
Evaluation of Cardinality Constraints on SMT-based Debugging

Andre Sülflow Robert Wille Görschwin Fey Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{suelflow,rwille,fey,drechsle}@informatik.uni-bremen.de

Abstract

For formal verification of hardware Satisfiability Mod-
ulo Theory (SMT) solvers are increasingly applied. To-
day’s state-of-the-art SMT solvers use different techniques
like term-rewriting, abstraction, or bit-blasting. The per-
formance does not only depend on the underlying decision
problem but also on the encoding of the original problem
into an SMT instance.

In this work, encodings for cardinality constraints in
SMT are investigated. Three different encodings are con-
sidered: an adder network, an encoding with multiplexors,
and a newly proposed encoding with shifters. The encod-
ings are analyzed with respect to size and complexity. The
experimental evaluation on debugging instances that con-
tain cardinality constraints shows the strong influence of the
encoding on the resulting run-times.

1. Introduction

Due to the increasing complexity of nowadays circuit de-
signs, there is a need to check the correctness of hardware
by formal verification. Today, often Boolean satisfiability
(Boolean SAT) solvers are applied, that perform quite well
on the Boolean level. But when complex data paths and
arithmetic operations are considered, the solvers reach their
limits.

As an alternative, Satisfiability Modulo Theory (SMT)
solvers have been developed (see e.g. [4, 7, 15, 3, 9]). In
contrast to Boolean SAT, SMT solvers work on a more ab-
stract level, e.g. on arithmetic bit-vectors, that may be used
to describe circuits on Register Transfer Level (RTL). The
problem is given in a mixture of Boolean and word level
constraints instead of pure Boolean logic. Internally, this
higher level is exploited by optimization techniques like
term-rewriting, bit-blasting, or by so called theory solvers,
that check the validity of (partial) assignments to a formula.
The application of SMT solvers to formal hardware verifi-
cation problems already showed promising results [25].

For Boolean SAT it is known, that finding a good en-
coding for a given problem may significantly speed-up the
verification process [17]. Much attention has been spent to

cardinality constraints of the form s0+s1+. . .+sn−1 ≤ k,
forcing the arithmetic sum of the Boolean variables si to be
less or equal than the integer k. For Boolean SAT there exist
several studies on the optimal representation of cardinality
constraints in general (see e.g. [22, 11, 18]) and with an ap-
plication to debugging in [23]. These studies show, that the
encoding of cardinality constraints is crucial as it may de-
crease or increase the performance of the solver. However,
no similar studies for the SMT domain are available. In
particular, the different proof techniques of SMT solvers let
suppose a high degree of performance differences.

In this work, encodings for cardinality constraints in
SMT instances are considered, theoretically analyzed, and
experimentally evaluated on debugging problems. We eval-
uate two of the commonly known encodings, one is based
on multiplexors the other one on an adder structure. These
are compared to a newly introduced shifter representation.
All encodings are defined in terms of word level operations.
Significant trade-offs in the sizes of the different encodings
are identified.

Since isolated cardinality constraints are always satisfi-
able, a concrete application is required to evaluate different
encodings. Automated debugging is one particular prob-
lem, where a cardinality constraint defines how many fail-
ures are suspected in a circuit. The experimental evaluation
on debugging instances shows, that the chosen encoding is
crucial to achieve high performance. No single encoding
is the best for all SMT solvers, but usually one encoding
most suitable for a particular SMT solver can be identified.
Choosing the wrong encoding may increase the run-time by
more than a factor of 2500.

The paper is structured as follows: The next two sections
introduce Boolean Satisfiability, SAT Modulo Theories, as
well as SMT-based debugging and therewith provide the ba-
sis of this work. In Section 4, the SMT encodings of the car-
dinality constraints are proposed and discussed. An exper-
imental comparison is given in Section 5. The last section
concludes the paper.

2. Proof Engines

Due to the recent improvements, Boolean satisfiability
(Boolean SAT) solvers are quite effective for formal hard-

ware verification. However, arithmetic operations (like ad-
dition and multiplication) are known to be a hard problem
for Boolean SAT solvers. Thus, new solve techniques are
required for the future. Satisfiability Modulo Theory (SMT)
provides SAT solving on a higher level of abstraction and
may cope with the limitations. In the following, we give
an overview of Boolean SAT and compare it to SMT in the
context of formal hardware verification.

2.1. Boolean Satisfiability (SAT)

The Boolean Satisfiability problem (SAT problem)
is to determine an assignment for a Boolean function
f : {0, 1}n → {0, 1} that evaluates to 1 or to prove that
no such assignment exists. A SAT problem is called satisfi-
able if a satisfying assignment exists, otherwise it is unsat-
isfiable.

The function f is given in Conjunctive Normal
Form (CNF). A CNF consists of clauses, each clause con-
sists of literals, and a literal is a variable or its negation.
A CNF is satisfied, if all clauses are satisfied. A clause is
satisfied if at least one literal evaluates to 1. Circuits can
be easily encoded in CNF [26]. Signals are represented by
Boolean variables while gates (e.g. AND, OR) or arithmetic
operations (ADD, MUL) are encoded in terms of clauses.

Algorithms for solving the SAT problem are called SAT
solvers. Most Boolean SAT solvers get a Boolean formula
in CNF as input and rely on the DPLL algorithm [6] ex-
tended by conflict analysis [19]. Here, (1) a decision heuris-
tic assigns values to free variables, (2) the propagation pro-
cedure deduces further assignments, and (3) the conflict
analysis determines conflicts and backtracks to resolve a
conflict, if necessary.

2.2. Satisfiability Modulo Theory (SMT)

SAT solving on a higher level of abstraction is pro-
vided by SMT solvers. A set of assumptions over high
level (e.g. bit-vector) constraints represents the satisfiabil-
ity problem.

Constraints are defined over a set of variables and oper-
ations. A variable may be a Boolean predicate, a fixed bit-
width variable, an array or an uninterpreted function. The
common input format for SMT [21] defines several theo-
ries. In this work, we consider the theory for quantifier free
bit-vectors (QF_BV), a suitable format for circuits given on
Boolean and word level [25]. Here, Boolean operations
(e.g. AND, OR), arithmetic operations (e.g. ADD, MUL),
or relations (e.g. LEQ, EQ, GEQ) are supported.

In general, SMT solvers combine a Boolean SAT algo-
rithm with a theory solver resulting in DPLL(T) [16, 8].
Conceptually, a SAT solver is called to determine a (par-
tial) satisfiable assignment to an abstraction at the Boolean
level that is afterwards checked by the underlying theory
solver. If the theory solver determines a conflict, the conflict
is passed to the SAT engine, which blocks the assignment
and backtracks. However, state-of-the-art SMT solvers do
not strictly implement this concept.

Today, several state-of-the-art SMT solvers for QF_BV
[4, 7, 15, 3, 9] exist. The most common technique for

QF_BV is to simplify the instance in a preprocessing step
by using e.g. term rewriting or abstraction, followed by “bit-
blasting” (i.e. encoding in CNF and passing it) to a standard
SAT solver to determine the satisfiability.

3. Debugging using SMT

Usually, debugging is carried out manually to locate
faults in circuits. But using a proof engine this step can be
partially automated. Given a circuit and failure traces with
expected correct output behavior, the debugging engine au-
tomatically determines fault candidates to aid the debugging
process.

Before introducing SMT-based debugging, the basics of
SAT-based debugging for combinational circuits [23] are
briefly revisited.

The input for the debugging algorithm is a faulty circuit
and one or more counterexamples (failure traces). Addi-
tionally, each counterexample contains information on the
correct responses that have to be fulfilled at the primary out-
puts.

In a first step, the circuit is divided into n components,
representing possible fault candidates. The choice of the
components controls the granularity of the debugging re-
sult. Typical choices are operations (e.g. AND, OR, ADD,
MUL) or expressions, but also hierarchical or structural in-
formation can be used [12, 13]. For each component, addi-
tional correction logic is inserted to change the output be-
havior of the component.

C

i

s
i

1

0

RRdd
R

F’i
Fi

i

Figure 1. Correction Logic

The correction logic is depicted in Figure 1. The original
output Fi of a component Ci is replaced by F ′

i . A select line
si of a multiplexor controls F ′

i : If si is assigned to one, then
F ′

i = Ri, otherwise F ′
i = Fi. The new variable Ri enables

Ci to behave non-deterministically. A correction may be
injected at Ci. The variable si is called abnormal predicate
and enables or disables the correction logic, respectively.

Given a combinational circuit G and a set of m failure
traces X1, · · · , Xm with corresponding correct output re-
sponses O1, · · · , Om, the instance is created as shown in
Figure 2: For each failure trace, the circuit is duplicated, the
correction logic is added, the inputs are restricted to the fail-
ure trace, and the outputs are assigned to the correct output
response. For each component the same abnormal predicate
over all duplicated circuits is used. Thus, if si is assigned to
one, non-deterministic behavior of component Ci occurs in
each duplication simultaneously.

x
1 o

1

correct
value

<kn

x
m o

m

correct
valueh

g

h

g

Figure 2. Combinational Debugging
To restrict the number k of enabled abnormal predi-

cates, a cardinality constraint is used. Setting k to zero,
i.e. disabling the correction logic of all components, leads
to an unsatisfiable instance: the correct output responses
O1, · · · , Om contradict the failure trace applied to the in-
puts. Thus, the debugging algorithm increments k by 1, as
long as the instance remains unsatisfiable. If the instance
becomes satisfiable, a fault candidate can be extracted. A
fault candidate is the set of components, where enabling the
respective correction logic leads to the correct primary out-
put responses. If exactly one component has to be enabled
(i.e. if k = 1) a single fault is considered. Correcting multi-
ple components (k > 1) corresponds to multiple faults. The
set of all fault candidates can be extracted by incrementally
adding constraints that block all already found fault can-
didates. The algorithm terminates if the instance becomes
unsatisfiable. Thus, all fault candidates with minimal cardi-
nality k are extracted.

The debugging instance can be solved using SAT [23]
by encoding the described debugging formulation in CNF,
i.e. into a set of clauses. But recently also word level debug-
ging has been introduced [20, 24]. Here, the SAT-based de-
bugging approaches for combinational debugging [23] and
property debugging [14] are applied to the bit-vector level
without modifications. That is, the SMT instance is created
on a set of bit-vector constraints instead of translating the
circuit into CNF. For word level problems, SMT-based de-
bugging leads to significant run-time improvements in com-
parison to SAT-based debugging.

4. Cardinality Constraints

While SMT-encodings for circuit elements have already
been evaluated in [25] and – for debugging problems –
in [24], respectively, representations for cardinality con-
straints in SMT have not been considered so far. In debug-
ging, a cardinality constraint restricts the maximum number
of enabled components to k, i.e. s0 + s1 + · · ·+ sn−1 ≤ k,
with si being Boolean variables and k a positive integer.
Typically, other types of cardinality constraints like equal-
ity, greater, etc. are also used in practice. But these con-
straints are not further considered here, as they can be en-
coded analogously.

To ensure an efficient algorithm, “good” encodings of
cardinality constraints require good scalability for a large
number of components (n) as well as for an increasing k.
Especially in case of multiple faults (k > 1), the run-time

grows significantly and requires efficient encodings.
In the domain of (Pseudo) Boolean SAT, several stud-

ies about finding good encodings for cardinality constraints
in Conjunctive Normal Form (CNF) exists (see e.g. [1,
11, 22, 2, 18]). Here, encodings based on sequential and
parallel counters [22], derived from Binary Decision Dia-
grams (BDD) [5], or adder structures as well as sorter struc-
tures [11] have been proposed, respectively. However, the
encodings are mostly given on the Boolean level, that may
not be efficiently supported by an SMT solver. Thus, the
encodings have to be generalized to a set of word level con-
straints for optimized SMT solving.

In the following we propose three SMT encodings:
An adder encoding, a multiplexor encoding (both based
on [11]), and a new shifter encoding. Afterwards, the en-
codings are compared and discussed with respect to their
sizes, the scalability for increasing k and n, as well as their
arc-consistency.

4.1. Adder Encoding

A straight-forward encoding for a cardinality constraint
is the subsequent usage of adder operations for summing up
all abnormal predicates si and a comparator for restricting
the resulting sum to k. In total, this requires (n− 1) adders
(ADD) and an additional less-equal (LEQ) operation.

However, subsequently using these adders leads to large
bit-widths which may degrade the performance of the un-
derlying solve engine (because more values have to be con-
sidered). Thus, the respective adders are organized in a tree
structure as depicted in Figure 3(a). As a result, n

2 adders
with a bit-width of 1, n

4 adders with a bit-width of 2, etc. are
needed. The maximum bit-width using this tree structure is
dlog2 ne+ 1.

4.2. ITE Encoding

A compact encoding with multiplexors was found by
building a BDD [5] of a cardinality constraint [11]. Since
each BDD can be easily converted to a multiplexor circuit,
this circuit is used to encode the cardinality using multi-
plexor, i.e. if-then-else (ITE), operations.

Figure 3(b) shows the resulting structure. Starting at the
root multiplexor cell, each si variable is checked by an ITE
operation. If an si variable is assigned to 1, multiplexors in
the next column are considered. Furthermore, in the right-
most column all data-1 inputs of the multiplexors are as-
signed to the constant 0. Since additionally the output of
the root multiplexor is assigned to 1, a contradiction occurs
if more than k variables si are assigned to 1.

To construct this structure, for each column n − k ITE
operations are required. In total, this leads to (k+1)·(n−k)
operations. However, since ITE works with Boolean vari-
ables, no word level information can be exploited by the
search engine.

4.3. Shifter Encoding

Besides the adder and ITE encoding, which are already
known from Boolean satisfiabiliy, finally we introduce a

ADD

s0
1

s1
1

ADD

s2
1

s3
1

ADD

sn−2
1

sn−1
1

2 2

ADD
. . .

. . .
2 2

ADD
. . .

. . .
dlog2 ne

. . .
dlog2 ne

ADD

dlog2 ne + 1
k
dlog2 ne + 1

LEQ
1

(a) Adder encoding

k + 1
1

� As0 0 1

� As1 0

...

1

� Asn−1−k 0

1

1

� As1 0q 1

� As2 0

...

1

1

� Ask 0 1

0q
� Ask+1 0 1

0· · ·q...
� Asn−1 0

1

1

0

(b) ITE encoding

k

SHL

1
n n

SHL

1
n n

SHL

1
n n

n n

OR
. . .

. . .
n n

OR
. . .

. . .
n

. . .
n

OR
s0s1 . . . sn−1

(c) Shifter encoding

Figure 3. Encoding of Cardinality Constraints

new shifter encoding. The corresponding circuit structure
is presented in Figure 3(c). It consists of k shifters of bit-
width n. Each shifter shifts a constant 1 within an n-bit
bit-vector. ORing the outputs of all shift operations leads to
a bit-vector of size n with at most k bits assigned to 1. Con-
straining the resulting bit-vector to s0, · · · , sn−1 completes
the cardinality constraint. Setting the ith bit of the result-
ing bit-vector is equivalent to setting si to 1. Since at most
k constant 1 values can be set using the shifters, the maxi-
mum number of si variables allowed to be assigned to 1 is
restricted to k.

In total, this leads to k shift operations as well as k − 1
OR operations. Shifters as well as bit-vector ORs are di-
rectly supported in SMT. Similar to the adder encoding, a
tree structure is used for the OR operations. Although this
has no effect on the bit-width in this case, it is the best en-
coding with respect to the depth of the structure.

4.4. Discussion

Summing up the worst case numbers of operations
needed for the respective encodings leads to the following
instance sizes:

1. Adder encoding: n
2 + n

4 +· · ·+1 adders with bit-widths
from 1 to dlog2 ne + 1 (in total n − 1 adders) plus an
additional LEQ operation.

2. ITE encoding: (k + 1) · (n − k) multiplexors with
Boolean inputs and outputs, respectively.

3. Shifter encoding: k shifters and k − 1 bit-vector OR
operations with bit-width n.

With respect to the number of operations, the shifter en-
coding is the most compact representation of cardinality
constraints (followed by the adder encoding). In contrast,
a significantly larger number of operations is required for
the ITE encoding. However, this might lead to a stronger
implicative power due to arc-consistency which is – in prin-
ciple – possible using the ITE structure.

Arc-consistency means that whenever an assignment
could be propagated on the original constraint, the solver‘s
implication engine should find that assignment as well. The
notion of arc-consistency has been introduced in the CSP
domain and applied to Boolean satisfiability [11]. In [11],
it has been proven that the ITE encoding is arc-consistent
(when additional clauses are added) while e.g. the adder en-
coding is not. However, these proofs require knowledge
about the reasoning engine. In case of Boolean SAT solvers
unit propagation is the implication procedure. But for SMT
solvers knowledge about the implication engine or the bit-
blasting procedure is usually not publicly available. Thus, a
statement regarding the arc-consistency cannot be given for
SMT solvers.

The next section gives an experimental evaluation of the
proposed SMT encodings.

5. Experimental Evaluation

The debugging approach has been evaluated on a set
of gate level circuits (taken from the LGSynth93 package)
as well as on word level benchmarks (taken from SMT-
COMP’081). To this end, single as well as multiple faults
have been randomly injected into the instances. Counterex-
amples describing the errors have been generated using a
SAT-based equivalence checker.

In this section, the results of the evaluation are reported.
The documented run-times are given in CPU seconds. All
experiments have been conducted on an AMD Athlon 64
4200+ (2.2GHz) with 2GB main memory running Linux.
An MO in the tables denotes a memory out, i.e. requiring
more than 2GB main memory.

5.1. Constraint Size

In the following the resulting instance sizes are evalu-
ated. A comparison of the encoding overhead in SAT and

1The instances were modified to explicitly model primary in- and out-
puts (see [24] for details).

Table 1. Encoding Overhead
SAT SMT

n #c k w/o c. ITE ADD SHIFT w/o c. ITE ADD SHIFT
(1.00) (1.00)

Gate Level Benchmarks
i7 1190 3 2 39,879 1.36 2.17 4.03 7,347 1.49 1.65 1.01
i8 2063 3 3 104,922 1.31 1.77 4.24 12,627 1.65 1.65 1.01
i9 857 5 2 62,170 1.17 1.54 2.27 8,895 1.29 1.39 1.01
k2 676 18 1 430,254 1.01 1.06 1.07 25,146 1.05 1.11 1.01

misex3 6261 6 2 449,598 1.17 1.54 2.62 75,228 1.25 1.33 1.01
pair 3021 9 5 221,067 1.33 1.53 4.71 55,611 1.33 1.22 1.01
rot 1267 2 2 30,730 1.49 2.61 5.17 5,284 1.72 1.96 1.01

t481 1647 1 1 18,125 1.73 4.55 5.57 3,295 2.00 3.00 1.01
table5 1246 11 3 160,666 1.12 1.30 2.18 27,577 1.18 1.18 1.01

too_large 2190 3 2 343,605 1.08 1.25 1.70 13,149 1.50 1.67 1.01
x1 776 2 2 38,204 1.24 1.80 2.88 3,174 1.73 1.98 1.01
x4 1051 3 3 34,923 1.48 2.18 5.60 6,525 1.64 1.65 1.01

Word Level Benchmarks
c-jpg2gif-2138 15474 1 1 4,943,854 1.03 1.12 1.19 35,891 1.86 2.72 1.01
c-jpg2gif-2139 15506 1 1 4,946,110 1.03 1.12 1.19 35,963 1.86 2.72 1.01
c-jpg2gif-2140 15688 1 1 4,975,819 1.03 1.12 1.20 36,401 1.86 2.72 1.01
c-jpg2gif-2141 15739 1 1 4,980,608 1.03 1.12 1.20 36,516 1.86 2.72 1.01
c-jpg2gif-1139 38896 1 1 6,956,114 1.04 1.22 1.40 93,830 1.83 2.66 1.01
c-jpg2gif-1140 38904 1 1 6,956,744 1.04 1.22 1.40 93,848 1.83 2.66 1.01
c-jpg2gif-1141 38947 1 1 7,048,733 1.04 1.22 1.39 93,950 1.83 2.66 1.01

SMT is given in Table 1. The columns denote the num-
ber of abnormal predicates (n), number of applied coun-
terexamples (#c), the cardinality (k), and the respective
encodings. Here, the overhead is given as a factor to the
number of clauses (SAT) or number of assumptions (SMT)2

of the plain instance without cardinality constraint (column
w/o c.). The minimal encoding overhead is marked bold,
whereas the maximum is marked italic. As in the rest of
this section, the respective encodings are denoted by ADD,
ITE, and SHIFT.

The syntax of the CNF format and the standard SMT
format [21] require additional operations for each of the en-
codings, causing a larger number of operations compared
to the theoretical analysis in Section 4. For example, a
constant value or bit accesses have to be encoded in SAT
and SMT. Also notable are the additional constraints for the
ADD encoding. Here, n additional ITE operations of bit-
size one are used to transform a Boolean predicate si into a
bit-vector of size one needed for the ADD operations.

For Boolean SAT, ITE requires the least and SHIFT the
maximum number of additional clauses to represent the car-
dinality constraint. Especially for SHIFT, the overhead is
significant and increases the instance size with a factor of
up to 5.6. For the word level benchmarks, with large plain
instance sizes and large values for n, the overhead becomes
more moderate for all encodings.

In SMT the SHIFT encoding requires the least and ADD
the maximum number of additional assumptions. For ADD
the run-time increases up to 3 times. Here, the overhead for
the gate and the word level benchmarks with an increasing
n is similar.

The number of counterexamples also influences the over-
head. The more counterexamples are applied, the smaller
is the overhead of the cardinality constraint. The plain in-
stance size grows with each counterexample, but the num-
ber of abnormal predicates n and the cardinality k does not.

Thus, it can be concluded, that the choice of cardinality
constraint significantly influences the number of assump-

2An assumption in SMT may consists of a set of operations, e.g. an
bit-extract in combination with an ADD.

tions. Depending on the system used, this might become an
issue due to memory limitations.

5.2. Run-time

The obtained run-times for the respective encodings are
given in Table 2. Here, for each benchmark, the name, the
number of components (n), the number of applied coun-
terexamples (#c), and the minimal k are listed in the first
four columns. The remaining columns give the run-times
obtained by a Boolean SAT solver and three SMT solvers
using the described encodings (i.e. ADD, ITE, and SHIFT).
As Boolean SAT solver MiniSAT [10] has been applied,
while as SMT solver STP [15], Boolector [4], and Z3 (ver-
sion 2) [7] have been used. All these solvers achieved good
results in the respective competitions (i.e. SATCOMP and
SMTCOMP) during the last years.

The ITE encoding is the best choice if the Boolean SAT
solver is applied to the gate level benchmarks. However, for
word level instances, with a large number of abnormal pred-
icates, the newly introduced SHIFT encoding performed
best. In fact, improvements of up to one order of magni-
tude can be observed in comparison to the ITE encoding.

For the SMT solvers, the efficiency of the respective
encoding strongly depends on the solver. In more detail,
e.g. Z3 degrades up to a factor of 2500 (benchmark c-
jpg2gif-1141) if the ITE encoding is replaced by an ADD
encoding. If the SHIFT encoding is used, the machine
may even run out of memory. The solvers apply different
proof techniques and pre-processing techniques which ex-
plains the performance differences. Nevertheless for each
solver one particular encoding is quite robust. STP and Z3
achieve the highest performance when the ITE encoding is
applied. Boolector handles the encoding with adders most
effectively.

The best results for the word level benchmarks are ob-
tained by an SMT solver: Z3 using the ITE encoding. In
the best case (i.e. for c-jpg2gif-1141), an improvement of
almost a factor of 20 in comparison to the Boolean SAT
solver is achieved.

6. Conclusion

In this work, we evaluated encodings for cardinality con-
straints in the context of SMT-based debugging. Besides
the straight-forward adder encoding and the more optimized
ITE encoding (known from SAT-based debugging) also a
new shift encoding has been proposed.

The shift encoding is a good alternative for SAT-based
debugging on word level benchmarks. For SMT solvers,
the efficiency has been observed to be strongly solver de-
pendent. For each SMT solver one particular encoding per-
forms best. The results clearly showed, that it is worthwhile
to consider different SMT representations for cardinality
constraints as for the word level benchmarks improvements
of more than a factor of 2500 can be achieved.

Table 2. Influence on Run-time
Minisat STP Boolector Z3

n #c k ITE ADD SHIFT ITE ADD SHIFT ITE ADD SHIFT ITE ADD SHIFT
Gate Level Benchmarks

i7 1190 3 2 2.27 8.65 10.70 13.48 54.58 12.78 17.79 4.90 7.13 5.54 38.72 628.07
i8 2063 3 3 10.36 37.13 116.76 84.69 288.52 58.47 101.37 12.20 15.72 17.74 262.07 997.18
i9 857 5 2 3.60 10.67 23.81 17.19 50.00 16.69 21.00 7.72 12.19 16.30 56.45 614.17
k2 676 18 1 3.88 7.58 1.74 21.45 103.99 22.22 16.80 5.64 5.88 5.17 60.76 6.06

misex3 6261 6 2 177.12 379.73 412.64 197.47 3326.29 283.09 796.40 35.41 72.76 269.42 2544.89 MO
pair 3021 9 5 384.59 848.18 52582.57 1052.89 2855.22 4375.90 1061.19 236.56 2375.62 560.83 1011.39 MO
rot 1267 2 2 1.75 9.43 6.34 11.55 60.31 12.43 15.32 3.87 4.53 2.53 35.68 118.23

t481 1647 1 1 0.91 0.96 0.33 2.56 37.16 5.91 3.07 1.42 3.42 0.39 18.65 46.53
table5 1246 11 3 23.33 28.57 68.02 81.20 231.73 70.44 77.64 19.71 24.91 71.98 224.82 1427.09

too_large 2190 3 2 33.02 92.65 15.99 98.46 542.25 50.88 205.78 14.59 18.93 279.49 704.92 MO
x1 776 2 2 1.23 3.63 2.00 7.18 29.72 7.70 11.11 3.35 5.31 3.41 14.74 66.88
x4 1051 3 3 3.37 5.27 9.03 18.52 73.33 19.33 27.13 7.78 7.45 8.74 32.87 50.90

Word Level Benchmarks
c-jpg2gif-2138 15474 1 1 182.32 1066.36 36.72 73.29 MO MO 1845.98 28.17 46.31 7.82 2035.40 MO
c-jpg2gif-2139 15506 1 1 349.27 1495.37 22.47 73.65 MO MO 1628.84 29.04 51.23 6.67 2074.50 MO
c-jpg2gif-2140 15688 1 1 232.96 2059.92 87.97 74.80 MO MO 1002.77 28.39 50.11 7.20 1932.68 MO
c-jpg2gif-2141 15739 1 1 219.21 1898.09 31.65 74.53 MO MO 2959.95 29.70 51.72 7.31 2146.10 MO
c-jpg2gif-1139 38896 1 1 259.27 10309.90 398.33 MO MO MO 11553.50 76.27 MO 19.45 28796.40 MO
c-jpg2gif-1140 38904 1 1 481.81 5579.12 132.70 MO MO MO 6562.28 77.16 MO 19.36 26864.40 MO
c-jpg2gif-1141 38947 1 1 736.51 6421.14 399.52 MO MO MO 12836.40 74.81 MO 20.19 50918.20 MO

References

[1] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of
boolean cardinality constraints. In Principles and Practice
of Constraint Programming, number 2833 in LNCS, pages
108–122, 2003.

[2] O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of
pseudo-boolean constraints to SAT. In Journal on Satisfia-
bility, Boolean Modeling and Computation, volume 2, pages
191–200, 2006.

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van
Rossum, S. Schulz, and R. Sebastiani. The MathSAT 3 Sys-
tem. In Int’l Conference on Automated Deduction (CADE),
volume 3632, pages 315–321, 2005.

[4] R. Brummayer and A. Biere. Boolector 0.4. In SMT-COMP:
Satisfiability Modulo Theories Competition, 2008. Available
at http://fmv.jku.at/boolector/.

[5] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[6] M. Davis, G. Logeman, and D. Loveland. A machine pro-
gram for theorem proving. Comm. of the ACM, 5:394–397,
1962.

[7] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340, 2008. Available at
http://research.microsoft.com/projects/Z3.

[8] B. Dutertre and L. Moura. A Fast Linear-Arithmetic Solver
for DPLL(T). In Computer Aided Verification, volume 4114,
pages 81–94, 2006.

[9] B. Dutertre and L. Moura. The YICES SMT Solver. In SMT-
COMP: Satisfiability Modulo Theories Competition, 2006.
Available at http://yices.csl.sri.com/.

[10] N. Eén and N. Sörensson. An extensible SAT solver. In SAT
2003, volume 2919 of LNCS, pages 502–518, 2004.

[11] N. Eén and N. Sörensson. Translating pseudo-boolean con-
straints into SAT. In Journal on Satisfiability, Boolean Mod-
eling and Computation, volume 2, pages 1–26, 2006.

[12] M. Fahim Ali, S. Safarpour, A. Veneris, M. Abadir, and
R. Drechsler. Post-verification debugging of hierarchical de-
signs. In Int’l Conf. on CAD, pages 871–876, 2005.

[13] G. Fey and R. Drechsler. Efficient hierarchical system de-
bugging for property checking. In IEEE Workshop on De-
sign and Diagnostics of Electronic Circuits and Systems,
pages 41–46, 2005.

[14] G. Fey, S. Staber, R. Bloem, and R. Drechsler. Automatic
fault localization for property checking. IEEE Trans. on
CAD, 27(6):1138–1149, 2008.

[15] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In Computer Aided Verification, number
4590 in LNCS, pages 524–536, 2007.

[16] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast decision procedures. In Computer
Aided Verification, volume 3114 of LNCS, pages 175–188,
2004.

[17] A. Hertel, P. Hertel, and A. Urquhart. Formalizing danger-
ous SAT encodings. In SAT, volume 4501 of LNCS, pages
159–172, 2007.

[18] J. Marques-Silva and I. Lynce. Towards robust CNF encod-
ings of cardinality constraints. In Principles and Practice
of Constraint Programming, number 4741 in LNCS, pages
483–497, 2007.

[19] J. Marques-Silva and K. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Trans. on Comp.,
48(5):506–521, 1999.

[20] S. Mirzaeian, F. Zheng, and K.-T. T. Cheng. RTL error di-
agnosis using a word-level SAT-solver. In Int’l Test Conf.,
pages 1–8, 2008.

[21] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2006.

[22] C. Sinz. Towards an optimal CNF encoding of boolean
cardinality constraints. In Principles and Practice of Con-
straint Programming, number 3709 in LNCS, pages 827–
831, 2005.

[23] A. Smith, A. Veneris, M. Fahim Ali, and A.Viglas. Fault
diagnosis and logic debugging using boolean satisfiability.
IEEE Trans. on CAD, 24(10):1606–1621, 2005.

[24] A. Sülflow, G. Fey, and R. Drechsler. Experimental studies
on SMT-based debugging. In IEEE Workshop on RTL and
High Level Testing, pages 93–98, 2008.

[25] A. Sülflow, U. Kühne, R. Wille, D. Große, and R. Drechsler.
Evaluation of SAT like proof techniques for formal verifica-
tion of word level circuits. In IEEE Workshop on RTL and
High Level Testing, pages 31–36, 2007.

[26] G. Tseitin. On the complexity of derivation in propositional
calculus. In Studies in Constructive Mathematics and Math-
ematical Logic, Part 2, pages 115–125, 1968. (Reprinted in:
J. Siekmann, G. Wrightson (Ed.), Automation of Reasoning,
Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

