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Abstract

Starting from an axiomatization of a generalization of
Shannon entropy we introduce a set of axioms for a para-
metric family of distances over sets of partitions of finite
sets. This family includes some well-known metrics used in
data mining and in the study of finite functions.

1 Introduction

This paper is examining an axiomatization of a parame-
terized family of metrics on sets of partitions of finite sets
that generalizes the entropic metric introduced by R. López
de Mántaras [5], as well as the Mirkin metric introduced
in [8]. This unifies the separate axiom systems for these
metrics introduced in [7] and illuminates the relationshipof
the axiomatization of these metrics with our previous ax-
iomatization of generalized entropy [12, 11].

Metrics on sets of partitions of finite sets are useful be-
cause they allow us to study properties of finite functions
related to their kernel partitions. In a different direction,
these metrics are interesting for data mining because the at-
tributes of a table induce partitions on the sets of tuples of
the table. Thus, metrics on partitions allow us to determine
interesting relationships between attributes and to use these
relationship for classification, data summarization and other
applications. Also, exclusive clusterings can be regardedas
partitions of the set of clustered objects and partition met-
rics can be used for evaluating clusterings, a point of view
presented in [7].

A natural link exists between random variables and par-
titions of sets, as we show next. This link allows the transfer
of certain probabilistic and information-theoretical notions
to partitions of sets, where we can take advantage of the
partial order between partitions.

A partition of a setS is a non-empty collectionπ of non-
empty subsets ofS, π = {Bi | i ∈ I} such that for every
i, j ∈ I, i 6= j impliesBi ∩ Bj = ∅ and

⋃

i∈I Bi = S. We
refer to the setsBi as theblocksof π.

Let PART(S) be the set of partitions of a setS. The
class of all partitions of finite sets is denoted byPART. The
one-block partition ofS is denoted byωS . The partition
{{s} | s ∈ S} is denoted byαS .

If π, π′ ∈ PART(S), thenπ ≤ π′ if every block ofπ is
included in a block ofπ′. Clearly, for everyπ ∈ PART(S)
we haveαS ≤ π ≤ ωS .

π′ coversπ if π ≤ π′ and there is no partitionθ ∈
PART(S) such thatπ < θ < π′. This fact is denoted by
π ≺ π′. It is known [6] thatπ ≺ π′ if and only if π′ is
obtained fromπ by fusing two blocks of this partition into
a new block.

For every two partitionsπ, σ both inf{π, σ} and
sup{π, σ} in the partial ordered set(PART(S),≤) exist.
Namely, ifπ = {Bi | i ∈ I} andσ = {Cj | j ∈ J}, then
inf{π, σ} is the partition:

π ∧ σ = {Bi ∩ Cj | Bi ∩ Cj 6= ∅, i, j ∈ J}.

The supremumπ∨σ = sup{π, σ} can be described using a
bipartite graphG having{Bi | i ∈ I}∪{Cj | j ∈ J} as set
of vertices. An edge(Bi, Cj) exists only ifBi ∩Cj 6= ∅. If
C is a connected component ofG note that

⋃

{B ∈ π | B ∈
C} =

⋃

{C ∈ σ | C ∈ C}; we denote this set byDC. The
family of sets{DC | C is a connected component ofG} is
a partition of the setS. It is easy to verify that this is exactly
π ∨ σ.

It is not difficult to show that(PART(S),≤) is an upper
semimodular lattice; in other words ifπ, σ are two distinct
partitions such each coversπ ∧ σ, thenπ ∨ σ covers bothπ
andσ.

If S, T are two disjoint and nonempty sets,π ∈
PART(S), σ ∈ PART(T ), whereπ = {A1, . . . , Am},



σ = {B1, . . . , Bn}, then the partitionπ + σ is the partition
of S ∪ T given byπ + σ = {A1, . . . , Am, B1, . . . , Bn}.

Whenever the “+” operation is defined, then it is easily
seen to be associative. In other words, ifS,U, V are pair-
wise disjoint and nonempty sets, andπ ∈ PART(S), σ ∈
PART(U), τ ∈ PART(V ), thenπ +(σ + τ) = (π +σ)+ τ .
Observe that ifS,U are disjoint, thenαS + αU = αS∪U .
Also, ωS + ωU is the partition{S,U} of the setS ∪ U .

If π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} are partitions
of two arbitrary setsS,U , respectively, then we denote the
partition{Bi × Cj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of S × U by
π×σ. Note thatαS ×αU = αS×U andωS ×ωU = ωS×U .

Let π ∈ PART(S) and letC ⊆ S. Denote byπC

the “trace” of π on C given by πC = {B ∩ C|B ∈
π such thatB ∩ C 6= ∅}. Clearly,πC ∈ PART(C); also,
if C is a block ofπ, thenπC = ωC .

A subsetT of S is pure relative to a partitionπ ∈
PART(S) if πT = ωT . In other words,T is pure relative to
a partitionπ if T is included in some block ofπ.

2 An Axiomatization of Generalized Entropy

In [4] the notion ofβ-entropy of a probability distribu-
tion p = (p1, . . . , pn) was defined as:

Hβ(p) =
1

21−β − 1

(

m
∑

i=1

p
β
i − 1

)

,

wherep1 + · · · + pn = 1 andpi ≥ 0 for 1 ≤ i ≤ n. In
the same reference it was observed that Shannon’s entropy
H(p) can be obtained aslimβ→1 Hβ(π).

In [12] we offered a new interpretation of the notion of
entropy for finite distributions as entropies of partitionsof
finite sets. Our approach takes advantage of the properties
of the partial order of the lattice of partitions of a finite set
and makes use of operations defined on partitions.

We defined theHβ entropy forβ ∈ R, β > 0 as a func-
tion Hβ : PART(S) −→ R≥0 that satisfies the following
axioms:
(P1) If π, π′ ∈ PART(S) are such thatπ ≤ π′, then

Hβ(π′) ≤ Hβ(π).
(P2) If S, T are two finite sets such that|S| ≤ |T |, then

Hβ(αS) ≤ Hβ(αT ).
(P3) For every disjoint setsS, T and partitionsπ ∈

PART(S), andσ ∈ PART(T ) we have:

Hβ(π + σ)

=

(

|S|

|S| + |T |

)β

Hβ(π) +

(

|T |

|S| + |T |

)β

Hβ(σ) + Hβ({S, T}).

(P4) If π ∈ PART(S) andσ ∈ PART(T ), then

Hβ(π × σ) = Φ(Hβ(π), Hβ(σ)),

whereΦ : R
2

≥0
−→ R≥0 be a continuous function such that

Φ(x, y) = Φ(y, x), Φ(x, 0) = x for x, y ∈ R≥0.
We have shown in [12] that ifπ = {B1, . . . , Bn} ∈

PART(S), then

Hβ(π) =
1

21−β − 1

(

m
∑

i=1

(

|Bi|

|S|

)β

− 1

)

.

In the special case, whenβ → 1 we have:

Hβ(π) = −
m
∑

i=1

|Bi|

|S|
· log

2

|Bi|

|S|
.

The axiomatization also implies a specific form of the func-
tion Φ. Namely, if β 6= 1 it follows that Φ(x, y) =
x + y + (21−β − 1)xy. In the case of Shannon entropy,
obtained usingβ = 1, we haveΦ(x, y) = x + y for
x, y ∈ R≥0.

Note that if|S| = 1, thenPART(S) consists of a unique
partition (ωS = αS) andHβ(ωS) = 0. Moreover, as we
have shown in [12], for an arbitrary finite setS we have
Hβ(π) = 0 if and only if π = ωS .

These facts suggest that for a subsetT of S the number
Hβ(πT ) can be used as a measure of the “purity” of the
setT with respect to the partitionπ. If T is π-pure, then
πT = ωT and, therefore,Hβ(πT ) = 0. Thus, the smaller
Hβ(πT ), the more pure the setT is.

The largest value ofHβ(π) when π ∈ PART(S) is
achieved whenπ = αS ; in this case we have:

Hβ(αS) =
1

21−β − 1

(

1

|S|β−1
− 1

)

.

Axiom (P3)can be extended as follows.
Theorem 2.1 Let S1, . . . , Sn be n pairwise disjoint finite
sets, S =

⋃n

i=1
Si and let π1, . . . , πn be partitions of

S1, . . . , Sn, respectively.
We have:

Hβ(π1 + · · · + πn) =

n
∑

i=1

(

|Si|

|S|

)β

Hβ(πi) + Hβ(θ),

whereθ is the partition{S1, . . . , Sn} of S.
Theβ-entropy defines naturally a conditional entropy of

partitions. We note that the definition introduced here is
an improvement over our previous definition given in [12].
Starting from conditional entropies we will be able to define
a family of metrics on the set of partitions of a finite set.

Definition 2.2 Let π, σ ∈ PART(S) and let σ =
{C1, . . . , Cn}. Theβ-conditional entropyof the partitions



π, σ ∈ PART(S) is the functionH : PART(S)2 −→ R≥0

defined by:

Hβ(π|σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(πCj
)

The conditional entropy can be written explicitly as:

Hβ(π|σ)

=
m
∑

j=1

(

|Cj |

|S|

)β n
∑

i=1

1

21−β − 1

[

(

|Bi ∩ Cj |

|Cj |

)β

− 1

]

=
1

21−β − 1

m
∑

i=1

n
∑

j=1

(

(

|Bi ∩ Cj |

|S|

)β

−

(

|Cj |

|S|

)β
)

,

whereπ = {B1, . . . , Bm}.
We have shown in [14] that the conditionalβ-entropy

enjoys the property specified next.
Theorem 2.3 Let π, σ, σ′ be three partitions of a finite set
S such thatσ ≤ σ′. We have
(i) Hβ(π|σ) = 0 if and only ifσ ≤ π;
(ii) Hβ(π∧σ) = Hβ(π|σ)+Hβ(σ) = Hβ(σ|π)+Hβ(π);

(iii) Hβ(σ|π) ≥ Hβ(σ′|π) andHβ(π|σ) ≤ Hβ(π|σ′).

Corollary 2.4 SinceHβ(π) = Hβ(π|ωS) it follows that if
π, σ ∈ PART(S), thenHβ(π) ≥ Hβ(π|σ).

The behavior ofβ-conditional entropies with respect to
the “addition” of partitions is discussed in the next state-
ment.
Theorem 2.5 Let S be a finite set,π, θ be two partitions
of S, whereθ = {D1, . . . ,Dh}. If σi ∈ PART(Di) for
1 ≤ i ≤ h, then

Hβ(π|σ1 + · · · + σh) =

h
∑

i=1

(

|Di|

|S|

)β

Hβ(πDi
|σi).

If τ = {F1, . . . , Fk}, σ = {C1, . . . , Cn} be two parti-
tions ofS, and letπi ∈ PART(Fi) for 1 ≤ i ≤ k. Then,

Hβ(π1+· · ·+πk|σ) =

k
∑

i=1

(

|Fi|

|S|

)β

Hβ(πi|σFi
)+Hβ(τ |σ).

3 Generalized Entropic Metrics and Their
Axiomatization

In [5] L. de Mántaras proved that Shannon’s entropy gen-
erates a metricd : PART(S)2 −→ R

2 given byd(π, σ) =
H(π|σ) + H(σ|π), for π, σ ∈ PART(S). His result can
be extended to a class of metrics that can be defined byβ-
entropies, thereby improving our earlier results [13]. To this
end we need the following statement:

Theorem 3.1 Letπ, σ, τ be three partitions of the finite set
S. We have:

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Proof. Suppose thatσ = {C1, . . . , Cn} and τ =
{D1, . . . ,Dp}. We observed already that

σ ∧ τ = σD1
+ · · · + σDp

= τC1
+ · · · + τCn

.

Consequently, by Theorem 2.5, we have

Hβ(π|σ ∧ τ) = Hβ(π|σD1
+ · · · + σDp

)

=

p
∑

l=1

(

|Dl|

|S|

)β

Hβ(πDl
|σDl

).

Also, we have

Hβ(σ|τ) =

p
∑

l=1

(

|Dl|

|S|

)β

Hβ(σDl
),

which implies

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Corollary 3.2 Letπ, σ, τ be three partitions of the finite set
S. Then, we have:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. By Theorem 3.1, the monotonicity ofβ-
conditional entropy in its second argument and the dual
monotonicity of the same in its first argument we can write:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧ τ) + Hβ(σ|τ)

= Hβ(π ∧ σ|τ)

≥ Hβ(π|τ),

which is the desired inequality.
We can show now a central result:

Theorem 3.3 The mappingdβ : PART(S)2 −→ R≥0 de-
fined by: dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π) for π, σ ∈
PART(S) is a metric onPART(S).

Proof. A double application of Corollary 3.2 yields:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ),

Hβ(σ|π) + Hβ(τ |σ) ≥ Hβ(τ |π).

Adding these inequality gives

dβ(π, σ) + dβ(σ, τ) ≥ dβ(π, τ),

which is the triangular inequality fordβ .



The symmetry ofdβ is obvious and it is clear that
dβ(π, π) = 0 for everyπ ∈ PART(S).

Suppose now thatdβ(π, σ) = 0. Since the values
of β-conditional entropies are non-negative this implies
Hβ(π|σ) = Hβ(σ|π) = 0. By Theorem 2.3 we have both
σ ≤ π andπ ≤ σ, respectively, soπ = σ. Thus,dβ is a
metric onPART(S).

It is clear thatdβ(π, ωS) = Hβ(π) and dβ(π, αS) =
Hβ(αS |π).

Another useful form ofdβ can be obtained starting from
the equalities SinceHβ(π|σ) = Hβ(π ∧ σ) − Hβ(σ) and
Hβ(σ|π) = Hβ(π ∧ σ) − Hβ(σ). Thus, we have:

dβ(π, σ) = 2Hβ(π ∧ σ) − Hβ(π) − Hβ(σ), (1)

for π, σ ∈ PART(S).
The behavior of the distancedβ with respect to partition

addition is discussed in the next statement.
Theorem 3.4 Let S be a finite set,π, θ be two partitions
of S, whereθ = {D1, . . . ,Dh}. If σi ∈ PART(Di) for
1 ≤ i ≤ h, then

dβ(π, σ1+· · ·+σh) =

h
∑

i=1

(

|Di|

|S|

)β

dβ(πDi
, σi)+Hβ(θ|π).

Proof. This statement follows directly from Theo-
rem 2.5.

The next statement is a generalization of the axiom sys-
tem proposed in [7] for the Shannon entropic metric and for
the Mirkin metric.
Theorem 3.5 The following properties hold in the metric
space(PART(S), dβ):
(i) if σ ≤ π, thendβ(π, σ) = Hβ(σ) − Hβ(π);
(ii) dβ(αS , σ) + dβ(σ, ωS) = dβ(αS , ωS);

(iii) dβ(π, π ∧ σ) + dβ(π ∧ σ, σ) = dβ(π, σ),
for every partitionsπ, σ ∈ PART(S).

Furthermore, we haved(ωT , αT ) = 1−|T |1−β

1−21−β , for every
subsetT of S.

Proof. The first three statements of the theorem follow
immediately from Equality 1; the last part is an application
of the definition ofdβ .

A generalization of a result obtained in [7] is contained
in the next statement, which gives an axiomatization of the
metricdβ .
Theorem 3.6 Let d : PART(S)2 −→ R≥0 be a function
that satisfies the following conditions:
(D1) d is symmetric, that is,d(π, σ) = d(σ, π);
(D2) d(αS , σ) + d(σ, ωS) = d(αS , ωS);
(D3) d(π, σ) = d(π, π ∧ σ) + d(π ∧ σ, σ);
(D4) if σ, θ ∈ PART(S) such thatθ = {D1, . . . ,Dh} and

σ ≤ θ then we have:

d(θ, σ) =
h
∑

i=1

(

|Di|

|S|

)β

d(ωDi
, σDi

);

(D5) d(ωT , αT ) = 1−|T |1−β

1−21−β , for everyT ⊆ S.
Then,d = dβ .

Proof. Choosingσ = αS in axiom(D4) and using(D5)
we can write:

d(αS , θ) =

h
∑

i=1

(

|Di|

|S|

)β

d(ωDi
, αDi

)

=

h
∑

i=1

(

|Di|

|S|

)β
1 − |Di|

1−β

1 − 21−β

=

∑h

i=1
|Di|

β − |S|

(1 − 21−β)|S|β
.

From Axioms(D2) and(D5) it follows that

d(θ, ωS) = d(αS , ωS) − d(αS , θ)

=
1 − |S|1−β

1 − 21−β
−

∑h

i=1
|Di|

β − |S|

(1 − 21−β)|S|β

=
|S|β −

∑h

i=1
|Di|

β

(1 − 21−β)|S|β
.

Let now π, σ ∈ PART(S), whereπ = {B1, . . . , Bm}
andσ = {C1, . . . , Cn}. Sinceπ ∧σ ≤ π andσBi

= {C1 ∩
Bi, . . . , Cn ∩ Bi}, an application of Axiom(D4) yields

d(π, π ∧ σ)

=

m
∑

i=1

(

|Bi|

|S|

)β

d(ωBi
, (π ∧ σ)Bi

)

=

m
∑

i=1

(

|Bi|

|S|

)β

d(ωBi
, σBi

)

=

m
∑

i=1

(

|Bi|

|S|

)β |Bi|
β −

∑n

j=1
|Bi ∩ Cj |

β

(1 − 21−β)|Bi|β

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β −

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,

because(π ∧ σ)Bi
= σBi

.
By Axiom (D1) we obtain the similar equality:

d(π ∧ σ, σ)

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β −

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,

which, by Axiom(D3), implies:

d(π, σ)

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β +

n
∑

j=1

|Cj |
β

−2

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,



that isd(π, σ) = dβ(π, σ).
In fact, the Mirkin metric [8] (up to a multiplicative con-

stant) is obtained forβ = 2:

d2(π, σ) =
2

|S|2





m
∑

i=1

|Bi|
2 +

n
∑

j=1

|Cj |
2

−2

m
∑

i=1

n
∑

j=1

|Bi ∩ Cj |
2



 .

The corresponding generalized entropyH2(π) is double the
Gini index of the partitionπ = {B1, . . . , Bm}:

H2(π) = 2

(

m
∑

i=1

(

|Bi|

|S|

)2

− 1

)

It is worth noting that one could axiomatize the entropy
starting from the notion metric between partitions. Indeed,
if the β-entropy of a partitionπ ∈ PART(S) is defined as:

Hβ(π) = dβ(π, ωS),

then we would retrieve theβ-entropy:

Hβ(π) =
1

21−β − 1

(

m
∑

i=1

(

|Bi|

|S|

)β

− 1

)

.

4 Partition Valuations and β-Entropy

Metrics generated byβ-conditional entropies are closely
related to lower valuations of the upper semi-modular lat-
tices of partitions of finite sets. This connection was estab-
lished in [3] and studied in [2, 1, 9].

A lower valuationon a lattice(L,∨,∧) is a mapping
v : L −→ R such thatv(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ)
for everyπ, σ ∈ L. If the reverse inequality is satisfied, that
is, if v(π∨σ)+v(π∧σ) ≤ v(π)+v(σ) for everyπ, σ ∈ L,
thenv is referred to as anupper valuation.

If v ∈ L is both a lower and upper valuation, that is, if
v(π ∨ σ) + v(π ∧ σ) = v(π) + v(σ) for everyπ, σ ∈ L,
thenv is a valuation onL.

We have the following result:
Theorem 4.1 Let π, σ ∈ PART(S) be two partitions. We
have:

dβ(π, σ) = 2 · dβ(π ∧ σ, ωS) − dβ(π, ωS) − dβ(σ, ωS)

= dβ(αS , π) + dβ(αS , σ) − 2 · dβ(αS , π ∧ σ).

Proof. The equalities of the theorem can be immediately
verified by using the definition ofdβ .

Corollary 4.2 Let θ, τ be two partitions fromPART(S).
If θ ≤ τ and we have eitherdβ(θ, ωS) = dβ(τ, ωS) or
dβ(αS , θ) = dβ(αS , τ), thenθ = τ .

Proof. Observe that ifθ ≤ τ , then Theorem 4.1 implies

dβ(θ, τ) + dβ(τ, ωS) = dβ(θ, ωS),

and
dβ(θ, τ) = dβ(αS , τ) − dβ(αS , θ).

Suppose thatdβ(θ, ωS) = dβ(τ, ωS). Sincedβ(τ, ωS) =
dβ(θ, ωS) it follows thatdβ(θ, τ) = 0, soθ = τ .

If dβ(αS , θ) = dβ(αS , τ) the same conclusion can be
reached immediately.

It is known [3] that if there exists a positive valuationv

on L, thenL must be a modular lattice. Since the partition
lattice of a set is an upper-semimodular lattice that is not
modular ([3]) it is clear that positive valuations do not exist
on partition lattices. However, lower and upper valuations
do exist, as shown next:

Theorem 4.3 Let S be a finite set. Define the mappings
vβ : PART(S) −→ R and letwβ : PART(S) −→ R be by
vβ(π) = dβ(αS , π) andwβ(π) = dβ(π, ωS), respectively,
for π ∈ PART(S). Then,vβ is a lower valuation andwβ is
an upper valuation on the lattice(PART(S),∨,∧).

Proof. Theorem 4.1 allows us to write:

dβ(π, σ) = vβ(π) + vβ(σ) − 2vβ(π ∧ σ)

= 2wβ(π ∧ σ) − wβ(π) − wβ(σ),

for everyπ, σ ∈ PART(S).
If we rewrite the triangular inequalitydβ(π, τ) +

dβ(τ, σ) ≥ dβ(π, σ) using the valuationsvβ and wβ we
obtain:

vβ(τ) + vβ(π ∧ σ) ≥ vβ(π ∧ τ) + vβ(τ ∧ σ),

wβ(π ∧ τ) + wβ(τ ∧ σ) ≥ wβ(τ) + wβ(π ∧ σ),

for everyπ, τ, σ ∈ PART(S). If we chooseτ = π ∨ σ the
last inequalities yield:

vβ(π) + vβ(σ) ≤ vβ(π ∨ σ) + vβ(π ∧ σ)

wβ(π) + wβ(σ) ≥ wβ(π ∨ σ) + wβ(π ∧ σ),

for every π, σ ∈ PART(S), which shows thatvβ is a
lower valuation andwβ is an upper valuation on the lattice
(PART(S),∨,∧).

5 Conclusion and Future Work

We introduced a general axiomatization of a family of
metrics on the set of partitions of a finite set that is related
to generalized entropies. These metrics are used for a vari-
ety of data mining tasks ranging from clustering [7, 15] to
classification [13, 14] and discretization [10].

The value of the parameterβ that gives optimal results
depends on the statistical properties of the data set that is
analyzed. Developing algorithms that learn the values of
β for a specific data set and mining task remains an open
problem.
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[4] Z. Daróczy. Generalized information functions.Infor-
mation and Control, 16:36–51, 1970.
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