
On the Influence of Boolean Encodings
in SAT-based ATPG for Path Delay Faults∗

Stephan Eggersglüß Rolf Drechsler
Institute of Computer Science, University of Bremen

Bibliothekstr. 1, 28359 Bremen, Germany
{segg, drechsle}@informatik.uni-bremen.de

Abstract

Automatic Test Pattern Generation (ATPG) is an
important task to ensure that a chip functions correctly.
For high speed chips, testing for dynamic fault models
such as the path delay fault model becomes more and
more important. While classical algorithms for ATPG
reach their limit, the significance of algorithms to solve
the Boolean Satisfiability (SAT) problem grows due to
recent developments of powerful SAT solvers. How-
ever, ATPG is not always a purely Boolean problem.
For generating robust test patterns for delay faults,
multiple-valued logics are needed. To apply a (Boolean)
SAT solver on a problem modeled in multiple-valued
logic, a Boolean encoding has to be used.

In this paper, we consider the problem of SAT-based
ATPG for the robust path delay fault model where a 19-
valued logic is used and provide a detailed study on the
influence of the chosen Boolean encoding on the perfor-
mance of test generation. Further, we show a method
to identify efficient encodings and show the behavior of
these encodings on ISCAS benchmarks and large indus-
trial circuits.

1. Introduction
Ensuring the correctness of a chip is an important

task before being delivered. Every chip has to pass a
post production test, where the correctness is checked
by applying test patterns that are generated by Au-
tomatic Test Pattern Generation (ATPG) algorithms.
Due to the increased process variability, defects leading
to timing violations are becoming dominant in mod-
ern chips. Such delay defects are tested by using dy-
namic fault models such as the Path Delay Fault (PDF)
model [1].

A test for a PDF is a two pattern test, i.e. consists
of a pair of test vectors v1, v2. The first test vector
v1 sets the initial value and the second test vector v2

launches the desired transition, which can be either ris-
ing or falling. The transition is then propagated along
a structural path to an output, where it can be ob-
served, whether the acumulated delay along the path
violates any timing constraints.

∗Parts of this research work were supported by the BMBF
in the Project MAYA under contract number 01M3172B and by
DFG grant DR 287/15-1.

In [2], tests for PDFs have been classified into two
different categories: robust testable and non-robust
testable. Because robust tests guarantee the detection
of delay faults in the presence of other delay faults,
they are more desirable but also harder to obtain in
terms of complexity. In the last decade, powerful en-
gines to solve the Boolean satisfiabiliy (SAT) problem
have been developed. Modern SAT solvers [3–6] incor-
porate techniques such as conflict-based learning, non-
chronological backtracking and efficient search heuris-
tics. Due to their efficiency, SAT solvers serve as a core
engine for many problems in the field of Computer-
Aided Design such as verification and ATPG.

SAT-based ATPG for PDFs was first introduced
in [7]. In this approach, a 7-valued logic proposed in [8]
with a fixed Boolean encoding was used to generate ro-
bust tests for PDFs. However, this approach was re-
stricted to combinational circuits. Sequential behavior
could not be modeled using this logic. Due to that, this
approach is hardly feasible for today’s circuits. Other
approaches were presented, where SAT techniques were
applied to path sensitization [9] and non-robust and
semi-robust test [10], respectively. These approaches
made only use of Boolean logic and cannot model static
values that are necessary for generating robust tests.

In [11], robust test generation for PDFs in circuits
with unknown values and tri-state elements was per-
formed. A 19-valued logic and derivative logics with a
smaller number of values were developed. The Boolean
encoding for these logics was chosen randomly. How-
ever, in [12], it was shown, that the chosen encoding has
significant influence on the SAT instance and therefore
on the performance of the SAT solver. A detailed study
on the influence of the chosen encoding in SAT-based
ATPG for stuck-at faults is presented in [13]. But in
this approach, only Boolean encodings for a four-valued
logic are analyzed.

In this paper, the influence of the Boolean encodings
for the 19-valued logic and its derivatives on the perfor-
mance of the overall test generation algorithm are stud-
ied. Furthermore, the relation between the size of the
SAT instance and the performance of robust test gener-
ation is evaluated and a method to identify efficient en-
codings is shown. Representative encodings have been
developed and integrated into the test generation al-
gorithm. Experimental results on ISCAS benchmarks

and industrial circuits containing multiple-valued logic
are provided to show the impact of the chosen Boolean
encoding.

This paper is structured as follows. In the next sec-
tion, the basic concepts of SAT-based ATPG for PDFs
and the usage of Boolean encodings are explained,
whereas alternative Boolean encodings are discussed
and analyzed in Section 3. Experimental results are
presented in Section 4 and conclusions are drawn in
the last section.

2. SAT-based ATPG for PDFs
In this section, the basic concepts of robust SAT-

based ATPG for PDFs are briefly reviewed. For more
details, we refer to [2] for the PDF model and to [11] for
the SAT formulation. Section 2.1 introduces the PDF
model with respect to robust and non-robust test clas-
sification, whereas in Section 2.2 the SAT formulation
of robust test generation is presented. In Section 2.3,
the usage of Boolean encodings is explained.

2.1. Path Delay Fault Model
The PDF model describes a distributed delay fault

on a path from a (pseudo-)primary input to a (pseudo-)
primary output of a circuit C. To detect such a fault, a
transition which is either rising or falling is propagated
along the path. Therefore, a PDF F can be defined as
a tuple F = (P, T) where P is a sequence of gates
g1,...,gn with input g1 and output gn. The type of
transition at g1 is given by T . Note, that the transition
is inverted after passing an inverting gate on the path,
e.g. NAND or NOR. A test pattern which detects a
PDF contains two test vectors v1, v2 that are applied
in two consecutive time frames t1, t2. The test vector
v1 sets the initial value in t1, whereas v2 launches the
transition in t2. In case of a delay fault, the transition
arrives at gn not in the specified time, i.e. a timing
violation occurs.

The task of ATPG for PDFs is to generate such two
test vectors which detect a potential delay fault on P .
According to [2], there exist two different categories
of tests for PDFs: robust and non-robust. The differ-
ence between robust and non-robust tests is that robust
tests guarantee the detection of a PDF even when other
delay faults are present. This cannot be guaranteed by
applying non-robust tests. Here, other delay faults can
mask the considered PDF. From the technical point of
view, both fault models differ in the constraints at the
off-path inputs of P . An off-path input is defined as an
input of a gate gi on path P , that is not gi−1.

The constraints at the off-path inputs are presented
in Table 1. The value X1 (X0) on an off-path input sig-
nifies, that the final value in t2 has to be 1(0), whereas
S1 (S0) means, that both the initial value in t1 and the
final value in t2 have to be 1(0) and no hazards occur
between them, i.e. the signal is static.

2.2. SAT Formulation: Robust Tests
SAT solvers are working on a problem represented in

Conjunctive Normal Form (CNF). A CNF Φ is a con-
junction of clauses, whereas a clause is a disjunction of

Table 1. Off-Path Constraints
gate type robust non-robust

falling rising
AND/NAND S1 X1 X1

OR/NOR X0 S0 X0

literals. A literal is a Boolean variable in its positive or
negative from. The CNF Φ is satisfiable, if and only if
there exists an assignment for which at least one literal
in each clause evaluates to 1. If no such assignment
exists, the CNF is unsatisfiable.

Therefore, the problem must be converted to CNF.
For a circuit C and a PDF F = (P, T), the CNF
ΦF can be obtained by the following formula: ΦF =
ΦC · ΦT · ΦP , where ΦC is the characteristic function
of C, ΦT forces the transition and ΦP sets the corre-
sponding constraints at the off-path inputs of P . The
characteristic function ΦC is the conjunction of the
characteristic function of each gate g in the circuit and
can be obtained by ΦC =

∏n
i=1 Φi

g, where n = |g|.
The derivation of Φg depends on the applied logic. If
Boolean logic is used, Φg can be easily derived using
the method proposed in [14]. In case of a higher-valued
logic Lm with m values and m > 2, a Boolean encod-
ing is needed that maps each value into the Boolean
domain. (cf. Section 2.3). To obtain a minimized CNF
representation, the logic optimizer ESPRESSO of the
SIS package [15] is used.

According to [11], for robust test generation in
Boolean circuits a six-valued logic L6 is needed,
whereas for industrial circuits containing multiple-
valued logic, a 19-valued logic L19 has to be used. Be-
cause a higher-valued logic typically results in more
complex SAT instances and not all values of L19 can
be assumed by each signal line, an algorithm was pro-
posed which uses the higher-valued logics only where
necessary. For most parts of the circuit, a lower-valued
logic is sufficient. In this way, the size of the SAT in-
stance is reduced (see [11] for more details).

2.3. Usage of Boolean Encodings

To apply a Boolean SAT solver to a multiple-valued
ATPG problem, e.g. generating robust test patterns for
path delay faults, the problem has to be transformed
into a Boolean problem. This can be done by using
a Boolean encoding η for each value in the multiple-
valued logic Lm. The minimal number of Boolean
variables n needed to encode this value depends on
the number of values of Lm and is defined as follows:
n = dlog2 |Lm|e. The following study is restricted to
these logarithmic encodings.

Consequently, three variables are needed to encode
both logics L6 and L8, whereas L11 and L19 has to
be encoded by four and five Boolean variables, respec-
tively. More formally, the Boolean representation of
signal s whose value is defined over Lm is given by
xs

1...x
s
n.

Each value v in Lm is encoded by a unique assign-
ment Av = a1...an of x1...xn where ai|1≤i≤n ∈ {0, 1}.
The complete Boolean encoding η for Lm is defined as

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 30 35 40 45 50 55 60 65 70

#
 L

it
e
ra

ls

Clauses

Figure 1. Distribution of the Compactness
Values for Boolean Encodings of L6

follows:
η = Av1 , ..., Avm

where Avi 6= Avj |1 ≤ i, j ≤ m; i 6= j

However, the usage of different logics and Boolean en-
codings in a circuit requires a handling of logic tran-
sitions. A logic transition occurs, when signal lines of
one gate are modeled in different logics. To avoid modi-
fying the circuit structure, Boolean encodings can only
be used together in a single circuit, if they are com-
patible to each other, i.e. each (partial) assignment of
the signal’s variables (determining a value vi) does not
exclude the interpretation as vi in all other used logics,
e.g. if a value in L11 is encoded by 0110, it has to be
encoded by 011 in L6 and L8.

3. Analysis of Alternative Boolean En-
codings

The Boolean encoding used in the initial approach
was chosen rather randomly and its efficiency was not
analyzed against other encodings. In this section, alter-
native Boolean encodings are discussed and analyzed.

Already for the CNF generation of a circuit modeled
in L6, one Boolean encoding out of 8!/2 = 20160 has to
be chosen. The number of potential Boolean encodings
increases with the increasing number of values of the
logic. For L8, there are 8! = 40320 Boolean encodings,
whereas for L11, there are more than one billion. Test-
ing all possible encodings and selecting the most effi-
cient is therefore not feasible. Some preselection must
be done to identify efficient encodings. For studying
the impact of the encodings, inefficient encodings have
to be determined, too. Note, that preliminary exper-
iments have shown that due to the small number of
gates that have to be modeled in L19, the change of
the Boolean encoding of L19 had nearly no impact on
the run time. Therefore, Boolean encodings for L19 are
not discussed in the following.

3.1. Compactness of Boolean Representa-
tion

Typically, but not necessarily, a larger SAT instance
results in higher run times of the SAT solver. Moreover,

 100

 150

 200

 250

 300

 350

 400

 450

 30 40 50 60 70 80 90 100

#
 L

it
e
ra

ls

Clauses

Figure 2. Distribution of the Compactness
Values for Boolean Encodings of L8

in the field of SAT-based ATPG, the SAT solver has
to cope with thousands of smaller instances. Although
the complexity of building a SAT instance is of linear
size, the overhead is not negligible in the overall run
time. Therefore, a Boolean encoding with a compact
CNF representation is likely to perform well whereas a
Boolean encoding with a large CNF representation has
probably a poor performance.

Each gate type has a different CNF representation
and a preliminary evaluation has shown that one single
Boolean encoding may produce a compact representa-
tion for one gate type, whereas for other gate types (e.g.
busdriver), it may be contrary. Due to the fact, that
most gates in a circuit are primitive gates, e.g. AND,
OR, and not higher-level, e.g. busdriver, we concen-
trate only on the size of the CNF representation of
primitive gates in the following. Primitive gates have
also the advantage that the size of their representation
is very similar for a specific encoding.

Below, the CNF sizes of the Boolean encodings are
analyzed. The compactness of the Boolean representa-
tion of each encoding e is denoted as Ce and is defined
as a tuple (|cls| , |lits|) that contains the accumulated
number of clauses (cls) and the accumulated number
of literals (lits) of the gate types AND and OR. The
accumulation was done to obtain a good ratio of the
compactness of both gate types.

The distribution of the compactness values of all
possible Boolean encodings for L6 and for L8 are shown
in Figure 1 and in Figure 2, respectively. The Most
Compact Encodings (MCE) of L6 have 32 clauses and
88 literals (accumulated for AND and OR), whereas
the largest encodings have 67 clauses and 247 literals,
which is more than two times the size of the MCEs; con-
cerning the number of literals even nearly three times.
The difference between most compact and largest en-
coding increases considering L8. Here, the number of
clauses (97) in the largest encoding is 2.6 times the
most compact one (38) and the number of literals (448)
3.8 times larger than the most compact one (118).

Due to the very high number of possible encodings
for L11, the range of the compactness values for the en-
codings of L11 is determined with a simplified method.
The compactness values of only those encodings of L11

 10

 100

 1000

 10000

 0 50 100 150 200 250

#
 r

u
n

 t
im

e
s

in
 s

e
c
o
n

d
s

number of run (sorted)

L6
L8

L11

Figure 3. Run Time Distribution for c6288

are calculated that are compatible with the MCEs of
L6 and L8. This is due to the fact that only compatible
encodings (cf. Section 2.3) can be used. For this small
subset of 64512 encodings, the number of clauses and
the number of literals vary between 67 and 230, and
126 and 534, respectively.

Through an analysis of the MCEs of L6 and L8, we
came to the result that all compatible encodings of the
MCEs of L8 are not among the MCEs of L6. Moreover,
those encodings of L6 that are compatible to the MCEs
of L8 have a larger size than the MCEs of L8. For
example, consider the following compatible encodings
ηe (L6) and ηf (L8). Whereas ηf with Cf = (38, 118)
is among the MCEs of L8, ηe with Ce = (40, 118) is
not among the MCEs of L6 and is larger than ηf .

It can be concluded that the chosen Boolean en-
coding has – independently from the logic used – an
enormous impact on the size of the SAT instance. The
usage of compatible encodings only, however, sets tight
constraints on the usage of Boolean encodings and pre-
vents the joint usage of the MCEs of each logic.

3.2. Efficiency of Most Compact Encodings
The size of the SAT instance is only one indicator

for the efficiency of a Boolean encoding. Therefore, the
MCEs of each logic are investigated according to their
run time for a single circuit. To avoid influences from
other encodings, the circuit must be modeled by only
one single logic, i.e. either L6, L8 or L11. The ISCAS
’85 circuit c6288 representing a 16-bit multiplier was
chosen to test the efficiency of the MCEs of each logic.
All structural paths with a length of over 40 gates were
identified and were set as targets (rising and falling) for
robust test generation. This results in 3200 ATPG calls
for each encoding.

The tests were carried out for each logic on a Dual
Dual-Core Xeon (3000 MHz, 32768 MByte RAM) run-
ning GNU/Linux. In each of the three runs, the circuit
is modeled completely with L6, L8 and L11, respec-
tively. For each logic, a set containing the MCEs is
identified and for each encoding in the set, robust test
generation was executed. In Table 2, statistical data
and the overall results of the runs are given. The first
column gives the logic, whereas in the next column,
the number of runs are denoted. The third column

Table 2. Run times of MCEs for c6288
logic runs Ce min av. max
L6 240 (32,88) 68 113 285
L8 144 (38-42,118-142) 191 544 1647
L11 192 (67,126) 473 2608 7560

Table 3. Compactness Values of Encodings
enc. Ce (L6) Ce (L8) Ce (L11)
ηL6com (32,88) (52,184) (115,483)
ηL6lar (64,241) (78,347) (161,759)
ηL6med (48,162) (60,226) (117,465)
ηL11com (32,88) (42,142) (67,230)
ηL11lar (32,88) (42,142) (113,473)
ηL8com (32,88) (42,142) (60,190)
ηL8lar (32,88) (70,287) (105,413)
ηL6mee (32,88) (42,142) (67,230)
ηL11mee (32,88) (42,142) (67,230)
ηL8mee1 (40,118) (38,118) (56,166)
ηL8mee2 - (38,118) (60,190)

presents the compactness values of the chosen encod-
ings. In the following columns min, av. and max, the
smallest, the average and the highest run time, respec-
tively, are given in CPU seconds.

In Figure 3, however, the run time distribution is
shown for each logic in logarithmic scaling. The run
times for each logic were sorted. The value on the
x-axis defines the position in the sorted list and the
value on the y-axis gives the run time in seconds. The
upper curve denotes the run times of the MCEs of L11,
whereas the middle curve and the lower curve give the
run times of the MCEs of L8 and L6, respectively.

For L6 even the MCEs differ strongly regarding the
run time behavior. The highest run time is over 4 times
the minimal one, although they have equal compact-
ness values. The range is even higher for the higher-
valued logics L8 and L11. The highest run time for L8

is eight times the minimal run time for L8, whereas
for L11, the highest run time is nearly 16 times the
minimal run time. While the curve of L6 is increasing
only very smoothly, the curves of L8 and L11 are more
steep, suggesting that encodings of L8 and L11 have to
be chosen more carefully. Note, that those encodings
having the minimal run time for each logic are denoted
as Most Efficient Encodings (MEE) in the following.

The application of the MCEs for robust test genera-
tion shows that, first, equal compactness values do not
guarantee the same run time behavior, and second, the
impact on the efficiency increases with a higher-valued
logic.

4. Experiments
In this section, alternative Boolean encodings are

experimentally evaluated. First in Section 4.1, four
experiments with representative Boolean encodings are
described. The experimental results of these encodings
are shown in Section 4.2.

4.1. Encoding Selection
In this section, Boolean encodings are created to

determine the influence of the ATPG run time. The
compactness values of each encoding can be found in
Table 3. Note, that in the following an encoding refers

to a set of compatible encodings for each logic rather
than to a single encoding if no logic is explicitly named.
Four different experiments are described below:

• Experiment 1 shows the behavior of two encod-
ings from which one is likely to be very efficient,
whereas the other is probably inefficient. For this,
a compact encoding ηL6com (MCE of L6) and a
large encoding ηL6lar are chosen. Note, that the
encoding of L6 was first created and the compat-
ible encodings are selected afterwards. Here, the
most compact and the largest encodings, respec-
tively, are selected among the compatible encod-
ings. If not mentioned otherwise, this is the stan-
dard flow of choosing compatible encodings. Fur-
thermore, an encoding ηL6med of medium size (ap-
plied in [11]) is selected.

• Experiment 2 shows the influence of the encoding
selection for L11 on the ATPG performance. For
this purpose, a compact encoding ηL11com (MCE
of L11) is created. Next, an encoding set ηL11lar is
generated such that the encodings for L6 and L8

are equal, but instead of choosing an MCE of L11

the largest compatible encoding is selected.
• In Experiment 3, the influence of the encoding se-

lection for L8 is investigated. First, a compact
encoding ηL8com is generated. Then, an encoding
set ηL8lar is created containing the same encoding
for L6, but has different encodings of L8 and L11.
Note that possible differences in run time cannot
clearly be dedicated to the encoding of L8, because
the encoding for L11 also differs.

• In Experiment 4, the MEEs of each logic are eval-
uated for all circuits. This is to show that, for
receiving a good overall performance, it is not suf-
ficient to use an encoding optimized for one logic
only. Therefore, the encodings ηL6mee (MEE of
L6), ηL11mee (MEE of L11) and ηL8mee1 (MEE of
L8) are created. As already stated in Section 3.1,
all those encodings of L6 that are compatible to
the MCEs of L8 have a larger size than the MCEs
of L8. Therefore, those parts of the circuit which
are normally modeled in L6 are modeled in L8 us-
ing ηL8mee2. Otherwise ηL8mee1 and ηL8mee are
equal.

4.2. Experimental Results
In this section, the results of the four experiments

are presented. The experiments were carried out on a
AMD64 4200+ (2200 MHz, 2048 MByte RAM) run-
ning GNU/Linux. The program was implemented in
C++ and the SAT solver MiniSat 1.14 [6] serves as core
engine. As benchmarks, ISCAS ’85 circuits and indus-
trial circuits provided by NXP Semiconductors Ham-
burg, Germany were used. The name of the p-circuits
roughly denotes their size, e.g. circuit p1330k has about
1.3 million gates. More statistical data about the cir-
cuits is given in Table 4. For each circuit the num-
ber of inputs (column #PI), the number of tri-state
elements (column #Tri) and the number of flipflops
(column #FF) are shown. Furthermore, the percent-
age of gates modeled in L11 and L8 are given in col-
umn %L11 and column %L8, respectively. The number

Table 4. Circuit Statistics
circuit #PI #Tri #FF %L11 %L8 PUT
c1908 33 0 0 0 0 2264
c2670 157 0 0 0 0 1400
c3540 50 0 0 0 0 3700
c5315 178 0 0 0 0 4340
c6288 32 0 0 0 0 3200
c7552 206 0 0 0 0 6360
p44k 739 0 2175 0 0 20000
p49k 303 0 334 0 0 12390
p57k 8 0 2291 0.24 25.66 20000
p80k 152 0 3878 0 0 20078
p88k 403 412 4309 7.26 21.38 20052
p99k 167 0 5747 1.50 5.59 20026
p177k 768 560 10507 27.35 54.53 20028
p456k 1723 203 14900 25.52 73.50 20070
p462k 1815 597 29205 14.22 33.79 20006
p565k 996 169 32409 15.36 56.60 20088
p1330k 617 189 104630 8.86 15.14 20036

of paths for which robust test generation is executed is
presented in column #PUT. As test targets, only paths
with a length of over 40 gates are selected. The max-
imum number of test targets was set to 20100. The
paths are chosen randomly, but to avoid testing paths
of a small part of the circuit only, at least one path
starts at every input (if such a long path exists).

In Table 5, the results of the selected encodings are
shown. Time is measured in minutes (m) and hours
(h), respectively. The timeout for each target was set
to 20 seconds, whereas the timeout for each ATPG run
was 20 hours. The minimum run time of all encodings
is marked bold for each circuit.

In Experiment 1, it is shown that the influence of
the Boolean encoding is significant. The run time for
the large encoding ηL6lar dramatically increases up to
a factor of 56 (p80k) compared to ηL6com and up to
a factor of 44 compared to ηL6med. In five out of
eleven industrial circuits, ηL6lar even reaches the limit
of 20 hours. Therefore, ηL6lar is not feasible for in-
dustrial practice. Comparing ηL6com and ηL6med, the
compact encoding is in most cases only slightly better
than ηL6med and in two cases (c6288, p57k) even worse.

In Experiment 2, the influence of the chosen encod-
ing for L11 is evaluated. In those circuits with no or
only few parts modeled in L11, the run times are the
same or even slightly better using the large encoding
ηL11lar. In circuits with higher precentage of L11, the
maximum overhead is about 25% of run time (p1330k).

In Experiment 3, the influence of the chosen encod-
ing for L8 is investigated. The results are similar to
those of Experiment 2, but the impact on the run times
is scaled up. For p456k, where nearly two-thirds of the
circuit is modeled in L8, the run time is increased by a
factor of 2.9 and for p57k a timeout occured.

In Experiment 4, the MEEs of each logic are inves-
tigated for all circuits. Encoding ηL6mee being MEE of
L6 is also the most efficient encoding for all other IS-
CAS circuits. But for the industrial circuits, ηL6mee

provides the smallest run time only for p49k (com-
pletely in L6) but not for any other circuit. Compared
to each other, ηL8mee2 has an advantage over ηL8mee1

for the smaller circuits (with lesser percentage of L8),
whereas ηL8mee1 is better for the larger ones and there-
fore preferable. Encoding ηL11mee (MEE of L11) has

Table 5. Experimental Results – Alternative Boolean Encodings
Exp. 1 Exp. 2 Exp. 3 Exp. 4

circuit ηL6com ηL6lar ηL6med ηL11com ηL11lar ηL8com ηL8lar ηL6mee ηL11mee ηL8mee1 ηL8mee2
c1908 0:13m 0:28m 0:18m 0:13m 0:13m 0:12m 0:12m 0:11m 0:12m 0:15m 0:14m
c2670 0:16m 0:32m 0:24m 0:16m 0:16m 0:15m 0:15m 0:14m 0:14m 0:18m 0:18m
c3540 1:15m 2:38m 1:46m 1:12m 1:12m 1:11m 1:11m 1:08m 1:08m 1:25m 1:24m
c5315 0:51m 2:05m 1:14m 0:51m 0:51m 0:47m 0:47m 0:46m 0:47m 0:59m 0:59m
c6288 6:28m 3:21h 4:24m 2:16m 2:16m 2:17m 2:17m 2:16m 2:51m 4:48m 4:58m
c7552 0:40m 1:25m 0:57m 0:40m 0:40m 0:37m 0:37m 0:36m 0:37m 0:47m 0:46m
p44k 2:07h > 20h 2:29h 2:25h 2:25h 2:15h 2:15h 2:16h > 20h 2:16h 2:21h
p49k 3:13h > 20h 4:42h 3:18h 3:18h 3:19h 3:19h 3:07h 3:09h 3:47h 3:46h
p57k 5:01h > 20h 4:28h 9:00h 8:59h 12:00h > 20h 9:59h > 20h 5:03h 5:02h
p80k 18:27m 17:18h 23:20m 45:47m 45:47m 45:49m 45:49m 46:00m 1:12h 50:37m 50:20m
p88k 21:50m > 20h 26:20m 22:44m 22:41m 22:37m 23:09m 22:37m 50:48m 23:15m 22:55m
p99k 11:31m > 20h 13:20m 11:11m 11:05m 11:20m 11:06m 11:10m 12:06m 16:08m 17:13m
p177k 1:24h 10:30h 1:27h 1:11h 1:18h 1:11h 1:35h 1:13h 1:12h 1:05h 1:05h
p456k 1:10h 19:08h 1:15h 53:17m 1:04h 52:22m 1:51h 54:00m 53:25m 46:01m 46:48m
p462k 43:04m 1:53h 43:44m 39:45m 43:59m 40:13m 59:14m 40:54m 43:01m 36:05m 36:00m
p565k 8:12m 11:56m 8:59m 7:19m 7:18m 7:24m 9:58m 7:25m 7:27m 6:54m 6:55m
p1330k 1:05h 2:34h 1:07h 47:33m 1:03h 44:01m 1:11h 45:38m 46:55m 40:14m 40:42m

only minimal performance gain for those circuits with
a large portion of L11 (e.g. p177k, p456k).

This experiment shows that the usage of an encod-
ing which is optimized for one logic only is not opti-
mal due to the different logic modeling of the circuits.
Therefore, we propose the combination of multiple en-
codings depending on the percentage of the used logics.
For instance, the combination of ηL8mee1/ηL8mee2 and
ηL6mee, where ηL6mee is applied if the percentage of
L8 in the circuit is lower than 25% (ηL8mee1/ηL8mee2

otherwise), would provide the best result for 11 out of
17 circuits and is therefore more robust.

5. Conclusions
The influence of Boolean encodings in SAT-based

ATPG for PDFs in which a set of multiple-valued logics
is applied, has been studied in detail. First, it is shown
that the size of the SAT instance strongly depends on
the chosen encoding. Moreover, the effect increases
the more values the logic has. Also, it is pointed out
that the compactness of a Boolean encoding is only
an indicator for the performance. Experiments have
shown that the performance for encodings with equal
size can vary by a factor of 4 for a lower-valued logic
and by a factor of 16 for a higher-valued logic.

Representative encodings have been developed and
their influence has been evaluated on ISCAS ’85 cir-
cuits as well as on industrial circuits. According to the
results, the influence is significant and the Boolean en-
codings have to be chosen carefully to avoid poor per-
forming test generation. Moreover, it has been high-
lighted that the performance of the encoding is highly
influenced by the logic modeling of the circuit. Thus,
the best result is obtained by a combination of differ-
ent encodings according to the circuit’s logic modeling.
It could be also observed that the usage of only com-
patible encodings sets tight constraints on the selection
process. Therefore, studying the usage of different en-
codings in detail and the application of incompatible
encodings is future work.

References
[1] G. Smith, “Model for delay faults based upon paths,”

in Int’l Test Conf., 1985, pp. 342–349.

[2] K. Cheng and H. Chen, “Classification and identifica-
tion of nonrobust untestable path delay faults.” IEEE
Trans. on CAD, vol. 15, no. 8, pp. 845–853, 1996.

[3] J. Marques-Silva and K. Sakallah, “GRASP: A search
algorithm for propositional satisfiability,” IEEE Trans.
on Comp., vol. 48, no. 5, pp. 506–521, 1999.

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: Engineering an efficient SAT solver,”
in Design Automation Conf., 2001, pp. 530–535.

[5] E. Goldberg and Y. Novikov, “BerkMin: a fast and
robust SAT-solver,” in Design, Automation and Test
in Europe, 2002, pp. 142–149.

[6] N. Eén and N. Sörensson, “An extensible SAT solver,”
in SAT 2003, LNCS, vol. 2919, 2004, pp. 502–518.

[7] C. Chen and S. K. Gupta, “A satisfiability-based test
generator for path delay faults in combinational cir-
cuits,” in Design Automation Conf., 1996, pp. 209–214.

[8] C.-J. Lin and S. Reddy, “On delay fault testing in logic
circuits,” IEEE Trans. on CAD, vol. 6, no. 5, pp. 694–
703, 1987.

[9] J. Kim, J. Whittemore, J. P. Marques-Silva, and
K. Sakallah, “On applying incremental satisfiability to
delay fault testing,” in Design, Automation and Test
in Europe, 2000, pp. 380–384.

[10] K. Yang, K.-T. Cheng, and L.-C. Wang, “Trangen: a
SAT-based ATPG for path-oriented transition faults,”
in ASP Design Automation Conf., 2004, pp. 92–97.

[11] S. Eggersglüß, G. Fey, R. Drechsler, A. Glowatz,
F. Hapke, and J. Schloeffel, “Combining multi-valued
logics in SAT-based ATPG for path delay faults,” in
ACM & IEEE Int’l Conf. on Formal Methods and
Models for Codesign, 2007, pp. 181–187.

[12] C. Ansòtegui and F. Manyà, “Mapping many-valued
CNF formulas to Boolean CNF formulas,” in Int’l
Symp. on Multiple-Valued Logic, 2005, pp. 290–295.

[13] G. Fey, J. Shi, and R. Drechsler, “Efficiency of multi-
valued encoding in SAT-based ATPG,” in Int’l Symp.
on Multiple-Valued Logic, 2006, pp. 25–30.

[14] T. Larrabee, “Test pattern generation using Boolean
satisfiability,” IEEE Trans. on CAD, vol. 11, pp. 4–15,
1992.

[15] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton,
and A. Sangiovanni-Vincentelli, “SIS: A system for
sequential circuit synthesis,” University of Berkeley,
Tech. Rep., 1992.

