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Abstract

Paraconsistent logic is the study of contradictory yet
non-trivial theories. One of the best-known approaches
to designing useful paraconsistent logics is da Costa’s ap-
proach, which has led to the family of Logics of Formal
Inconsistency (LFIs), where the notion of inconsistency is
expressed at the object level. In this paper we usenon-
deterministic matrices, a generalization of standard multi-
valued matrices, to provide simple and modular finite-
valued semantics for a large family of first-order LFIs. The
modular approach provides new insights into the semantic
role of each of the studied axioms and the dependencies be-
tween them. We also prove theeffectiveness of our seman-
tics, a crucial property for constructing counterexamples,
and apply it to show a non-trivial proof-theoretical prop-
erty of the studied LFIs.

1. Introduction

In classical logic any proposition can be inferred from an
inconsistent set of assumptions. Thus classical logic fails to
capture that information systems which contain some in-
consistent information may still produce useful answers.
For such cases one needs aparaconsistent logic([5, 6]),
which is a logic that allows contradictory yet non-trivial
theories. There are several approaches to the problem of
designing a useful paraconsistent logic. One of the best
known is da Costa’s approach ([9, 7]), which has led to the
family of Logics of Formal Inconsistency(LFIs). This fam-
ily is based on two main ideas. First of all, propositions
are divided into two sorts: the “normal” (or “consistent”)
and the “abnormal” (or “inconsistent”) ones. The second
idea is to express the meta-theoretical notions of consis-
tency/inconsistency at the object language level, by adding
to the language a new connective•, with the intended mean-
ing of •ϕ being “ϕ is inconsistent”. (Sometimes the dual

connective◦, expressing consistency is used, see e.g. [8]).
Using the inconsistency operator, one can limit the applica-
bility of the rule ϕ,¬ϕ ` ψ (which amounts to “a single
contradiction entails everything” and leads to trivialization
in case of contradictions in classical logic) to the case when
ϕ is consistent (i.e.,ϕ,¬ϕ,¬•ϕ ` ψ).

Although the syntactic formulations of LFIs are rela-
tively simple, already on the propositional level the problem
of finding semantic interpretations for them is rather com-
plicated: the vast majority of LFIs cannot be characterized
by means of finite multi-valued matrices. Moreover, for
the majority of them no useful infinite-valued matrices are
known. Thus other types of semantics, like bivaluations se-
mantics and possible translations semantics have been pro-
posed ([7]). However, it is not clear how to extend these
types of semantics to the first-order level.

An alternative framework for providing semantics for
propositional paraconsistent logics was used in [2, 1]. This
framework is based on a generalization of the standard
multi-valued matrices, callednon-deterministic matrices
(Nmatrices). Nmatrices are multi-valued structures, in
which the value assigned by a valuation to a complex for-
mula can be chosennon-deterministicallyout of a certain
nonempty set of options. The framework of Nmatrices has
a number of attractive properties. First of all, the seman-
tics provided by Nmatrices ismodular: the main effect of
each of the rules of a proof system is reducing the degree
of non-determinism of operations, by forbidding some op-
tions. The semantics of a proof system is obtained by com-
bining the semantic constraints imposed by its rules in a
rather straightforward way. Secondly, this semantics isef-
fective1, i.e. any partial valuation closed under subformulas
can be extended to a full valuation. This property is crucial
for the usefulness of semantics, in particular for construct-
ing counterexamples.

The main goal of this paper is to extend the modular se-

1No general theorem of effectiveness is available for the semantics of
bivaluations or for possible translations semantics described in [7] and has
to be proven from scratch for any instance of these types of semantics.



mantic framework of Nmatrices to the first-order level. The
first steps in this direction were taken in [3] for a very re-
stricted family of paraconsistent logics (no consistency op-
erators), and in [10, 4], where finite non-deterministic se-
mantics was provided for a family of LFIs with the con-
sistency operator◦. In this paper we study the seman-
tic effects of 18 new axioms, capturing de Morgan prin-
ciples and inconsistency propagation both for the proposi-
tional connectives and quantifiers. We provide five-valued
non-deterministic semantics (which are reduced to four and
three values in some cases) for a large family of first-order
LFIs using the inconsistency operator•2. This family in-
cludes the system LFI1∗, designed in [7] for treating incon-
sistent information in evolutionary databases. It is one of
the few LFIs which can be characterized by a deterministic
three-valued matrix. We will see that the matrix given in [7]
coincides with the characteristic Nmatrix defined for it in
this paper. The modularity of the semantic framework, pre-
served on the first-order level, provides new insights into
the semantic effect of each of the axioms the dependen-
cies between them. For instance, we show that four of the
schemata in the axiomatization of LFI1∗ of [7] are derivable
from the rest of its axioms.

One of the well-known properties of LFIs is their lack
of the principle of intersubstitutability of provable equiv-
alents (IPE), which holds in classical logic. In a system
S, in which the IPE principle holds, two equivalent sen-
tences are logically indistinguishable, i.e. the provability
of A ↔ B in S entails the provability ofψ(A) ↔ ψ(B)
in S for anyψ. Unfortunately, this principle does not hold
for any of the LFIs in this paper: already on the proposi-
tional level one cannot infer¬(A ∧ B) ↔ ¬(B ∧ A) from
(A ∧ B) ↔ (B ∧ A) in these systems. This abnormality
becomes really harmful on the first-order level. Even the
α-conversion principle3 does not hold: although∀xp(x) ↔
∀yp(y) is provable in the first-order LFIs discussed in this
paper,¬∀xp(x) ↔ ¬∀yp(y) is not, which is of course
unacceptable in any reasonable logical system. A similar
problem arises in the case of vacuous quantification: the
provability of ∀x∃yp(x) ↔ ∀xp(x) in these systems does
not imply the provability of¬(∀x∃yp(x)) ↔ ¬(∀xp(x)).
The straightforward solution proposed by da Costa ([9]) for
the last two problems is adding an extra-postulate capturing
these principles. In a similar way, one can use other natural
extra-postulates, e.g. for capturing the commutativity of∧
(i.e.,A ∧B andB ∧A are intersubstitutable).

The second goal of this paper is to formalize these
ideas by incorporating the extra-postulates into the semantic
framework of Nmatrices in a modular way, so that new pos-

2We chose to use the• operator for technical reasons, in paricular to be
able to prove corollary 11 in the sequel.

3The principle identifies syntactic objects differing only in the names
of their bound variables.

tulates can easily be added in accordance to the intended
applications of the system. As a case-study we consider
seven basic extra-postulates, includingα-conversion, vac-
uous quantification, commutativity and idempotency of∧
and∨. Incorporating these postulates complicates the se-
mantics, and as a result their effectiveness is less evident.
Nevertheless, we formulate necessary and sufficient condi-
tions for the effectiveness of the semantics for each of the
extra-postulates, and show that all of the semantics defined
in this paper are effective. Finally, we apply their effective-
ness to prove a non-trivial proof-theoretical property of the
first-order LFIs in this paper.

2 Preliminaries

2.1. A taxonomy of first-order LFIs

In what follows,L is a first-order language. We denote by
FrmL the set of wffs ofL, byFrmcl

L the set ofL-sentences.
LC is a first-order language over{•,¬,∧,∨,⊃, ∀, ∃}.
Definition 1 Let HCL+ be some Hilbert-type system
which has Modus Ponens as the only inference rule, and
is sound and strongly complete for the positive fragment
of classical propositional logic. The first-order system
HCL+

FOL is obtained fromHCL+ by adding the axioms
∀xψ ⊃ ψ{t/x} and ψ{t/x} ⊃ ∃xψ, wheret is any term

free for x in ψ, and the inference rules
(ϕ ⊃ ψ)

(ϕ ⊃ ∀xψ) and
(ψ ⊃ ϕ)

(∃xψ ⊃ ϕ) , wheret is free forx in ψ andx 6∈ Fv[ϕ].
The systemQB4 is obtained fromHCL+

FOL by adding the
schemata(t) ¬ϕ ∨ ϕ and(b) ¬ • ϕ ⊃ ((ϕ ∧ ¬ϕ) ⊃ ψ).

We obtain a large family of first-order LFIs by adding to the
basic systemQB different combinations of the following
schemata:

Definition 2 The setAx consists of5:
(c) ¬¬ϕ ⊃ ϕ (e) ϕ ⊃ ¬¬ϕ (i1) •ϕ ⊃ ϕ (i2) •ϕ ⊃ ¬ϕ
(Dm1

∀) ¬∀xψ ⊃ ∃x¬ψ (Dm2
∀) ∃x¬ψ ⊃ ¬∀xψ

(Dm1
∃) ¬∃xψ ⊃ ∀x¬ψ (Dm2

∃) ∀x¬ψ ⊃ ¬∃xψ
(Dm1

∧) ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ)
(Dm2

∧) (¬ψ ∨ ¬ϕ) ⊃ ¬(ψ ∧ ϕ)
(Dm1

∨) ¬(ψ ∨ ϕ) ⊃ (¬ψ ∧ ¬ϕ)
(Dm2

∨) (¬ψ ∧ ¬ϕ) ⊃ ¬(ψ ∨ ϕ)
(J1
∧) • (ψ ∧ ϕ) ⊃ ((•ψ ∧ ϕ) ∨ (•ϕ ∧ ψ))

(J2
∧) ((•ψ ∧ ϕ) ∨ (•ϕ ∧ ψ)) ⊃ (•(ψ ∧ ϕ))

(J1
∨) • (ψ ∨ ϕ) ⊃ ((•ψ ∧ ¬ϕ) ∨ (•ϕ ∧ ¬ψ))

4In [4] the nameQB is used for a slightly different first-order system.
5The schemata(c), (e), (i1) and(i2) were used in [1, 10] (with the dual

operator◦). The rest are studied in context of Nmatrices for the first time.
The lettersDm stand for ‘De Morgan’. The names of the axioms are taken
from [7].



(J2
∨) ((•ψ ∧ ¬ϕ) ∨ (•ϕ ∧ ¬ψ)) ⊃ •(ψ ∨ ϕ)

(J1
⊃) • (ψ ⊃ ϕ) ⊃ (ψ ∧ •ϕ)

(J2
⊃) (ψ ∧ •ϕ) ⊃ •(ψ ⊃ ϕ)

(J1
∀) : •∀xψ ⊃ (∃x • ψ ∧ ∀xψ)

(J2
∀) : (∃x • ψ ∧ ∀xψ) ⊃ •∀xψ

(J1
∃) : •∃xψ ⊃ (∃x • ψ ∧ ∀x¬ψ)

(J2
∃) : (∃x • ψ ∧ ∀x¬ψ) ⊃ •∃xψ

For X ⊆ Ax, the systemQB[X] is obtained fromQB by
adding the schemata inX.

Notation: We denoteQB[X] by QBs, wheres is a string
consisting of the names of the schemata inX (thus we write
QBce rather thanQB[{(c), (e)}]. If both (i1) and(i2) are
in X we abbreviate it byi. Also, if xi

y is in X for every
y ∈ {⊃,∧,∨, ∀, ∃}, i ∈ {1, 2} and somex ∈ {J,Dm},
we simply writex.
Remark: QBcieJDm∀Dm∃ is the first-order system
LFI1∗ designed in [7] for handling evolutionary databases.

2.2. Nmatrices for first-order languages

Our main semantic tool is the following generalization of a
multi-valued matrix ([2, 1, 3, 10]):

Definition 3 (Non-deterministic matrix) A non-
deterministic matrix (Nmatrix) for a languageL is a
tupleM = 〈V,D,O〉, whereV is a non-empty set of truth
values,D (designated truth values) is a non-empty proper
subset ofV and O includes the following interpretation
functions: (i)¦̃M : Vn → P+(V) for everyn-ary connec-
tive¦, and (ii) Q̃M : P+(V) → P+(V) for every quantifier
Q.

The notion of anL-structurefor an Nmatrix is defined stan-
dardly (see, e.g. [3]). For anL-structureS = 〈D, I〉, L(D)
is the language obtained fromL by adding to it the set of
individual constants{a | a ∈ D}. I is extended toL(D) as
follows: I[a] = a.
Given anL-structureS, define the relation∼S on L(D)-
sentences:ψ ∼S ψ′ if ψ can be obtained fromψ by any
number of replacements of a closed termt for a closed term
t′, such thatI[t] = I[t′].

Definition 4 (S-valuation) Let S = 〈D, I〉 be an L-
structure for an NmatrixM. An S-valuation v :
Frmcl

L(D) → V is legal inM if it satisfies: (i) ifψ ∼S ψ′,
thenv[ψ] = v[ψ′], (ii) v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]],
(iii) v[¦(ψ1, ..., ψn)] ∈ ¦̃M[v[ψ1], ..., v[ψn]], and (iv)
v[Qxψ] ∈ Q̃M[{v[ψ{a/x}] | a ∈ D}] for Q ∈ {∀,∃}.

Definition 5 (Semantics) Let S = 〈D, I〉 be an L-
structure for an NmatrixM. AnM-legal S-valuation v
is a model of a formulaψ in M, denoted byS, v |=M ψ,
if v[ψ′] ∈ D for every closed instanceψ′ of ψ in L(D). A
formulaψ isM-valid inS if for everyM-legalS-valuation

v, S, v |=M ψ. ψ is M-valid if ψ is M-valid in everyL-
structure forM. The consequence relatioǹM between
sets ofL-formulas andL-formulas is defined as follows:
Γ `M ψ if for everyL-structureS and everyM-legal S-
valuationv: S, v |=M Γ implies thatS, v |=M ψ.

Definition 6 (Refinement) Let M1 = 〈V1,D1,O1〉 and
M2 = 〈V2,D2,O2〉 be Nmatrices forL. M2 is a refine-
mentofM1 if V2 ⊆ V1,D2 = D1 ∩ V2, ¦̃M2 [a1, ..., an] ⊆
¦̃M1 [a1, ...an] for everyn-ary connective¦ of L and every
a1, ..., an ∈ V2 andQ̃M2 [H] ⊆ Q̃M1 [H] for every quanti-
fier Q of L and everyH ⊆ V2.

3 Non-deterministic semantics for LFIs

In this section we provide non-deterministic semantics for
the first-order LFIs obtained from the basic systemQB by
adding various combinations of schemata fromAx. The re-
sults in this section are an extension and generalization of
the results of [1, 10].
The systemQB treats the connectives∧,∨,⊃ and the
quantifiers∀, ∃ similarly to classical logic. The treatment
of • and¬ is different: intuitively, the truth/falsity of¬ψ or
•ψ is not completely determined by the truth/falsity ofψ.
More data is needed for it. The central idea is to include all
the relevant data concerning a sentenceψ in the truth-value
fromV which is assigned toψ. In our case the relevant data
beyond the truth/falsity ofψ is the truth/falsity of¬ψ and of
•ψ. This leads to the use of elements from{0, 1}3 as truth-
values, where the intended meaning ofv[ψ] = 〈x, y, z〉 is
as follows:x = 1 iff v[ψ] ∈ D, y = 1 iff v[¬ψ] ∈ D and
z = 1 iff v[•ψ] ∈ D. Note that because of the schema(t),
not all tuples can be used as legal truth values. The schema
(t) means that at least one ofϕ,¬ϕ must be true. Thus, the
truth values〈0, 0, 0〉 and〈0, 0, 1〉 are rejected. The schema
(b) means that ifϕ and¬ϕ are true, then¬•ϕ must be false.
Since for everyv ∈ •̃[〈1, 1, 0〉], v = 〈0, x, y〉 (recall that the
third element specifies the truth/falsity of•ψ), it means that
x must be 0, which yields an illegal truth value, and thus
〈1, 1, 0〉 is also rejected. We are left with the following five
truth values:f = 〈0, 1, 0〉,fI = 〈0, 1, 1〉, t = 〈1, 0, 0〉,
tI = 〈1, 0, 1〉,I = 〈1, 1, 1〉.
Definition 7 The NmatrixQM5 = 〈V,D,O〉 is defined as
follows: V5 = {t, f, I, tI , fI}, D = {t, tI , I} andF =
V − D. The operations inO are defined as follows:

ae∨b =

(
D a ∈ D or b ∈ D
F otherwise

ae⊃b =

(
D a ∈ F or b ∈ D
F otherwise

ae∧b =

(
F a ∈ F or b ∈ F
D otherwise

e¬a =

(
F a ∈ {t, tI}
D a ∈ {f, fI , I}

e•a =

8><>:F a ∈ {t, f}
D a ∈ {tI , fI}
{t, tI} a = I



e∀[H] =

(
D if H ⊆ D
F otherwise

e∃[H] =

(
D if H ∩ D 6= ∅
F otherwise

Note that the definition of̃•QM5 is a direct consequence of
the schema(b), according to which¬•ϕ, ϕ and¬ϕ can-
not all be true at the same time. This is guaranteed by the
condition•̃[I] ∈ {tI , t}.
Theorem 8 For a setLC-formulasΓ∪{ψ}: Γ `QM5 ψ iff
Γ `QB ψ.

The proof involves a rather standard Henkin construction
and is omitted here.

Next we study the semantic effects of extending our ba-
sic systemQB with the schemata fromAx. The obtained
semantics is modular: the addition of a schema leads to a
certain refinement of the basic NmatrixQM5, and the se-
mantics of a system is obtained by simply combining all rel-
evant refinements. The refining conditions for the schemata
from Ax are:

Definition 9 Cond(c): a ∈ {f, fI} ⇒ ¬̃[a] ⊆ {t, tI}.
Cond(e) ¬̃[I] ⊆ {I}
Cond(i1): deletefI ; Cond(i2): deletetI .
Cond(Dm1

∧): if a, b ∈ {t, tI}, then∧̃[a, b] ⊆ {t, tI}.
Cond(Dm2

∧): if a or b are in {f, fI , I}, then∧̃[a, b] ⊆
{f, fI , I}
Cond(Dm1

∨): if a or b are in {t, tI}, then ∨̃[a, b] ⊆
{t, tI}.
Cond(Dm2

∨): if a, b ∈ {f, fI , I}, then ∨̃[a, b] ⊆
{f, fI , I}
Cond(Dm1

∀): if H ∩ {f, fI , I} = ∅, then∀̃[H] ⊆ {t, tI}.
Cond(Dm1

∃): if H ∩ {t, tI} 6= ∅, then∃̃[H] ⊆ {t, tI}.
Cond(Dm2

∃): if H ∩ {t, tI} = ∅, then∃̃[H] ⊆ {f, fI , I}.
Cond(J1

∧): if [a ∈ {t, f} or b ∈ {f, fI}] and [b ∈ {t, f}
or a ∈ {f, fI}], then∧̃[a, b] ⊆ {t, f}.
Cond(J2

∧): if [a ∈ {tI , fI , I} and b ∈ {t, I, tI}] or [b ∈
{tI , fI , I} anda ∈ {t, I, tI}], then∧̃[a, b] ⊆ {I, fI , tI}.
Cond(J1

∨): if [a ∈ {t, f} or b ∈ {t, tI}] and [b ∈ {t, f}
or a ∈ {t, tI}], then∨̃[a, b] ⊆ {t, f}.
Cond(J2

∨): if [a ∈ {tI , I, fI} andb ∈ {f, fI , I}] or [b ∈
{tI , I, fI} anda ∈ {f, fI , I}], then∨̃[a, b] ⊆ {tI , fI , I}.
Cond(J1

⊃): if a ∈ {t, f} or b ∈ {f, fI}, then⊃̃[b, a] ⊆
{t, f}.
Cond(J2

⊃): if a ∈ {t, tI , I} and b ∈ {fI , tI , I}, then
⊃̃[b, a] ⊆ {I, tI , fI}.
Cond(J1

∀): if H ⊆ {t, f} or H ∩ {f, fI} 6= ∅, then
∀̃[H] ⊆ {t, f}.
Cond(J2

∀): for H ⊆ {t, tI , I}, such thattI ∈ H or
I ∈ H: ∀̃[H] ⊆ {I, fI , tI}.
Cond(J1

∃): if H ∩ {t, tI} 6= ∅ or H ⊆ {t, f}, then
∃̃[H] ⊆ {t, f}.
Cond(J2

∃): if H ⊆ {I, f, fI} and {I, tI , fI} ∩ H 6= ∅,
then∃̃[H] ⊆ {I, tI , fI}.

For X ⊆ Ax,QM5[X] is the weakest refinement ofQM5

which satisfies the refining conditions of the schemata from
X.

It is easy to see that for everyX ⊆Ax the conditions in
X are coherent, the interpretations of the connectives and
quantifiers inQM5[X] are not empty and soQM5[X] is
well-defined.
Example 1: The interpretations of¬, • in QM5c are:

f fI I t tIe¬ {t, tI} {t, tI} {I, t, tI} {f, fI} {f, fI}e• {t, tI , I} {t, tI , I} {t, tI} {f, fI} {t, tI , I}

Example 2: The interpretations of∀ and∃ in QM5iJ1
∀J

1
∃

are6:
H e∀[H] e∃[H]

{t} {t} {t}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t}
{t, I} {t, I} {t, I}
{f, I} {f} {t}
{t, f, I} {f} {t}

Example 3: In [7] it is shown that LFI1∗ can be character-
ized by a deterministic three-valued matrix. Note that the
Nmatrix QM5cieJDm∀Dm∃ is indeed completely de-
terministic and matches the three-valued semantics of [7]
(where the truth-values0, 1

2 , 1 are used instead off, I, t re-
spectively).

Theorem 10 For a set ofLC-formulasΓ ∪ {ψ} and some
X ⊆ Ax: Γ `QB[X] ψ iff Γ `QM5[X] ψ.

The proof is quite similar to the proof of Thm. 29 in [4] and
is omitted here.
The modular approach of Nmatrices provides some impor-
tant insights into the semantic role of each of the above
schemata. For instance, it is easy to see that for every
x ∈ {∧,∨, ∀, ∃} and j ∈ {1, 2}, the semantic effects of
the conditionsCond(Jj

x) andCond(Dmj
x) onQM5 dif-

fer only in their behavior for the truth-valuestI andfI . In
the presence of(i1) and(i2), tI andfI are deleted and their
semantic effects onQM5i coincide. This leads to the fol-
lowing observation:

Corollary 11 For any x ∈ {∧,∨, ∀, ∃} and i ∈ {1, 2}:
`QBiJi

x
Dmi

x and`QBiDmi
x

Ji
x.

ThusDmi
x andJi

x are equivalent in any extension ofQBi,
and so the axiomsDm1

Q andDm2
Q for Q ∈ {∀,∃} in the

axiomatization of LFI1∗ of [8] are derivable from the rest
of the axioms.

6By Cond(i), fI and tI are deleted and we are left with only three
truth-values:t, f, I.



4 Extra-postulates and effectiveness

The IPE principle does not hold for the family of LFIs dis-
cussed in this paper, i.e. two equivalent sentences are not
necessarily logically indistinguishable7. For instance, from
∀xp(x) ↔ ∀yp(y) one cannot infer¬∀xp(x) ↔ ¬∀yp(y)
in QB and so theα-conversion principle does not hold. A
similar situation can be observed for vacuous quantification
and the (less evident) principles of commutativity and idem-
potency of∧ and∨. da Costa’s straightforward solution (to
the first two problems, see e.g. [9]) is adding explicit extra-
postulates to capture the desired principles. We extend this
idea to the rest of the principles as follows.

Definition 12 For a languageL, the setCNGL includes
the following binary relations overFrmL. For ¦ ∈ {∧,∨}:
(i) RC¦

L = {〈(A ¦ B), (B ¦ A)〉 | A,B ∈ FrmL} and (ii)
RI¦

L = {〈(A ¦ A), A〉 | A ∈ FrmL}. For Q ∈ {∀,∃}:
(iii) Rα

L = {〈A,B〉 | A ≡α B, A, B ∈ FrmL}, and (iv)
R

vQ

L = {〈QxA,A〉 | x 6∈ Fv(A), A ∈ FrmL}.
For Z ⊆CNGL, RZ is the minimal congruence relation on
FrmL, such that for everyR ∈ Z: R ⊆ RZ .

Note that in da Costa’s first-order C-systems (de-
note their language byLdc), the congruence relation
R{Rα

Ldc
,R

v∀
Ldc

,R
v∀
Ldc

} is explicitly used ([9]).

Definition 13 For X ⊆ Ax andZ ⊆CNGLC
, the system

QB[X][Z] is obtained from the systemQB[X] by adding
the extra-postulate (Z) ψ ⊃ ψ′ for any ψ, ψ′ ∈ FrmLC ,
such thatRZ(ψ, ψ′).

In order to provide semantics for the new class of LFIs
defined above, we refine the notion of a consequence re-
lation induced by an Nmatrix (see Defn. 5). LetZ ⊆
CNGL, such thatZ = {Rx1

L , ..., Rxn

L }, wherex1, ..., xn ∈
{C∧, C∨, I∧, I∨, α, v∀, v∃}. Given anL-structureS =
〈D, I〉, we denote byZD the extension ofZ to the language
L(D): ZD = {Rx1

L(D), ..., R
xn

L(D)}. (Consequently,RZD is
the minimal congruence relation overFrmL(D) including
all the relations fromZD.)

Definition 14 Let S be anL-structure andM an Nmatrix
for L, and letZ ⊆ CNGL. AnS-valuationv is RZ-legal
in M if (i) it is legal in M, and (ii) it respects theRZD

relation, i.e. for every twoL(D)-sentencesψ, ψ′, such that
RZD

(ψ, ψ′): v[ψ] = v[ψ′].
For a setΓ ∪ {ψ} of L-formulas,Γ `RZ

M ψ if for everyL-
structureS and everyS-valuationv which isRZ-legal in
M: if S, v |=M Γ, thenS, v |=M ψ.

7Recall that two sentencesA andB arelogically indistinguishablein a
systemS if ϕ(A) `S ϕ(B) andϕ(B) `S ϕ(A) for every sentenceϕ(ψ)
in the language ofS.

Theorem 15 For a set ofL-formulasΓ ∪ {ψ}, X ⊆ Ax
andZ ⊆CNGLC

: Γ `QB[X][Z] ψ iff Γ `RZ

QM5(X) ψ.

The proof is a straighforward adaptation of the proof of
Thm. 10 and is left to the reader.
Perhaps the most important property of the semantic frame-
work of Nmatrices, crucial for constructing counterexam-
ples, iseffectiveness: for determining whetherΓ `M ϕ
it always suffices to check onlypartial valuations, defined
only on subformulasof Γ ∪ {ϕ}. On the first-order level,
this can be formalized as follows.

Definition 16 Let S be anL-structure andM an Nmatrix
for L. Let WS ⊆ Frmcl

L(D) be a set closed under subfor-

mulas8. For Z ⊆ CNGL, a partial S-valuation onWS is
RZ-legal inM if it is legal inM and respectsRZD

.

Definition 17 (Effectiveness)Let Z ⊆ CNGL. An Nma-
trix M for L is effective(effective forRZ) if for everyL-
structureS and every set ofL(D)-sentencesWS closed un-
der subformulas: ifvp is a partialS-valuation onWS which
is legal (RZ-legal) inM, then it can be extended to a full
S-valuation legal (RZ-legal) inM.

Effectiveness is a trivial property for deterministic multi-
valued matrices. The proof of effectiveness for Nmatri-
ces in the propositional case is also very simple (see Prop.
2 in[1]). However, effectiveness becomes much less ev-
ident when congruence relations are involved. In fact,
given Z ⊆ CNGL, an Nmatrix is not necessarily effec-
tive for RZ . Consider, for instance, an NmatrixM1 =
〈{t, f}, {t},O〉, with the following non-standard interpre-
tation of∀: ∀̃[{H}] = {t} for everyH ⊆ P+({t, f}). Let
Z = {Rv∀

L }. Let S = 〈{a}, I〉 be anL-structure, such that
I[c] = a and I[p][a] = f . Then no partial valuation on
{p(c)} which is RZ-legal inM can be extended to a full
M-legal valuationv, respecting both theRZ relation and
the interpretation of∀. Below we formulate the required
conditions for the effectiveness of an NmatrixM for RZ .

Definition 18 For Z ⊆ CNGL, an Nmatrix M =
〈V,D,O〉 for L is RZ-suitable if: (i) R

vQ

L ∈ Z implies
that for everya ∈ V: a ∈ Q̃M[{a}], (ii) RC¦

L ∈ Z implies
that for everya, b ∈ V: ¦̃M[a, b] = ¦̃M[b, a], (iii) RI¦

L ∈ Z
implies that for everya ∈ V: a ∈ ¦̃M[a, a].

Note that any Nmatrix is effective9 for R{Rα
L}.

For instance, the NmatrixM1 defined above is not suitable
for R{Rv∀

L }, sincef 6∈ ∀̃M1 [{f}].
8For anL-structureS = 〈D, I〉, we say that a set of sentencesWS ⊆

Frmcl
L(D)

is closed under subformulasif: (i) ψ1, ..., ψn ∈ WS when-

ever¦(ψ1, ..., ψn) ∈ WS , and (ii) for everya ∈ D: ψ{a/x} ∈ WS

wheneverQxψ ∈ WS .
9This intuitively implies that theα-equivalence principle is more basic

than the rest of the principles studied here, since the latter depend on the
semantic interpretation of the connectives and quantifiers ofL.



Theorem 19 For Z ⊆ CNGL, an NmatrixM for L is
effective forRZ iff it is RZ-suitable.

Corollary 20 For every X ⊆ Ax and every Z ⊆
CNGLC

,QM5[X] is effective forRZ .

Note that the NmatrixM5
f
Bl defined in [10] (which is a

characteristic Nmatrix for da Costa’sC∗1 ) is not effective
for R{RC∧

L }.
Next we apply the effectiveness of our semantics to prove
the following proof-theoretical property of LFIs:

Theorem 21 Let S be a system over a languageL in-
cluding {⊃,¬}, s.t. A `S B wheneverRZ(A,B). Let
Z ⊆ CNGL. If QBieJ[Z] is an extension ofS, then
two L-sentencesψ, ϕ are logically indistinguishable inS
iff RZ(ψ,ϕ).

Proof: Assume thatRZ(ψ, ϕ) does not hold. LetS be an
L-structure andWS - the minimal set ofL(D)-sentences
closed under subformulas, such that¬¬¬(ϕ ⊃ ϕ) ∈ WS .
Define a partialS-valuationv on WS , such that:v[ϕ ⊃
ϕ] = t, v[¬(ϕ ⊃ ϕ)] = f , v[¬¬(ϕ ⊃ ϕ)] = I, v[¬¬¬(ϕ ⊃
ϕ)] = I. Extendv, so that:v[ψ ⊃ ψ] = t, v[¬(ψ ⊃ ψ)] =
f , v[¬¬(ψ ⊃ ψ)] = t, v(¬¬¬(ψ ⊃ ψ)) = f . It is easy to
see thatv is RZ-legal inQM5ieJ. By Cor. 20,v can be
extended to a full valuation which isRZ-legal inQM5ieJ.
By Thm. 15,¬¬¬(ϕ ⊃ ϕ) 6`S ¬¬¬(ψ ⊃ ψ) Henceψ
andϕ are not logically indistinguishable inS. The other
direction is trivial.
This theorem extends the results in [1, 10] and Remark 4.8
in [7] (concerning the propositional fragment ofQBieJDm,
called LFI1 there) by covering all thefirst-order systems
betweenQBie andQBieJ and adding all combinations of
the extra-postulates.

5 Summary

Non-deterministic multi-valued matrices are an attractive
semantic framework due to their modularity and effective-
ness. In this paper we have used Nmatrices to provide
simple modular finite-valued non-deterministic semantics
for a large useful family of first-order LFIs. The modu-
lar approach provides new insights into the semantic roles
of each of the studied schemata and the dependencies be-
tween them. We have shown that for anyj ∈ {1, 2} and
x ∈ {∀,∃,∧,∨}, Jj

x is equivalent toDmj
x in any exten-

sion ofQBi. Then we have formalized the notion of adding
extra-postulates to the LFIs to deal with their lack of the IPE
principle. We have used seven natural extra-postulates cap-
turing α-conversion, vacuous quantification and commuta-
tivity and idempotency of∧ and∨. However, it is clear from
our case study that this method can be extended to other

natural postulates chosen according to the intended appli-
cations of the system. We have shown that in the presence
of the extra-postulates, the effectiveness of the semantics
becomes problematic. Nevertheless, all of the semantics
considered here were shown to be effective. Finally, effec-
tiveness was applied to prove an important proof-theoretical
property of some of the studied LFIs.
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