
 
 

  
Abstract—A quaternary reversible circuit is more compact 

than the corresponding binary reversible circuit in terms of 
number of input/output lines required. Decoder, multiplexer, 
and demultiplexer are very important building blocks of digital 
systems. In this paper, we show reversible realization of these 
circuits using quaternary shift gates (QSG), quaternary 
controlled shift gates (QCSG), and quaternary Toffoli gates 
(QTG). We also show the realization of multi-digit QCSG and 
QTG using QSGs and QCSG. 
 

Index Terms— Decoder, demultiplexer, multiple-valued 
logic, multiplexer, quaternary logic, reversible logic  
 

I. INTRODUCTION 
Reversible logic [1] is a very prospective approach of logic 

synthesis for power reduction in future computing 
technologies. In a reversible circuit, the number of inputs and 
outputs are same and there is a one-to-one mapping between 
input values and output values. Reversible circuits are 
constructed using reversible gates. 

Quaternary logic is very suitable for encoded realization of 
binary logic functions by grouping 2-bits together into 
quaternary digits. This sort of quaternary encoded reversible 
realization of binary logic function requires half times 
input/output lines than the original binary reversible 
realization. As the number of input/output lines is reduced, 
this quaternary encoded realization of binary logic function 
makes the circuit more compact and manageable, especially 
for the quantum technology, where the cost of qudit 
(quantum digit) realization and qubit (quantum bit) 
realization are almost same. However, quaternary encoded 
realization of binary logic function requires encoding of 
binary inputs into quaternary values and decoding of 
quaternary outputs into binary values. Reversible realization 
of such binary-to-quaternary encoder and 
quaternary-to-binary decoder are discussed in [2] in the 
context of quaternary quantum logic. Similar realization can 
also be done in other quaternary reversible technologies. 

Quaternary reversible logic synthesis is a very new 
research area [2-4]. Paper [2] presented a quaternary 
reversible logic synthesis method using quaternary Galois 
field sum of products (QGFSOP) expression and paper [3] 
presented determination of QGFSOP expression for a given 
function using quaternary Galois field decision diagram 
(QGFDD). Papers [2, 4] presented realization of quaternary 
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Toffoli gates (QTG) needed for synthesis of QGFSOP 
expression. Experience shows that CAD based general 
synthesis methods are sometimes not very cost effective for 
synthesis of some medium-scale building blocks. In this case, 
problem specific manual synthesis of such medium-scale 
building blocks is relatively cost effective. 

 Decoder, multiplexer, and demultiplexer are very 
important building blocks of digital systems. In this paper, 
we show a problem specific manual approach of reversible 
realization of these circuits using quaternary shift gates 
(QSG), quaternary controlled shift gates (QCSG), and 
quaternary Toffoli gates (QTG). We also show the realization 
of multi-digit QCSG and QTG using QSGs and QCSG. 

 

II. BACKGROUND ON GF(4) OPERATIONS 
Galois field (4), abbreviated as GF(4), is a finite field F = 

{0, 1, 2, 3} with two binary operations – addition (denoted by 
+) and multiplication (denoted by ⋅ or absence of any 
operator) as defined in Table 1. Addition and multiplication 
operations are both commutative and associative. 
Multiplication operation is distributive over addition 
operation. For more details about GF(4) operations, see [2]. 

 
Table 1. GF(4) operations 

+ 0 1 2 3  ⋅ 0 1 2 3 

0 0 1 2 3  0 0 0 0 0 

1 1 0 3 2  1 0 1 2 3 

2 2 3 0 1  2 0 2 3 1 

3 3 2 1 0  3 0 3 1 2 

 

III. QUATERNARY SHIFT GATES 
There are 4! = 24 possible permutations of 0, 1, 2, and 3. 

Therefore, there are 24 possible truth tables for 1-digit 
reversible gates. Among these 24 1-digit reversible gates, we 
will use only four gates of the form zxy +=  [GF(4)] for 

}3,2,1,0{∈z . The GF(4) expressions and corresponding truth 
tables of these gates are shown in Table 2. We will refer the 
1-digit gates of Table 2 as quaternary shift gates (QSG). The 
gate for 0+= xy  can be regarded as a buffer gate or a wire. 
The QSGs can be realized using liquid ion-trap quantum 
technology [5] and other reversible technologies. We will 
graphically represent the QSGs using the symbol of Figure 1. 

Two QSGs in cascade behave like another QSG. 
Equivalent QSG corresponding to all cascade pairs are given 
in Table 3, which can be easily verified using GF(4) 
expressions or truth tables of QSGs from Table 2. If a 
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cascade pair of two QSGs is equivalent to +0 gate, then the 
second QSG is said to be the inverse of the first QSG. Inverse 
gates are used to restore the input signal for reuse in the 
circuit. 

 
Table 2. GF(4) expressions and truth tables for quaternary 

shift gates 
Input x 0+= xy  1+= xy  2+= xy  3+= xy  
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Figure 1. Symbol of quaternary shift gates (QSG) 

 
Table 3. Equivalent QSGs corresponding to cascade pairs of 

two QSGs 
  2nd gate 

  +1 +2 +3 

+1 +0 +3 +2 

+2 +3 +0 +1 

 

1st gate 

+3 +2 +1 +0 

 

IV. QUATERNARY CONTROLLED SHIFT GATES 
The symbol of the 2-digit quaternary controlled shift gate 

(QCSG) is shown in Figure 2. The gate applies a shift 
operation (Table 2) on the controlled input 2x  when the 
controlling input 1x  is 3. The outputs of the gate are 11 xy =  
and zxy += 22  if and only if 31 =x ; 22 xy =  otherwise. 
The QCSG can be realized using liquid ion-trap quantum 
technology [5] and other reversible technologies. 

We propose an n-digit QCSG using the symbol of Figure 3. 
In Figure 3, 11 −nxx L  are 1−n  controlling inputs and nx  is 
the controlled input. The controlled output is zxy nn +=  if 
and only if 333 121 =∧∧=∧= −nxxx L ; nn xy =  
otherwise. 

 

z+
1x

2x
1y

2y  
Figure 2. Symbol of 2-digit quaternary controlled shift gate 

(QCSG) 
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Figure 3. Symbol of n-digit quaternary controlled shift gate 

(QCSG) 
 

The realization of 3-digit QCSG using 2-digit QCSGs is 
shown in Figure 4. From Figure 4, we see that if and only if 

33 21 =∧= xx , then 3=a  and z+  shift is applied on 3x . 
For all other combinations of 1x  and 2x , a will never be 3 
and  z+  shift will not be applied on 3x . The right most two 
2-digit QCSGs are inverse gates of the left most two QCSGs 
and are used to restore the input constant 0 for reuse in the 
circuit. An auxiliary constant input used in the design of a 
reversible circuit is called ancilla digit. This realization 
needs 5 elementary gates and 1 ancilla digit. The realization 
of 4-digit QCSG using 2-digit QCSGs is shown in Figure 5. 
In Figure 5, if and only if 33 21 =∧= xx , then 3=a . Again, 
if and only if 33 3 =∧= xa , then 3=b . This implies that, 

3=b  if and only if 333 321 =∧=∧= xxx  and  z+  shift is 
applied on 4x  controlled input. This realization needs 11 
elementary gates and 2 ancilla digits. In this way, we can 
realize an n-digit QCSG. We can easily show that for an 
n-digit QCSG, the number of ancilla digits is (n – 2) and the 
number of elementary gates  is 4(n – 2) + 1. 

 
1x 1y

2x 2y

0 01+ 1+2+ 2+

z+

a

3x 3y  
Figure 4. Realization of 3-digit quaternary controlled shift 

gate (QCSG) 
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Figure 5. Realization of 4-digit quaternary controlled shift 

gate (QCSG) 
 

V. QUATERNARY TOFFOLI GATE 
The n-digit quaternary Toffoli gate (QTG) is shown in 

Figure 6, where nxx L1  are the inputs, ii xy =  (for 
1,,2,1 −= ni L ) are the pass through outputs and 

[GF(4)] 121 nnn xxxxy += −L  is the controlled output. 
Realization of QTG using QCSGs and 2-digit QCSGs is 
discussed in [2]. 
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Figure 6. Quaternary Toffoli gate (QTG) 
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VI. REVERSIBLE REALIZATION OF QUATERNARY DECODER 
The truth table of 2×16 quaternary decoder with active-1 

output is shown in Table 4. For a given select input 
combination 01 AA , only the selected output will be 1 and the 
remaining outputs will be 0. Reversible realization of 2×16 
quaternary decoder with active-1 output is shown in Figure 7. 
The outputs are generated along constant 0 inputs. For a 
given select input combination 01 AA , the input values are 
made 33 by applying QSGs along 01 AA  lines and then a 
QCSG is used to change the corresponding 0 input to output 
1, the other outputs remain 0. For example, for select input 
combination 0001 =AA , two +3 QSGs are placed along 

01 AA  lines to make the input values 33 and then a QCSG is 
used to change the corresponding 0 input to output 10 =O . 
Outputs 1O  through 15O  are realized using the same 
technique. However, the input values corresponding to the 
QCSGs are made 33 by cascaded QSGs. Therefore, the 
effective shift at all controlling points are explicitly shown in 
the figure to make the circuit easily understandable. It can be 
seen that for a given combination of 01 AA , only one QCSG 
will be active and will apply a +1 shift on the corresponding 
constant 0 input to produce the 1 output and other outputs 
will remain 0. 

Quaternary decoder of any size can be realized using the 

same technique. Moreover, the outputs may be made active-2 
or active-3 by simply replacing +1 shifts of the QCSGs by 
appropriate shifts. 

 

VII. REVERSIBLE REALIZATION OF QUATERNARY 
MULTIPLEXER 

The truth table of 16×1 quaternary multiplexer is shown in 
Table 5, where the output O is equal to the selected 
multiplexer input. Reversible realization of the multiplexer is 
shown in Figure 8. Depending on the select input 
combination 01 AA , one of the decoder outputs becomes 1 
and the other decoder outputs remain 0s. The 0 decoder 
outputs multiplied with their corresponding multiplexer 
inputs become 0s and these 0s are added to the constant input 
0 along the output line. The only 1 decoder output multiplied 
with the corresponding multiplexer input becomes exactly 
equal to the multiplexer input and is added with the constant 
input 0 along the output line to produce the multiplexer 
output. For example, if 0001 =AA , then the decoder output 

0O  becomes 1 and the other decoder outputs become 0. In 
this case, 0I  is multiplied by 1 and the other multiplexer 
inputs are multiplied by 0. Therefore, only 0I  is added with 
the constant input 0 to produce the output O, which is exactly 
equal to 0I . 

 
Table 4. Truth table of 2×16 quaternary decoder with active-1 output 

1A  0A  15O  14O  13O  12O  11O  10O  9O  8O  7O  6O  5O  4O  3O  2O  1O  0O  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
2 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 7. Reversible realization of 2×16 quaternary decoder with active-1 outputs 
Table 5. Truth table of 16×1 quaternary multiplexer 

01 AA  O 01 AA  O 

00 0I  20 8I  

01 1I  21 9I  

02 2I  22 10I  

03 3I  23 11I  

10 4I  30 12I  

11 5I  31 13I  

12 6I  32 14I  

13 7I  33 15I  

 

VIII. REVERSIBLE REALIZATION OF QUATERNARY 
DEMULTIPLEXER 

The truth table of 1×16 quaternary demultiplexer is shown 
in Table 6, where only the selected output is equal to the 
demultiplexer input I and the remaining outputs are 0s. 
Reversible realization of the demultiplexer is shown in 
Figure 9. Depending on the select input combination 01 AA , 
one of the decoder outputs becomes 1 and the other decoder 
outputs remain 0s. The 0 decoder outputs are multiplied with 
the demultiplexer input I and become 0s. These 0s are then 
added with the constant input 0s to produce 0 outputs. The 
only 1 decoder output is multiplied with the demultiplexer 
input I to produce I. This I is then added with the constant 
input 0 to produce I on the selected output line. For example, 
if 0001 =AA , then the decoder output 0O  becomes 1 and the 
remaining decoder outputs become 0s. In this case, I is added 
only with the constant input 0 along the demultiplexer output 
line  0O  and 0s are added with the other constant input 0s. 

Therefore, only the demultiplexer output 0O  will be equal to 
the demultiplexer input I and the other demultiplexer outputs 
will be 0s. 
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Figure 8. Reversible realization of 16×1 quaternary 

multiplexer 

 
Table 6. Truth table of 1×16 quaternary demultiplexer 

1A  0A  15O  14O  13O  12O  11O  10O  9O  8O  7O  6O  5O  4O  3O  2O  1O  0O  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 
0 3 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 
1 2 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 
2 3 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 2 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 3 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 9. Reversible realization of 1×16 quaternary 

demultiplexer 
 

IX. CONCLUSION 
Multiple-valued reversible circuits are a promising choice 

for future computing technology. Quaternary logic has the 
advantage that classical binary logic functions can be 
expressed as quaternary logic functions by grouping 2-bits 
together into quaternary digits. Quaternary encoded 
reversible realization of binary logic function will be 
half-times compact than the reversible realization of original 
binary logic function in terms of the number of input/output 
lines required. 

There is only a few works on CAD based general synthesis 
method of quaternary logic functions [2, 3]. Experience 
shows that CAD based general synthesis methods are 
sometimes not very cost effective for synthesis of some 
medium-scale building blocks. In this case, problem specific 
manual synthesis of such medium-scale building blocks is 
relatively cost effective. Here, we present problem specific 
manual synthesis of quaternary decoder, multiplexer, and 
demultiplexer circuits using reversible gates. These circuits 
are practically important medium-scale building blocks for 
synthesis of large digital systems. 

These problem specific manual synthesis results will also 
help us to compare the complexity of CAD based general 
synthesis methods. 

To aid the synthesis, we have used two macro-level 
quaternary gates – multi-digit quaternary controlled shift gate 
(QCSG) and quaternary Toffoli gates and shown their 
realization using basic quaternary gates. 
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