
Implementation of Multiple-Valued CAM Functions by LUT Cascades

Tsutomu Sasao Jon T. Butler

Department of Computer Science Department of Electrical
and Electronics and Computer Engineering

Kyushu Institute of Technology Naval Postgraduate School
Iizuka, 820-8502 JAPAN Monterey, CA, 93943-5121 U.S.A.

Abstract

In this paper, we introduce three types of multiple-
valued content-addressable memories (CAMs): ordinary
CAMs (CAMs), distance d CAMs, and *CAMs. Ordinary
CAMs require an exact match, while *CAMs allow wild-
card matches. In a distance d CAM, a match occurs even if
at most d digits differ. Then, we define multiple-valued CAM
functions represented by these CAMs. Next, we show an ap-
proach to realize each CAM function by an LUT cascade,
which is a series connection of RAMs. Experimental results
for both two-valued and multi-valued cases are shown.

1 Introduction

Ordinary memory produces the data at a given address.
Conversely, a content-addressable memory (CAM) [5] pro-
duces the address of the given data. If the given data does
not exist anywhere in the CAM, a special address (e.g.
00. . . 0) is produced. CAMs are often used in pattern match-
ing applications, since they are much faster than software
implementations. Other applications include routers for the
internet [2, 4, 6, 15], processor caches, translation lookaside
buffers (TLB), data compression applications, database ac-
celerators, and neural networks. Several implementations
of multiple-valued CAMs have been proposed [3, 14].

p-valued CAMs store p-nary vectors. We consider three
types of p-valued CAMs: ordinary CAM (CAM), distance
d CAMs, and *CAM. CAMs produce an address only if
there is an exact match to the input data. A distance d CAM
is similar to a CAM except that there can be d or fewer mis-
matches. Distance d CAMs are used in pattern matching
applications. A *CAM is similar to a CAM except there can
be a mismatch only in positions designated by a *. There-
fore, a binary *CAM stores a three valued vector, where
each element is chosen from {0, 1, *} 1 . Such CAMs are

1 *CAMs are sometimes called ternary CAMs or TCAM[6].

often used in routers for the internet.
We present a method to implement a CAM function by

an LUT cascade, which is a series connection of RAMs.
We show that this results in a simple implementation. The
LUT cascade uses ordinary RAMs instead of special semi-
conductor CAMs, and show significant promise in reducing
power dissipation, which is the problem in existing CAMs
[9, 15].

Example 1.1 Consider an e-mail system in a company with
50,000 employees. Each employee has an employee number
consisting of 7 digits. Also, each employee has a login name
of an e-mail account consisting of 8 letters from the 26-
letter English alphabet.

CAM: Consider a table that yields the employee num-
ber from a given login name. Since each letter can be rep-
resented by 5 bits, the table has 5× 8 = 40 binary inputs
and �log2 107� = 24 binary outputs. A direct implementa-
tion by a single conventional memory requires 240 × 24 =
2.6× 1013 bits, which is 3 terabytes. Although there exist
278 ∼= 2.82×1011 different login names (each consisting of
26 letters and a space), only 50,000 are used. We can use
a CAM to greatly reduce the memory needed by the direct
implementation.

Distance 1 CAM: The E-mail administrator sometimes
wants to know the correct login name from an incorrect lo-
gin name. Suppose that the correct login name is MORAGA.
However, due to the smudged FAX or an unclear handwrit-
ten document, the login name may appear as MOROGA or
MARAGA or MORAGO. It would be convenient if the sys-
tem showed the correct login name when there is no em-
ployee named MOROGA or MARAGA or MORAGO.

*CAM: The E-mail administrator wants to know the
correct login name from an uncertain login name. Sup-
pose that the administrator knows only a part of the login
name: ***KOWSKI, for example, where * corresponds to
any letter. It would be convenient if the system can show
the possible correct login names, such as PERKOWSKI and
FALKOWSKI. (End of Example)

Table 2.1. CAM
Table
Address Vectors

1 0010
2 0111
3 1101
4 0101
5 0011
6 1011
7 0001

Table 2.2. CAM func-
tion truth table

x1 x2 x3 x4 f2 f1 f0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 1 0 1
0 1 0 0 0 0 0
0 1 0 1 1 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 0 0 0
1 1 1 1 0 0 0

2 Content Addressable Memory

We adopt the following definitions, which are intended
to model certain physical devices 2 .

2.1 CAM

Definition 2.1 An n-input, m-output, p-valued, k-entry
CAM table stores k n-element p-nary vectors at addresses
1 through k. An address is an m-element p-nary vector,
where m = �logp(k+1)�. Let P = {0,1, . . . , p−1}. The cor-
responding CAM function is a logic function �f : Pn → Pm,
where �f (�x) is the address of the entry that matches�x exactly.
If no such entry exists, �f (�x) = 0m.

Example 2.1 Consider the CAM table shown in Table 2.1.
Here, n = 4, m = 3, p = 2, and k=7. The truth table of the
CAM function is shown in Table 2.2. The function’s output
is an address if there is an exact match (e.g., �f (1,1,0,1) =
011). If the input vector is not stored in the CAM table, the
output is 000 (e.g., �f (1,1,1,0) = 000). (End of Example)

2.2 Distance d CAM

A distance d CAM is used for pattern recognition and
electronic dictionary [7, 8] applications.

Definition 2.2 Given a CAM table, the corresponding dis-
tance d CAM function is a logic function �f : Pn → Pm,
where �f (�x) is the address of a CAM table entry that differs

2 Some CAMs [1] have both Address and Match Flag outputs. In this
case, the vectors are stored from address 0 (instead of 1), and MatchFlag =
1 if at least one element in the CAM table matches. Our CAM is different
from such CAMs.

Table 2.3. Distance 1 CAM function truth table
x1 x2 x3 x4 f2 f1 f0
0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 1 0 1
0 1 0 0 1 0 0
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 0 0 0 0 0
1 0 0 1 0 1 1
1 0 1 0 0 0 1
1 0 1 1 1 1 0
1 1 0 0 0 1 1
1 1 0 1 0 1 1
1 1 1 0 0 0 0
1 1 1 1 0 1 0

in no more than d digits from �x, i.e., the distance is d or
less. If no such entry exists, �f (�x) = 0m. If more than one
entry qualifies, the address is determined by identifying all
the entries that are the smallest distance from�x and then by
choosing the smallest address from these entries.

Example 2.2 Table 2.3 shows the truth table of the dis-
tance 1 CAM function corresponding to the CAM table
of Table 2.1. For �x = (1,0,0,1), there is no entry that
matches exactly. However, the entries (1,1,0,1), (1,0,1,1),
and (0,0,0,1) at addresses 3, 6, and 7 differ in only one
bit. Since the smallest address is 3, �f (1,0,0,1) = (0,1,1).

(End of Example)

2.3 *CAM

Definition 2.3 An n-input, m-output, p-valued, k-entry
*CAM table stores k n-element (p + 1)-nary vectors at
addresses 1 through k. Each (p + 1)-nary entry consists
of 0,1, . . . , p− 1 and * (don’t care). An address is an m-
element p-nary vector, where m = �logp(k + 1)�. The cor-
responding *CAM function is a logic function �f : Pn →Pm,
where �f (�x) is the smallest address of an entry that is identi-
cal to�x except for don’t care values. If no such entry exists,
�f (�x) = 0m.

Example 2.3 Table 2.4 shows a *CAM table that stores
seven ternary vectors, where n = 4,m = 3, p = 2, and k = 7.
The corresponding *CAM function truth table is shown in
Table 2.5. The vector�x = (1,0,1,1) matches the entries at
addresses 5 and 6 except for don’t care values. Since 5 is
smaller, �f (1,0,1,1) = (1,0,1). (End of Example)

*CAMs for p = 2 are extensively used in routing tables for
the internet. A routing table specifies an interface identi-
fier corresponding to the longest prefix that matches an in-
coming packet, in a process called Longest Prefix Match

Table 2.4. *CAM
Table
Address Vectors

1 *010
2 0011
3 1101
4 1100
5 *011
6 1*11
7 *001

Table 2.5. *CAM func-
tion truth table

x1 x2 x3 x4 f2 f1 f0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 0 1 0
1 0 0 1 1 1 1
1 0 1 0 0 0 1
1 0 1 1 1 0 1
1 1 0 0 1 0 0
1 1 0 1 0 1 1
1 1 1 0 0 0 0
1 1 1 1 1 1 0

(LPM). In the *CAM table for LPM, the (p + 1)-nary vec-
tors have restricted patterns: the prefix consists of only 0’s,
1’s,. . . , and p − 1’s, and the postfix consists of only *’s
(don’t cares).

Definition 2.4 The LPM table stores distinct (p + 1)-nary
vectors of the form VEC1 ·VEC2, where VEC1 consists of
0’s, 1’s, . . . , and p− 1’s, and VEC2 consists of *’s. To as-
sure that the longest prefix address is produced, *CAM en-
tries are stored in descending prefix length. The LPM func-
tion is the logic function represented by the *CAM function
for the LPM table.

Example 2.4 Consider the LPM table shown in Table 2.6.
In the third vector VEC1=01 and VEC2=**, while in the
last vector VEC1=0 and VEC2=***. Clearly, this is a
CAM table for LPM. The truth table for the LPM function
is shown in Table 2.7. (End of Example)

3 Properties of CAM Functions

3.1 C-measure of a Logic Function

Definition 3.1 Consider a function �f (�X) : Pn →
Pq,whereP = {0,1, . . . , p−1}, and �X = (x1,x2, . . . ,xn). Let
(�XL,�XH) be a partition of the variable set �X. The decom-
position chart for f is a two-dimensional matrix, where
the column labels have all possible assignments of values
to variables in �XL, the row labels have all possible assign-
ments of values to variables in �XH, and the corresponding
matrix value is equal to �F(�XL,�XH). Among the decomposi-
tion charts for �F, the one where �XL = (x1,x2 . . . ,xnL) and
�XH = (xnL+1 ,xnL+2, . . . ,xn) is a standard decomposition
chart, where 1 ≤ nL ≤ n. The number of different column

Table 2.6. LPM
Table
Address Vectors

1 1000
2 010*
3 01**
4 1***
5 0***

Table 2.7. LPM function
truth table

x1 x2 x3 x4 f2 f1 f0
0 0 0 0 1 0 1
0 0 0 1 1 0 1
0 0 1 0 1 0 1
0 0 1 1 1 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 1 0 0
1 0 1 0 1 0 0
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 0 0

1
0

1

1

1

1

0

0

0

0

0

1

1

2

4

3

5

6

10

1

0

1

1

11

00

0

0

0
1

1

3

2

4

6

10

2 2 2

555

3

4

5

1 1
1 10

0

0

000

1

110 0

1

Figure 3.1. BDD for two different orderings.

patterns in the decomposition chart is the column multi-
plicity of the decomposition chart.

Definition 3.2 The C-measure of a logic function f is the
maximum value of all possible column multiplicities of the
standard decomposition charts for f , where we assume that
the ordering of variables is fixed at (x1,x2, . . . ,xn).

The column multiplicity of a decomposition chart is
equal to the width of the MTMDD (multi-terminal multi-
valued decision diagram). So, the C-measure of a logic
function is equal to the maximum width of the MTMDD
for the given ordering of the input variables.

Example 3.1 Consider two functions: f1 = x1x2 ∨ x3x4 ∨
x5x6 and f2 = x1x5 ∨ x2x6 ∨ x3x4. Fig. 3.1 shows the BDDs
for f1 and f2. In this case, C-measures of f1 and f2 are 3
and 8, respectively. (End of Example)

For a given logic function and variable ordering, the C-
measure is easy to obtain and uniquely defined. Functions

having small C-measures have efficient LUT cascade real-
izations.

Lemma 3.1 For a given function f , let k be the number of
the input combinations that produce non-zero output values.
Then, the C-measure of f is at most k + 1.

3.2 CAM

Theorem 3.1 Consider a CAM table that stores k vectors.
The C-measure of the CAM function is at most k + 1.

(Proof) The number of non-zero outputs of the CAM
function is at most k. From Lemma 3.1, the C-measure is at
most k + 1. (Q.E.D.)

Theorem 3.1 shows that the worst case value of the C-
measure is k + 1. A worst case occurs when the non-zero
CAM table entries are widely scattered. However, in prac-
tical applications, such as TLBs, the virtual page address
will be clustered due to frequent access to the same blocks
of memory (e.g., the program or stack). Thus, we expect
the actual value of the C-measure to be smaller in practical
applications.

3.3 Distance 1 CAM

Theorem 3.2 Consider a CAM table that stores k vectors
of n digits. Then, the C-measure of the distance 1 CAM
function is at most kn(p−1)+ k+ 1.

(Proof) In the CAM table, for each vector, generate n(p−
1) adjacent vectors, and generate the truth table of the CAM
function that shows exact matches and distance 1 matches.
Note that the number of non-zero output values of the CAM
function is at most k(n(p−1)+ 1). From Lemma 1, the C-
measure is at most k(n(p−1)+ 1)+ 1. (Q.E.D.)

3.4 *CAM

Theorem 3.3 Consider a *CAM table that stores k vectors,
where each vector has at most t don’t cares. Then, the
C-measure of the corresponding *CAM function is at most
ptk + 1.

(Proof) In the *CAM table, replace each * by 0,1, . . . , and
p−1, and generate the table without *, i.e., the CAM table.
For each pattern, we can generate at most pt vectors. So,
the number of non-zero outputs of the *CAM function is at
most ptk. From Lemma 1, the C-measure is at most ptk+1.

(Q.E.D.)

Theorem 3.4 The C-measure of an LPM function with k
vectors is at most k + 1.

(Proof) We prove the theorem for the case where all k en-
tries in the LPM table map to distinct output values. This
is the worst case, since forcing certain entries to have the
same output value can only reduce the column multiplicity.

We prove the theorem by counting the number of dis-
tinct columns in the standard decomposition chart as LPM
vectors are added to the LPM table. Reorder the LPM
vectors so that those vectors with the most * entries are
first and those with the fewest are last. Consider a stan-
dard decomposition chart where assignments of values to
x1, x2, . . . , xi label the columns, and assignments of values
to xi, xi+1, . . . , xn label the rows. An ”empty” standard
decomposition chart has a unique column pattern (all 0’s).
Let the first vector be �α = (a1,a2, ...,am,∗,∗, ...,∗), where
a j ∈ P. If m > i, then the first vector changes only a proper
subset of elements in one column. If m = i (m < i), then the
new vector changes all elements in one (or more) complete
column(s) to the vector’s output value in the LPM table. In
either case, at most one distinct column pattern is added to
the standard decomposition chart.

Because the second vector has no more * entries than
the first vector, adding it will change columns only among
a subset of the two distinct columns so far in the stan-
dard decomposition chart. Let the new vector be �β =
(b1,b2, ...,bm′ ,∗,∗, ...,∗), where b j ∈ P. If bi = ai, for all
1 ≤ i ≤ m′, then a subset of the columns created by adding
ᾱ to the empty standard decomposition chart are changed.
Otherwise, a subset of the columns containing all 0’s are
changed. In either case, at most one additional column pat-
tern is added. This process continues until all vectors are
exhausted. In all, at most k +1 column patterns are created.
The theorem follows. (Q.E.D.)

4 LUT Cascade

It is possible to realize a CAM function by a standard
RAM. For example, the 7-entry CAM shown in Table 2.1
can be realized by a 16-word RAM, where each word has 3
bits, as shown in Table 2.2. The size of the RAM is expo-
nential in the number of bits n used to store the CAM data,
even though the CAM contains relatively few data words.
The LUT cascade takes advantage of this, offering a way to
reduce memory requirements substantially.

Theorem 4.1 For a given function f , let �XL be the column
variables, and let �XH be the row variables, and let µ be
the column multiplicity of the decomposition chart. Then,
function f is realizable with the network shown in Fig. 4.1.
In this case, the number of p-nary signal lines that connect
two blocks H and G is �logp µ�.

When the number of p-nary signal lines that connect two
blocks is smaller than the number of variables in �XL, we can

xL

xH
G

H

Figure 4.1. Realization of logic functions by
decomposition.

Figure 4.2. LUT cascade with intermediate
outputs.

often reduce the size of memory to implement the function.
This technique is functional decomposition.

By applying functional decomposition repeatedly to the
given function, we have the LUT cascade [11] shown in
Fig. 4.2. The cascade consists cells, and the wires con-
necting adjacent cells are rails. Functions with small C-
measure require fewer rails, and thus have more compact
LUT cascade realizations. To derive C-measures, we need
not use decomposition charts. We can efficiently obtain the
C-measure from a binary decision diagram (BDD for CF)
that represents the characteristic function for the multiple-
output function [12].

Theorem 4.2 [11] A logic function with C-measure µ can
be implemented by a LUT cascade consisting of cells with
at most �logp µ�+ 1 inputs and �logp µ� outputs .

Theorem 4.3 [13] Consider an LUT cascade for a function
f . Let n be the number of primary inputs, s be the number of
cells, r be the maximum number of rails (i.e., the number of
lines between cells), K be the maximum number of inputs of
a cell, and µ be the C-measure of f . If K ≥�logp µ�+1, then
there is an LUT cascade for f that satisfies the relation:

s ≤
⌈

n− r
K − r

⌉
.

5 Experiment: Two-Valued Case

We generated random CAM tables, and converted the
corresponding CAM functions into MTBDDs.

Table 5.1. C-measure and Size of memory for
CAM functions.

n k # nodes C-meas Mem
MTBDD M bit

32 1,000 23,156 1,001 0.44
32 2,000 44,316 2,001 0.94
32 3,000 64,628 3,001 1.88
32 4,000 84,512 4,001 1.88
32 5,000 104,125 5,001 3.75
32 6,000 123,408 6,001 3.86
32 7,000 142,402 7,001 3.86
32 8,000 161,237 8,001 3.86
32 9,000 179,879 9,001 7.41

5.1 CAM

For CAM tables, we choose the probability of a 0 and a
1 in the entries to be the same. Table 5.1 shows the result.
n denotes the number of variables in the CAM function,
and k denotes the number of vectors in the CAM table. C-
meas shows the C-measure (i.e., the maximum width of the
MTBDD). This confirms that the C-measure upper bound
(Theorem 3.1) of k + 1 is firm.

In these example runs, the numbers of CAM table entries
are small compared to the total number of possible entries.
For example, when n = 32, the CAM table with k = 1000
represents 1000

232 = 2.3×10−7 of the total number of entries
in the truth table. We expect, therefore, the entries to be
widely scattered.

5.2 Distance 1 CAM

Tables 5.2 and 5.3 show the results for different numbers
of vectors k, and different numbers of inputs n, respectively.

The expression for the upper bound on the C-measure
for distance 1 CAM functions from Theorem 3.2, nk(p−
1) + k + 1, suggests an approximately equal dependence
on n and k, when p = 2, and especially when n and k are
large. However, in comparing the experimental values for
the C-measure shown in Tables 5.2 and 5.3, one sees a much
stronger dependence on k than on n. That is, Table 5.2,
where n is fixed, shows that the C-measure is approximately
a linear function of k. However, Table 5.3, where k is fixed,
shows that the C-measure not strongly dependent n.

5.3 *CAM

5.3.1 General *CAM Table

Here, we assume that p = 2. For *CAM tables, we choose
the probability of a 0, 1, and ∗ (don’t care) in the entries
of the *CAM table to be the same. Table 5.4 shows the

Table 5.2. C-measure and Size of memory for
Distance 1 CAM functions

n k # nodes C-meas Mem
MTBDD M bit

32 100 5,751 373 0.11
32 200 11,424 801 0.25
32 300 16,976 1,249 0.49
32 400 22,433 1,765 0.54
32 500 27,997 2,260 0.76
32 1,000 54,931 4,867 1.64
32 1,500 82,020 7,610 2.31
32 2,000 108,700 10,363 3.38
32 2,500 135,340 12,975 5.34
32 3,000 161,352 16,048 5.81

Table 5.3. C-measure and Size of memory for
Distance 1 CAM functions

n k # nodes C-meas Mem
MTBDD M bit

12 500 3,903 1,457 0.04
14 500 7,893 2,119 0.13
16 500 11,056 2,240 0.22
24 500 19,858 2,260 0.54
32 500 27,997 2,260 0.76
40 500 35,670 2,265 0.96
48 500 43,807 2,271 1.18

result. In this case, the C-measure is much greater than in
Table 5.1.

In Table 5.4, we take δ as 11, about one-third of the 32
variables, where δ is the number of don’t cares in the en-
tries. This implies that the number of non-zero outputs for
*CAM functions is at most 211 = 2048 times greater than
that of CAM functions.

Table 5.4. C-measure and Size of memory for
General *CAM functions.

n k # nodes C-meas Mem
MTBDD M bit

32 1,000 82,514 11,886 3.89
32 2,000 237,291 34,561 10.97
32 3,000 460,106 70,835 20.25
32 4,000 716,909 114,814 34.00
32 5,000 978,984 151,577 61.00
32 6,000 1,320,175 213,503 66.62
32 7,000 1,685,556 273,292 106.50
32 8,000 2,039,238 335,097 134.00
32 9,000 2,469,748 418,833 139.75

Table 5.5. C-measure and Size of memory for
LPM functions.

n k # nodes C-meas Mem
MTBDD M bit

32 1,000 15,095 1,001 0.42
32 2,000 28,197 2,001 0.67
32 3,000 40,552 3,001 1.31
32 4,000 52,450 4,001 1.31
32 5,000 64,010 5,001 2.53
32 6,000 75,251 6,001 2.64
32 7,000 86,292 7,001 2.64
32 8,000 97,037 8,001 2.64
32 9,000 107,597 9,001 4.78

Table 6.1. C-measures for Multiple-valued
Functions.

Name CAM dist 1 CAM * CAM LPM CAM
u552 548 1135 553 548

u1245 1238 2528 1246 1238
u2061 2048 4286 2056 2048
u3366 3367 6891 3313 3367

5.3.2 LPM Table

Here, we assume that p = 2. In the LPM tables, we gener-
ated random prefixes consisting of 0’s and 1’s. The lengths
of the prefixes were chosen from 22 to 26, and we chose the
probability of a 0 and 1 to be the same. Table 5.5 shows that
the C-measure is k + 1. Table 5.5 shows that Theorem 3.4
holds. Compared with the result in [10], the C-measure in
our experimental results is about 10 times larger. This is
because practical routing tables were used in [10], while we
used randomly generated LPM tables.

6 Experiment: Multi-Valued Case

For the multiple-valued case, instead of using randomly
generated function, we used lists of English words as bench-
mark functions. We only considered English words with
at most 8 letters. For the words with fewer than 8 letters,
blanks are appended to the end of the words to make them
8 letters. So, the function has 5× 8 = 40 input variables.
u552 consist of 552 words having 8 letters. u1245 consist
of 1245 words having 7 or 8 letters. u2061 consist of 2061
words having 6 or 7 or 8 letters. u3366 consist of 3366
words having 3 to 8 letters. Table 6.1 shows the experimen-
tal results for CAMs, distance 1 CAMs, * CAMs, and LPM
CAMs.

CAM: For u3366, the C-measure is k + 1 = 3367.
However, for other functions, the C-measures are slightly

smaller than k.
Distance 1 CAM: The C-measures are approximately

2k. The bound given by Theorem 3.2 is kn(p−1)+k +1 �
k(40×25), which is much larger than the actual values.

*CAM: To generate random *CAMs, for each word, we
replaced just one letter with a ”*”. The C-measures are al-
ways larger than those of corresponding CAMs. The bound
given from Theorem 3.3 is ptk + 1 = 26× k + 1, which is
much larger than the actual values.

LPM CAM: The C-measures are the same as that of the
CAM cases. The bound given from Theorem 3.4 is k + 1.
Note that the exact value matches that of CAMs.

6.1 LUT Cascade Realization

Consider the CAM realization of u3366. The C-measure
is 3367. Note that �log2 3367�= 12. Thus, by Theorem 4.1,
the CAM can be implemented by binary cells with 13 inputs
and 12 outputs. By Theorem 4.2, the number of cells is

s = � n− r
K − r

� = �40−12
13−12

� = 28,

since r = �log2 3367� = 12, and K = 13. Thus, the total
amount of memory is at most s · 2K · r = 28× 213 × 12 =
336× 213 � 2.7× 106 bits. Note that the straightforward
implementation by a single memory requires 240 × 12 �
1.3×1013 bits.

7 Concluding Remarks

In this paper, we showed a method to implement
multiple-valued CAM functions by using LUT cascades.
We also defined the C-measure that shows the complexity
of LUT cascade. The C-measure is easy to obtain from the
MTMDD of the given function. As shown in this paper,
LUT cascades are promising for the realization of CAM,
LPM, and distance 1 CAM functions. However, an LUT
cascade may be too large for the replacement of *CAMs
of general functions especially when the *CAM table has
many don’t cares.

Acknowledgment

This work was supported by a grant from the Japanese
Ministry of MEXT via Kitakyushu Innovative Cluster
Project, the Aid for Scientific Research of the Japan Soci-
ety for the Promotion of Science (JSPS), and NSA Contract
RM A54.

References

[1] ALTERA, “ Implementing high-speed search applications
with Altera CAM,” Application Note 119, Altera Corpora-
tion.

[2] P. Gupta, S. Lin , and N. McKeown, “Routing lookups
in hardware at memory access speeds,” Proc. INFOCOM,
IEEE Press, Piscataway, N.J., 1998, pp. 1240-1247.

[3] T. Hanyu, N. Kanagawa, and M. Kameyama, “Design of a
one-transistor-cell multiple-valued CAM,” IEEE Journal of
Solid-State Circuits, Vol. 31, No. 11, Nov 1996, pp. 1699-
1674.

[4] M. Kobayashi, T. Murase, and A. Kuriyama, “A longest
prefix match search engine for multigigabit IP processing,”
Proc. Int’l Conf. on Communications (ICC 2000), IEEE
Press, Piscataway, N.J., 2000, pp. 1360-1364.

[5] T. Kohonen, Content-Addressable Memories, Springer Se-
ries in Information Sciences, Vol. 1, Springer Berlin Heidel-
berg 1987.

[6] H. Liu, “Routing table compaction in ternary CAM,” IEEE
Micro, Vol. 22, No.1, Jan.-Feb. 2002, pp. 58-64.

[7] H. J. Mattausch, T. Gyohten, Y. Soda and T. Koide, “Com-
pact associative-memory architecture with fully-parallel
search capability for the minimum Hamming distance”,
IEEE Journal of Solid-State Circuits, Vol.37, No. 2, Feb.
2002, pp. 218-227.

[8] M. Motomura et al., “A 1.2-million-transistor, 33-MHz, 20-
b dictionary search processor (DISP) ULSI with a 160-
Kbyte CAM,” IEEE J. Solid-State Circuits, Vol. 25, No. 5,
Oct. 1990, p. 1158- 1165.

[9] K. Pagiamtzis and A. Sheikholeslami, “A Low-power
content-addressable memory (CAM) using pipelined hierar-
chical search scheme,” IEEE Journal of Solid-State Circuits,
Vol. 39. No. 9, Sept. 2004, pp.1512-1519.

[10] A. Prakash, R. Kotla, T. Mandal, and A. Aziz, “A high-
performance architecture and BDD-based synthesis method-
ology for packet classification,” IEEE Trans. on CAD, Vol.
22, No. 6, pp. 698-709, June 2003.

[11] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization
of multiple-output function for reconfigurable hardware,”
International Workshop on Logic and Synthesis (IWLS01),
Lake Tahoe, CA, June 12-15, 2001, pp. 225-230.

[12] T. Sasao and M. Matsuura, “BDD representation for incom-
pletely specified multiple-output logic functions and its ap-
plications to functional decomposition,” Design Automation
Conference, June 2005, pp.455-462.

[13] T. Sasao, “Analysis and synthesis of weighted-sum func-
tions,” IEEE Transaction on CAD, (accepted for publica-
tion.)

[14] A. Sheikholeslami, P. G. Gulak, and T. Hanyu, “A multiple-
valued ferroelectric content-addressable memory,” 26th In-
ternational Symposium on Multiple-Valued Logic (ISMVL
’96), May 1996, pp.74-79.

[15] F. Zane, G. Narlikar, and A. Basu, “CoolCAM: Power-
efficient TCAMs for forwarding engines”, Proceeding of
IEEE INFOCOM ’03, April, 2003.

