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Abstract A partition of a setS is a non-empty collection of non-
empty subsets of, 7 = {B; | i € I} such that for every

Starting from an axiomatization of a generalization of i,j € I,i # j impliesB; N B; = ) and{J,.; B; = S. We
Shannon entropy we introduce a set of axioms for a para- refer to the set#3; as theblocksof 7.
metric family of distances over sets of partitions of finite  Let PART(S) be the set of partitions of a sét The
sets. This family includes some well-known metrics used inclass of all partitions of finite sets is denoted®ART. The
data mining and in the study of finite functions. one-block partition ofS is denoted bywg. The partition
{{s} | s € S} isdenoted byxg.

If 7,7 € PART(S), thenw < =’ if every block ofr is
included in a block ofr’. Clearly, for everyr € PART(S)
we haveng < 7 < wg.

7’ coverst if 7 < 7’ and there is no partitiod €

This paper is examining an axiomatization of a parame- pART(S) such thatr < # < =’. This fact is denoted by
terized family of metrics on sets of partitions of finite sets r < 7/ It is known [6] thatr < =’ if and only if 7/ is

that generalizes the entropic metric introduced by 8¢z  obtained fromr by fusing two blocks of this partition into
de Mantaras [5], as well as the Mirkin metric introduced g new block.
in [8]. This unifies the separate axiom systems for these gqr every two partitionsm,o both inf{r,s} and

metrics introduced in [7] and illuminates the relationstip  sup{r, o} in the partial ordered sgPART(S), <) exist.
the axiomatization of these metrics with our previous ax- Namely, ifr = {B; | i € I} ando = {C; | j € J}, then

1 Introduction

iomatization of generalized entropy [12, 11]. inf{r, o} is the partition:
Metrics on sets of partitions of finite sets are useful be-
cause they allow us to study properties of finite functions nANo={B;,NC; | BNC; #0,i,j € J}.

related to their kernel partitions. In a different directio
these metrics are interesting for data mining because the atThe supremunr V o = sup{w, o'} can be described using a
tributes of a table induce partitions on the sets of tuples of bipartite grapt§ having{B, | i € I}U{C; | j € J} asset
the table. Thus, metrics on partitions allow us to determine of vertices. An edgéB;, C;) exists only ifB; N C; # 0. If
interesting relationships between attributes and to usseth € is a connected component@hote that {B e« | B €
relationship for classification, data summarization aféot €} = | J{C € o | C € C}; we denote this set bPpe. The
applications. Also, exclusive clusterings can be regaeded family of sets{D¢ | € is a connected component &f is
partitions of the set of clustered objects and partition-met a partition of the se$. Itis easy to verify that this is exactly
rics can be used for evaluating clusterings, a point of view 7 V o.
presented in [7]. It is not difficult to show thatPART(.S), <) is an upper
A natural link exists between random variables and par- semimodular lattice; in other wordsf, o are two distinct
titions of sets, as we show next. This link allows the transfe partitions such each coversh o, thenn V o covers bothr
of certain probabilistic and information-theoretical ioos ando.
to partitions of sets, where we can take advantage of the If S,7 are two disjoint and nonempty sets, €
partial order between partitions. PART(S), o € PART(T), wherer = {A1,...,An},



o ={B,..., By}, then the partitionr + o is the partition ~ (P4) If 7 € PART(S) ando € PART(T), then
of SUT givenbyr + o0 ={A1,...,An,B1,...,Bn}.

Whenever the 4 operation is defined, then it is easily Ha(m x o) = ®(Hg(m), Hg(o)),
seen to be associative. In other wordsSjtU, V are pair- 5 ) ,
wise disjoint and nonempty sets, ande PART(S), o € where® : RS, — R be a continuous function such that
PART(U), 7 € PART(V), thent + (0 +7) = (r+ o) +7.  2®:Y) =y, 2), &(x,0) = zfor z,y € R,

Observe that ifs, U are disjoint, themus + ay = asuu. We have shown in [12] that ifr = {Bi,...,Ba} €
Also, wg + wy is the partition{,S, U} of the setS U U. PART(S), then

If #={By,...,Bn}, o ={C,...,C,} are partitions m 5
of two arbitrary setsS, U, respectively, then we denote the Hy(m) = % (Z <Bz> _ 1) .
partition{B; x C; | 1 <i<m,1<j<n}ofSxUhby 2170 —1 i1 5]

7 X o. Note thafas X oy = 0gxyu ande X Wy = WsxU-

Let 7 € PART(S) and letC C S. Denote byrc In the special case, wheh— 1 we have:
the “trace” of 7 on C given by rc¢ = {BNC|B € "B, \Bi|
.7rsu.ch thatB N C # (}. Clearly,7c € PART(C); also, Hg(m) = _Z Sz log, Sz .
if C'is a block ofr, thenre = we. — |5] S|

A subsetT of S is pure relative to a partitionr €
PART(S) if 7 = wy. In other wordsT is pure relative to
a partitionr if T is included in some block af.

The axiomatization also implies a specific form of the func-
tion ®. Namely, if 5 # 1 it follows that ®(z,y) =
r+y+ (2'7% — Day. In the case of Shannon entropy,
) o ) obtained usings = 1, we have®(z,y) = x + y for
2 An Axiomatization of Generalized Entropy 5 4 € R,.
Note that if|S| = 1, thenPART(.S) consists of a unique
In [4] the notion of 3-entropy of a probability distribu-  partition (ws = as) andHg(ws) = 0. Moreover, as we
tionp = (p1, ..., pn) wWas defined as: have shown in [12], for an arbitrary finite sétwe have
Hs(m) = 0ifand only if 7 = wg.
1 m 4 These facts suggest that for a subiBetf S the number
Ho(P) = 515 —5 > op -1, Hs(mr) can be used as a measure of the “purity” of the
i=1 setT with respect to the partitiomr. If T is w-pure, then
wherep, + - +p, = 1andp; > 0for1 < i < n. In mr = wr and, thereforeHg(mr) = 0. Thus, the smaller

the same reference it was observed that Shannon’s entropy'ﬂﬁ(ZT)’l the more Ipure tlee sét is.h _
H(p) can be obtained dimg_; Hs (). The largest value oHg(m) whenn € PART(S) is

In [12] we offered a new interpretation of the notion of achieved whemr = os; in this case we have:

entropy for finite distributions as entropies of partitiarfs 1 1

finite sets. Our approach takes advantage of the properties Hp(as) = 18 _1 <|5|5_1 - 1)
of the partial order of the lattice of partitions of a finite se

and makes use of operations defined on partitions. Axiom (P3) can be extended as follows.

We defined theHz entropy fors € R, 5 > 0 as a func- Theorem 2.1 Let Sy, ..., S, ben pairwise disjoint finite
tion Hg : PART(S) — R, that satisfies the following  sets,S = (J_, S; and letm,...,m, be partitions of

axioms: S1,...,Sn, respectively.
(P1) If m,#" € PART(S) are such thatr < «’, then We have:
(P2) If S,T are two finite sets such tha$| < |T|, then Ho(my + -+ mp) = Z <| z|) H(mi) + Hs(6),
Hﬁ(aS) < Hﬁ(aT)' i=1 ‘S
(P3) For every disjoint setsS, 7" and partitionsm €
PART(S), ando € PART(T) we have: wheref is the partition{ S, ..., S,} of S.
The -entropy defines naturally a conditional entropy of
Hg(m + o) partitions. We note that the definition introduced here is
15| 8 an improvement over our previous definition given in [12].
= (|S|+T|) g(m) + Starting from conditional entropies we will be able to define

a family of metrics on the set of partitions of a finite set.

B
( 7| ) Ha(o) + Ha({S,T}). Definition 2.2 Let 7,0 € PART(S) and lets =
S|+ [T {C4,...,C,}. Theg-conditional entropyof the partitions



7,0 € PART(S) is the functionH : PART(S)? — Rx
defined by:

n I\ B
Hﬂ<w|a>:z(f;') Ha(ro,)

j=1
a
The conditional entropy can be written explicitly as:
Hs(7|o)
m ) B n ) ] B
_ Z (&3] Z 1 |BiNCj1\" 1
: |S] £ 91-8 1 (e
Jj=1 =1

s (552 - (%))

wherer = {By,...,Bn}.
We have shown in [14] that the conditiondtentropy
enjoys the property specified next.

Theorem 2.3 Let 7, o, o’ be three patrtitions of a finite set

S such thatr < ¢’. We have

(i) Hg(m|o) =0ifand only ifo < m;

(i) Hp(mAo) = Hg(rlo) +Hs(o) = Hp(alm) +Hp(m);
(i) Hg(o|m) > Hg(o'|m) andHg(w|o) < Hg(w|o’).
Corollary 2.4 SinceHg(m) = Hg(m|ws) it follows that if
m,0 € PART(S), thenHg(m) > Hg(n|o).

The behavior of3-conditional entropies with respect to
the “addition” of partitions is discussed in the next state-

ment.

Theorem 2.5 Let S be a finite set;r, 6 be two partitions
of S, wheref = {D;,...,Dy}. If 0, € PART(D;) for
1 < i< h,then

h B
Hs(m|oy + -+ on) Z<S|>

i=1

If 7 ={F,...,Fy}, 0 = {C1,...,C,} be two parti-
tions ofS, and letr; € PART(F;) for 1 < i < k. Then,

)-

k B
F;
Hﬁ(ﬂ—l_’_..._"_ﬂ'k‘o')zg (|S||> Hs(milor, )+Hp(7]o).
i=1

3 Generalized Entropic Metrics and Their
Axiomatization

In[5] L. de Mantaras proved that Shannon’s entropy gen-

erates a metrid : PART(S)? — R? given byd(r,0) =
H(r|o) + H(o|r), for 7,0 € PART(S). His result can

be extended to a class of metrics that can be defineg by

entropies, thereby improving our earlier results [13]. flig t
end we need the following statement:

Theorem 3.1 Let, o, 7 be three partitions of the finite set
S. We have:

Hs(mlo A T) + Hg(o|T) = Hg(m A o|7).

Proof. Suppose thavr = {Cy,...,C,} andT =
{Ds,...,D,}. We observed already that

oONT=0p, +--+0p,=7c, + - +70,-
Consequently, by Theorem 2.5, we have

Hs(nloAT) = Hg(nlop, +---+o0p,)
P B
D
Z | ll Hﬁ(ﬂDllc—Dz)'
=\ 18]

Also, we have

which implies
Hs(mlo AT) +Hg(o|T) = Ha(m A a|7).

Corollary 3.2 Letr, o, 7 be three partitions of the finite set
S. Then, we have:

Hs(mlo) + Hg(o|r) = Ha(x|T).

Proof. By Theorem 3.1, the monotonicity of-
conditional entropy in its second argument and the dual
monotonicity of the same in its first argument we can write:

Hs(mlo) +Hp(al7)

Y

Hs(m|lo A1)+ Hg(o|7)
= Hg(r Ao|T)
> Hg(x|7),

which is the desired inequality. |
We can show now a central result:
Theorem 3.3 The mappingls : PART(S)? — Rx( de-
fined by: dg(m,0) = Hg(w|o) + Hg(o|m) for m,0 €
PART(S) is a metric onPART(S).
Proof. A double application of Corollary 3.2 yields:

Hs(xlo) +Hg(o|7)
Hs(o|m) + Ha(ro)

Adding these inequality gives

Ha(m|7),
Hp(7|m).

ARV

dg(m,0) +dg(o, 1) > dg(m, ),

which is the triangular inequality fats.



The symmetry ofdg is obvious and it is clear that

dg(m,m) = 0 for everym € PART(S).
Suppose now thatlz(r,0) = 0.

Since the values

(D5) d(wr,ar) = I foreveryT C s.
Then,d = dg.
Proof. Choosings = «a¢ in axiom(D4) and usingD5)

of (-conditional entropies are non-negative this implies we can write:

Hs(mlo) = Hg(o|r) = 0. By Theorem 2.3 we have both

o < mandrm < o, respectively, sor = o. Thus,ds is a
metric onPART(S). 1

It is clear thatdg(m,ws) = Hg(m) anddg(m, ag) =
Hg(ovs|m).

Another useful form ofis can be obtained starting from

the equalities Sincélg(w|o) = Hg(m A o) — Hg(o) and
Hs(o|m) = Hg(m A o) —Hgp(o). Thus, we have:

dg(m,0) = 2Hp(m A o) = Hg(m) —Hg(o), (1)

for m,0 € PART(S).

The behavior of the distaneg; with respect to partition
addition is discussed in the next statement.
Theorem 3.4 Let S be a finite set;r, # be two partitions
of S, wheref = {Dy,...,Dp}. If 0; € PART(D;) for
1 <4 < h,then

h 8
D;
dﬁ(ﬂ,01+“'+‘7h)22 (||S|> dg(WD“O'i)-‘ng(e‘ﬂ').
i=1

Proof.
rem 2.5.

The next statement is a generalization of the axiom sys-
tem proposed in [7] for the Shannon entropic metric and for

the Mirkin metric.

Theorem 3.5 The following properties hold in the metric

space(PART(S), dg):
(i) if o <m,thends(m, o) =Hg(o) — Ha(n);
(II) dg(ozs, 0') + dﬁ(O’, u)g) = dﬁ(as,ws);
(i) dg(m,mANo)+dg(m ANo,o) =dg(m,0),
for every partitionsr, o € PART(S).
Furthermore, we havé(wr, ar) =
subseftl” of S.

_ 1-p5
LT~ for every

Proof. The first three statements of the theorem follow becausér A o)
immediately from Equality 1; the last part is an application
|

of the definition ofds.

This statement follows directly from Theo-
|

d(aSa 9)

h B
D;
Z | ‘ d<wDi’aDi>
eI
_ z}: [Di\" 1= D3~
IE=ANE] 1—21-8
Yo 1Dl — 18|
(1—21=F)|s|F
From Axioms(D2) and(D5) it follows that

d(@,ws) = d(as,ws)—d(ag,e)
1S S D -8
S 1-21-8 (1 —21-5)|S|8
1517 = b, |Dif?
(1—21-8)|s)8

Let nowr,o € PART(S), wherer = {By,...,Bn}
ando = {C4,...,C,}. Sincer Ao < mandop, = {C1 N
B;,...,C, N B;}, an application of Axion{D4) yields

d(m,mANo)

> (5) dwn a0
=1
B;|\”
- <|S|> d(meO—Bi,)
1=1
1B;|\? |Bil® = X5y |B:i N C;lP
S| (1 —21=P)|B;|P

|
NIE

Il
.MS

i=1

1 m n n
= 2P)5P (ZW -2 1B ﬂcjiﬁ) :
i=1 j=1i=1

B; = 0B;- I
By Axiom (D1) we obtain the similar equality:

A generalization of a result obtained in [7] is contained (7 A 0,0)

in the next statement, which gives an axiomatization of the

metricdg.

Theorem 3.6 Letd : PART(S)? — R, be a function

that satisfies the following conditions:

(D1) dis symmetric, thatisi(w, o) = d(o, 7);

(D2) d(as, o) + d(o,ws) = d(as,ws);

(D3) d(m,0) =d(m,m ANo) +d(m Ao,o);

(D4) if 0,0 € PART(S) such that) = {Dy, ..
o < 6 then we have:

h 1\ B
d(e,O') = Z (||)DS,Z||) d(meUDv:);

=1

., Dy} and

j=11i=1

1 m n n
EEEIEE (ZIB”—ZDBMJ-W),
i=1

which, by Axiom(D3), implies:

d(m, o)

1 m n
e — B. |8 8
(1—2P)|5]? (g el

—Qii |B; ﬂCjﬁ) :
j=1i=1



that isd(m, o) = dg(m, o). 1
In fact, the Mirkin metric [8] (up to a multiplicative con-
stant) is obtained fof = 2:

2

|12

do(m,0)

SIBIP Y IG
i=1 j=1
—2§:§n: |B; N Cy|?

i=1 j=1

The corresponding generalized entrdy() is double the
Gini index of the partitiont = {B1,..., B, }:

wo-(E(8) )

i=1
It is worth noting that one could axiomatize the entropy
starting from the notion metric between partitions. Indeed
if the 5-entropy of a partitionr € PART(.S) is defined as:

Hs(m) = da(m, ws),
then we would retrieve thg-entropy:

5

i=1

| Bi|
S|

| Bi
S|

Hg(m)

g
Y.
4 Partition Valuations and 3-Entropy

Metrics generated by-conditional entropies are closely
related to lower valuations of the upper semi-modular lat-
tices of partitions of finite sets. This connection was estab
lished in [3] and studied in [2, 1, 9].

A lower valuationon a lattice(L, v, A) is a mapping
v: L — Rsuchthav(r Vo) +ov(r Ao)>v(r)+v(o)
for everyrw, o € L. If the reverse inequality is satisfied, that
is, ifv(rVo)+v(rAo) <wv(r)+wv(o) foreveryr,o € L,
thenw is referred to as anpper valuation

If v € L is both a lower and upper valuation, that is, if
v(r Vo)+uou(r Ao) =v(r)+ v(o) for everyr,o € L,
thenv is a valuation orL.

We have the following result:

Theorem 4.1 Let 7,0 € PART(S) be two partitions. We
have:

dg(m, 0) 2-dg(m No,wsg) — dg(m,ws) — da(o,ws)

dg(ag,m) +dg(ag,0) —2-dg(as, ™ A o).

Proof. The equalities of the theorem can be immediately
verified by using the definition af;.

Corollary 4.2 Let 0,7 be two partitions fromPART(S).
If & < 7 and we have eithetlz(0,ws) = dg(r,wg) or
dg(ozs, 9) = dﬁ(O&S,T), thenf = r.

Proof. Observe that i) < 7, then Theorem 4.1 implies
dg(@, 7‘) + dﬁ(T, ws) = dﬁ(e,wS),

and
d@(@, T) = dﬂ(as,T) — dﬁ(as,e).

Suppose thatlg(f,ws) = dg(T,wg). Sincedg(r,ws) =
dg(0,wg) it follows thatds(0,7) = 0, sof = .

If dg(as,8) = dg(as, ) the same conclusion can be
reached immediately. |

It is known [3] that if there exists a positive valuation
on L, thenL must be a modular lattice. Since the partition
lattice of a set is an upper-semimodular lattice that is not
modular ([3]) it is clear that positive valuations do notsxi
on partition lattices. However, lower and upper valuations
do exist, as shown next:

Theorem 4.3 Let S be a finite set. Define the mappings
vg : PART(S) — R and letwg : PART(S) — R be by
vg(m) = dg(ag, ) andwg(w) = dg(m,ws), respectively,
for # € PART(S). Then,ug is a lower valuation andug is

an upper valuation on the lattic?ART(S), v, A).

Proof. Theorem 4.1 allows us to write:

dg(m,0) = wvg(m)+vg(o) —2vg(m Ao)

2wg(m A o) —wg(m) —wg(o),

for everyw, o € PART(S).

If we rewrite the triangular inequalityig(m, ) +

dg(1,0) > dg(m, o) using the valuationsg and wg we
obtain:

va(7) + vg(T A o)

wg(m AT) +wg(T A o)

> wvg(mAT)+vg(T Ao),
> wp(7) + ws(m A o),

for everym, 7,0 € PART(S). If we chooser = = V o the
last inequalities yield:

vg(m Vo) +vg(m Ao)
wg(m Vo) +wg(mAo),

vp(m) + v(9)

<
wg(m) +wg(o) =

for every m,0 € PART(S), which shows thatg is a
lower valuation andvg is an upper valuation on the lattice
(PART(S), V, A). 1

5 Conclusion and Future Work

We introduced a general axiomatization of a family of
metrics on the set of partitions of a finite set that is related
to generalized entropies. These metrics are used for a vari-
ety of data mining tasks ranging from clustering [7, 15] to
classification [13, 14] and discretization [10].

The value of the parametér that gives optimal results
depends on the statistical properties of the data set that is
analyzed. Developing algorithms that learn the values of
0 for a specific data set and mining task remains an open
problem.
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