) twice, Lemma 3.3 and Prop-
erty �"�� to obtain:

!�	 � �� �� !�	 � �� �

� ��� !�	� � �� �!��� � � !��� � �� �

���� !�	�� �� �!��� �� !��� � �� �

� �� �!��� � � �� � �� ��

Theorem 3.5 Let � be a systemic set, ! be a ���  � ��-
entropy satisfying ("�)-("�), and let � � � be an equiv-
alence relation whose blocks are listed as ��� � � � ��,
where � is an indexing ordinal of �, � � �. Then, if ! is a
���  � ��-entropy we have:

!��� �  �D
��
�
���

d
�  �����

Proof. We start with two claims.

Claim 1: If � is an ordinal and� � 	 � �, then

!������ � !�����d
�  �����

Proof of Claim 1: Set� �
�
��� �� ,

	 � �� �
�

�����

�� �



and� � ��. Notice that

� � D� � D
 � ���

	 � �� � �� �

	 � �� � �����

From Lemma 3.4 we get

!������� !���� � ���� �����

Recall that

���� �

�
�����

��

�

��
� d
� �

which concludes the justification of the claim.

Claim 2: We have

!���� � !����
�
���

d
�  ����� (���

Proof of Claim 2: The argument is by transfinite in-
duction on� � �.

Let � � �. Notice that�� � � and (��) reduces to the
obvious!���� � !���.

Suppose that (��) holds for all� � � for some� � � �

�.
The inductive steps has two cases.
I. Let � be an isolated ordinal. From (����) and (����)

we have

!��� � � !������ � d
��� ������

� !��� �
�

�����

d
�  ���� � d
��� ������

� !��� �
�
���

d
�  �����

proving (�� ).
II. Let � be a limit ordinal. From the hypothesis and

�"�� we get (�� ) and thus (�� ). This concludes the induc-
tion step and the claim follows.

Now we can prove the theorem. Let� be isolated. Then
�� � �D�

by the definition of��, hence!���� �  �D
�
and (��) becomes (5). Thus, let� be a limit ordinal. Now
(��) holds for all� � � and from�"�� we get the validity
of (��). Using again�� � �D�

, clearly (��) converts into
(5).

We extend Equality (2) to any number of equivalence
relations. For this we need a lemma and an additional prop-
erty.

Lemma 3.6 Let � be a systemic collection of equivalence
relations and let � � � be an arbitrary equivalence relation.
Set � � D� and let � � �� for some �� � �. Then, we
have:

!����� � � ����� ������ �!����!������ �� (

Proof. The statement follows from Equality (2) and
!��� � � � by Lemma 3.3.

We need the following property:

("�) Let � � � be a limit ordinal and let����� �
� � � � �� be a family of equivalences indexed
by�. If

1. ���� � ���� whenever� � � � �, and

2. 	��� �
�
��� �

��� belongs to�,

then

!�	���� � ����!������ � � � ��

Here��� is the standard infimum in������� which exists
since the set�!������ � � � �� is a set of reals bounded
from below by�.

The first part of ("�) means that����� � � � �� form a
well-ordered chain of type�.

Theorem 3.7 Let � be a systemic set and let ! be a
���  � ��-entropy satisfying ("�)-("�). Let � be an ordi-
nal, � � 
, and let ���� � � for all � � � be such that
���� � ���� whenever � � � � �. For � � � � � set

	��� �
�
���

�����

Suppose that 	��� � � for all limit ordinals � � � � �.
Then,

1. 	��� � � for all � � � � �,

2. and

!�	���� � ������
�
���

�����
�!�������!

�
��
���

���

�
	 �

where �� � D���� for every � � � and � � D���� .

Proof. The argument is by transfinite induction on� �

.

Let � � 
. Then	��� � ���� � � and also	��� �
���� � ���� � � by the first part of Definition 2.1. Thus, Part
(1) of the theorem holds. Next, (		�) coincides with (2) and
so Part (2) holds.



Suppose now that� � 
 and that 1) and 2) hold for all
� � �. Let ���� � � for all � � � satisfy Parts 1 and 2 of
the hypothesis of the theorem.

Claim 1: We have	��� � � for all � � �.

Proof of Claim 1: We need to consider the follow-
ing two cases:
I. Let � be an isolated ordinal. Then	 ��� � 	����� �
������, where	����� and������ belong to� and	����� �
������ by hypothesis. Then, by the first part of Defini-
tion 2.1 we have	��� � �.
II. Let � be a limit ordinal. Then	��� � � by the second
part of the hypothesis. This concludes the inductive step
and proves the claim.

Claim 2: The equation (		�) holds.

Proof of Claim 2: Again, we need to consider two
cases.
I. Let � be an isolated ordinal. Then	 ��� � 	����� �
������. Denote by� and�� domains of	����� and����,
respectively, where� � �, and set� � � � ��. From
equation (2) we get:

!�	���� � ������


�����!�	������ � ��������!��

������
�
�!���������

��

By applying equality (	����) we obtain:

!�	��

� ������

�
�����������


 �
�����

���� �
�!������ � !

� �
�����

���

��

��������
�!��������

�
� !��� � ������

� ������
�
���

���� �
�!����� � ������!

� �
�����

���

�
� !��� � �������

By (8) (for � �
�
����� ���

and� � �����
) this

simplifies to (		�).

II. Let now � be a limit ordinal. Then (		�) holds for
every� � �. Notice that	��� (for � � �) satisfy	��� �
	��� whenever� � � � � � �. From (��) we obtain:

!�	���� � ����!������ � � � ��� (12)

We also have that�
���

���
�

�
���

���

whenever� � � � � � �. By the same token

!

�
��
���

���

�
	 � ���

��
�!

�
��
���

���

�
	 � � � �

��
�

We claim that in��� the validity of �	��, �	
� and�	���
for all � � � implies�	���. Indeed, the reals!�	���� (� �
�) form a (decreasing) sequence “converging” to!�	 ����

and, similarly, the reals!
��

��� ���

�
(� � �) form a

“decreasing” sequence “converging” to!
��

��� ���

�
. It

follows that the middle terms in (	��) (� � �) form an
(increasing) sequence “converging” to

������
�
���

�����
�!������ � !�	����� !

��
���

���

�
�

Thus, (	��) holds. This concludes the induction step and
proves the theorem.

Example 3.8 Let ���� � � � � ����� be a collection on�
pairwise disjoint finite sets and let����� � � � � ������ be �
equivalence relations on each of these sets, respectively.
Denote� �

����
�	� ��. Consider again the systemic fam-

ily of equivalences� introduced in Example 2.3. Choose
the measure� as���� � �� � for � � 
��� � and let
��#� � # for # � ���. Let ! be a���  � ��-entropy that
satisfies ("�)–("�). Then, Theorem 3.7 yields:

!

�
����
�	�

����

�
� �����

�
���

����
�!������ � !

��
���

���

�
�

which is the central result (Corollary II.7) of [SJ02] that
allows us to retrieve the specific formulas of generalized
entropies for partitions of finite sets.

4 Conclusions

We extended the axiomatization of entropies of partitions
of finite sets discussed in [SJ02] to partitions of arbitrary
sets by using measures, ordinal numbers and transfinite in-
duction. In addition to its application to a wider class of
entropies, this approach has the advantage of illuminating
the mathematical bases of the argument made for partitions
of finite sets.

In our opinion further exploration of this approach would
be useful for various class of measures on systemic families
of equivalence relations.
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