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Abstract—In spite of the multiplication of truth-values, a
noticeable shade of bivalence lurks behind the canonical notion
of entailment that many-valued logics inherit from the 2-valued
case. Can this bivalence be somehow used to our advantage? The
present note briefly surveys the progress made in the last three
decades toward making that theme precise from an abstract point
of view and extracting some useful procedures from it, harvesting
some of its most favorable crops on the domains of semantics
and proof-theory.

I. ANTIDOTES FOR ‘A MAGNIFICENT CONCEPTUAL
DECEIPT’

In a 1976 lecture (cf. [39]), the Polish logician Roman
Suszko complained that “after 50 years [of the construction
of so-called many-valued logics by Jan Łukasiewicz] we still
face an illogical paradise of many truths and falsehoods”. The
bold philosophical thesis behind such an assertion (cf. [37]),
updating and extending Frege’s discrimination between the
sense and the reference of saturated concepts, was that a
sharp distinction should be drawn in between the ‘algebraic
valuations’ of the most usual multi-valued truth-functional
logics, and their more ‘genuine definition’ in terms of two-
valued ‘logical valuations’ (cf. [38]).

Suszko’s Thesis, as formulated in [26] and [20], roughly
says that “every logic is logically two-valued”. To put it like
that, however, would result in allowing for circumstances in
which it is outright wrong, others in which it is but trivial, and
still some others in which it is just useless. To do the Thesis
some justice, show how and when it works fine, and to find
some nice applications for it, we will need some preparation,
to be supplied in the present section.

As usual in the general theory of consequence relations
(cf. [41]), a propositional logic L will here be character-
ized as a collection of formulas S together with a single-
conclusion consequence relation somehow defined as a subset
of Pow(S)×S . Moreover, following Łoś & Suszko’s method-
ological work on sentential logics (cf. [24]), we will assume S
to be freely generated by a denumerable set of atoms At =
{p0, p1, p2, . . .} over the constructors Cct =

⋃
m∈N Cctm,

where each Cctm itself denotes a collection of connectives
of arity m. We will call a set of formulas Σ overcomplete
in L = 〈S,
〉 in case Σ 
 β for every β ∈ S. Taking
advantage of the algebraic character of S, for any given total
substitution mapping σ : At → S there will of course be a

unique endomorphism εσ : S → S that extends it, and we will
assume henceforth that the consequence relation 
 of each of
our logics enjoys the following property of substitutionality
(a.k.a. ‘structurality’):

(L0) Γ 
 α implies εσ(Γ) 
 εσ(α)

It will help in the following to denote by At(Σ) the set of
atoms that occur in the construction of a given theory Σ ⊆ S.

From a semantical point of view, let an interpretation for
the formulas in S be a total valuation mapping § : S → V§
into a given universe of truth-values V§, and consider V§ to be
partitioned into sets of designated values D§ and undesignated
values U§. A many-valued semantics Sem here will be any
collection of such valuations. From these elements, local (|=§)
and global (|=Sem) consequence relations may then be defined
according to a canonical concept of T -entailment that sets
Γ |=§ α iff (§(γ) ∈ U , for some γ ∈ Γ, or §(α) ∈ D), and
sets Γ |=Sem α iff (Γ |=§ α, for every § ∈ Sem).

It has since long been known that a consequence relation 

over S can be characterized by an adequate T -entailment re-
lation |=Sem iff it enjoys the following properties, for arbitrary
Γ ∪∆ ∪ {α} ⊆ S:

(L1) Γ, α 
 α
(L2) Γ 
 α implies ∆ ∪ Γ 
 α
(L3) (Γ 
 δ, for every δ ∈ ∆, and ∆ 
 α) imply Γ 
 α

Let’s call this result W-theorem (cf. [41]). Consider now the
set of ‘logical’ values V2 = {T, F} such that D2 = {T},
and for each mapping § ∈ S let its bivalent counterpart b§ :
S → V2 be defined by setting b§(ϕ) = T iff §(ϕ) ∈ D.
Collecting all such bivalent mappings into Sem2, it is obvious
that Γ |=Sem α iff Γ |=Sem2 α. This may be said to constitute
indeed the very core of Suszko’s observation on logical 2-
valuedness, and we will call this result S-theorem. A quick
review of the above mentioned theorems and their proofs, also
extended to the multiple-conclusion case, can be found in [28].

A particularly interesting genre of many-valued seman-
tics Sem is obtained when one fixes the sets V§ and D§
(call them V and D), for every § ∈ Sem, and also fixes the
interpretation d c©e of each c© ∈ Cctm in such a way that,
for every § ∈ Sem and formulas α0, . . . , αm−1, the following
equation holds good:

(S1) §( c©(α0, . . . , αm−1)) = d c©e(§(α0), . . . , §(αm−1))



This means that we may think now of the universe of truth-
values V as organized in terms of an algebra with the same
similarity type of the algebra of formulas, where to each
syntactical constructor c© : Sm → S there corresponds a
semantical operator d c©e : Vm → V . This also means, of
course, that any basic state of affairs given by a total mapping
e : At → V can be uniquely extended into a homomorphic
valuation §e : S → V from the algebra of formulas into the
algebra of truth-values. Any semantics given by the collection
of all such homomorphisms is called truth-functional. Now,
say that the sets of formulas Σ and Π are disconnected in
case At(Σ)∩At(Π) = ∅. A remarkable result by Shoesmith &
Smiley (cf. [35]) shows that a logic is characterized by a truth-
functional T -entailment iff it enjoys all the (L#)-properties
above, plus the following cancellation property:

(L4)
⋃
k∈K Γk ∪ Γ 
 ϕ implies Γ 
 ϕ, once, for

every k ∈ K, we have that Γ ∪ {ϕ} and Γk are
disconnected, and that Γk is not overcomplete in this
logic

A logic L is said to be genuinely κ-valued if κ is the
cardinality of the smallest collection of truth-values Vκ with
the help of which L can be given a truth-functional semantics.
The drama set up by the S-theorem reaches its climax exactly
in the cases in which L turns out to be genuinely κ-valued, for
some κ > 2: here a bivalent characterization of L will presume
an open abandonment of a truth-functional characterization.

A genuinely κ-valued logic L with a set of constructors
Cct is said to be functionally complete in case any operator
d~e over Vκ can be defined by way of some convenient
combination of operators associated to the constructors Cct.
Consider any two distinct values vi, vj ∈ Vκ, let θij be
such that At({θij}) = {p0} and let σ[pk 7→δ] be a substitution
mapping that outputs the value δ with input pk and behaves
as the identity mapping otherwise. Given a state of affairs e
such that e(pi) = vi and e(pj) = vj , and its corresponding
valuation §e, we say that the formula θij effectively separates
vi and vj in case b§e(εσ[p0 7→pi]

(θij)) 6= b§e(εσ[p0 7→pj ]
(θij)).

Obviously, it suffices to take θij as p0 itself to separate truth-
values that are not both designated, nor both undesignated. For
pairs of values from the same partition class, however, it may
or it may not be the case that the logic L has the linguistic
resources to separate them. We will here say that a genuinely
κ-valued logic L is sufficiently expressive when its language
is expressive enough to separate each pair of truth-values from
the collection Vκ. Clearly, functional completeness gives a
sufficient condition, yet, as we shall see, not a necessary one,
for a logic to be sufficiently expressive. Notice moreover that,
as we have proven in [15], for any genuinely κ-valued logic L,
with κ > 2, either L or some conservative extension of it (not
necessarily a truth-functional one) is bound to be sufficiently
expressive.

Back from semantics to abstract properties of consequence
relations, given a logic L = 〈S,
〉, we say that two formulas γ
and δ are L-equivalent, and denote this by γ ≡L δ, if both
{γ} 
 δ and {δ} 
 γ. An important feature of classical logic,

shared also by all the usual modal logics, is given by the
enjoyment of the so-called replacement property, according
to which equivalent formulas are ‘logically indistinguishable’,
that is:

(L5) α ≡L β implies ε[q 7→α](ϕ) ≡L ε[q 7→β](ϕ), for any
ϕ ∈ S and any q ∈ At

Suszko sometimes called this property ‘Fregean Axiom’
(cf. [37], [39]) and claimed that “the construction of [the]
so-called many-valued logics by Jan Łukasiewicz was the
effective abolition of the Fregean Axiom”. However, it must
be highlighted that the claim in that case is only true, in fact,
for sufficiently expressive logics. There are indeed genuinely
κ-valued logics, with κ > 2, that enjoy the replacement
property: a simple example would be that of a truth-functional
logic L~ with V = {v0, v1, v2}, D = {v2}, and a single binary
constructor ~ interpreted by setting d~e(vk, vk) = vk, for
k ∈ {0, 1, 2}, and d~e(vi, vj) = v2, otherwise. A corrected
version of Suszko’s claim should then be something like:
“a sufficiently expressive truth-functional logic may only sat-
isfy the replacement property in case it is genuinely 2-valued”.
A sufficiently expressive conservative extension of L~ could
be obtained for instance by adding to the language of this logic
a 0-ary constructor � interpreted by setting d�e = v0, but then
of course this logic would fail the replacement property (notice
how (L5) fails if one considers, e.g., α = p0, β = p0~� and
ϕ = q ~ p0). Once we will be interested below exclusively
on sufficiently expressive many-valued logics, all the non-
classical truth-functional logics we will consider are indeed
to fail replacement — and this fact would certainly gratify
Suszko in his analysis of the Fregean Axiom.

Several other important aspects of truth-functionality are
discussed in [31], where open problems related to ‘compu-
tationally well-behaved’ generalizations of this very notion
of truth-functionality are also mentioned. An interesting non-
deterministic variety of truth-functionality has been proposed,
for instance, in [2], where again the sets of truth-values
are fixed for all interpretation mappings, but now for each
c© ∈ Cctm there is an operator b c©c : Vm → Pow(V) \ ∅

such that, for every § ∈ Sem and formulas α0, . . . , αm−1:
(S2) §( c©(α0, . . . , αm−1)) ∈ b c©c(§(α0), . . . , §(αm−1))

This means that there might be a number of ways of inter-
preting the meaning of each constructor as applied to a given
tuple of inputs. Consider for instance the simple example of
a logic with having a binary constructor ⊃ interpreted deter-
ministically over V2 = {T, F}, D2 = {T}, and U2 = {F} as
the classical implication, that is, such that v1b⊃cv2 ∈ U2 iff
(v1 ∈ D2 and v2 ∈ U2), and having a 0-ary constructor ⊥>
interpreted non-deterministically by setting b⊥>c = V2. In
that case the resulting logic would not enjoy property (L4)
(just consider K = {0}, Γ0 = {p0 ⊃ ⊥>, p0}, Γ = ∅ and
ϕ = p1 ⊃ ⊥>), and would fail thus to be truth-functional
(cf. [31]). It is not entirely clear, however, what the meaning of
Suszko’s Thesis on logical two-valuedness would be in such a
scenario, and in particular it is not as yet known how the class
of consequence relations related to such a wider class of non-



deterministically truth-functional logics is to be characterized
from an abstract viewpoint.

The next sections will show how logical two-valuedness
have been explored from a constructive and implementation-
oriented perspective. To be perfectly fair, however, we will
end the present section by briefly mentioning some ways in
which a logic may fail to be bivalent, even in the sense of
the S-theorem. The obvious way of obtaining that effect, of
course, would be by proposing consequence relations that fail
some of the (L#)-properties. Such is the case of the notion of
‘inferential many-valuedness’ studied in [27], that goes against
Suszko’s Thesis in that it turns out to be based on ‘logical
3-valuedness’ and a slightly modified notion of entailment.
Another illuminating way of eluding the bivalence behind the
notion of T -entailment would be by allowing either V\(D∪U)
or D ∩ U to be non-empty, as proposed in [40].

II. THE EXTRACTION OF BIVALENT SEMANTICS FOR
FINITE-VALUED LOGICS

The employment of bivalent non-truth-functional semantics
has proven extremely useful in the domain of non-classical
logics, and especially when no other insightful varieties of
semantics are available for those logics, at the time. The
realms of paraconsistent and paracomplete logics have indeed
benefitted a lot from the bivalent approach (cf. [23]), in
particular in the case we are dealing with logics that both fail
the replacement property and also fail to have genuinely κ-
valued semantics, for finite κ (cf. [18]). The pre-requisites for
obtaining completeness for such bivalent semantics are now
well understood (cf. [6]), and associated decidability proce-
dures known as ‘quasi matrices’ have been used since [19].
Such procedures are in fact available, as we have argued in [8],
at least when the clauses characterizing the bivalent semantics
are presented in a certain specific ‘dyadic’ format.

Suszko’s Thesis, however, is equally valid when the logics
do have a finite-valued truth-functional semantics, and the
next section will discuss the worthiness of the Thesis in
such a domain. Before that, we will conclude the present
section by succinctly appraising the more recent efforts toward
constructively securing, prêt-à-porter, the finest consequences
of the S-theorem.

One of the first announcements concerning the availabil-
ity of a bivalent semantics for a genuinely 3-valued logic,
Łukasiewicz’s logic Ł3, can be found in [38] — though the
corresponding clauses concerning the collection of bivalent
interpretation mappings appear only in [25]. One cannot
exaggerate in asserting, however, that that specific adequate
bivalent characterization for Ł3, however, looked rather mys-
tifying, as no effort was indeed made to clarify how it could be
obtained directly from the set of truth-tables that characterize
the original semantics of the logic. Given the considerably
non-constructive character of the S-theorem, nonetheless, the
definition of a constructive procedure for obtaining such a
bivalent characterization should be particularly welcomed.
A substantial step toward that goal was made in [5], where
the author has as a matter of fact suggested that in many cases

an ‘algebraic’ truth-value can be constructively exchanged by
a unique ‘binary print’, in terms of a tuple of values from V2,
with the exclusive help of the original linguistic resources of
the given logic. In [8] we have explored a similar approach
in order to constructively extract, from the specification of
each given sufficiently expressive genuinely κ-valued logic,
the clauses of a sound and complete bivalent semantics for it.
The basic idea, to be sure, is to use the available linguistic
resources to produce the effective separation of each pair
of truth-values, and then use the corresponding syntactically
expressed binary prints of those values to couch the origi-
nal many-valued specification into a two-valued environment.
A fuller study of how that procedure nicely realizes Suszko’s
Thesis and smoothly fits into the variegated many-valued
scenarios from the literature was presented in [11] and [10].

III. A BIRD’S EYE VIEW OF SOME APPLICATIONS TO
MODEL THEORY AND TO PROOF THEORY

A number of applications may be envisaged for bivalent
semantics, some of which we will quickly examine in the
present section. One of their most striking advantage, at first
sight, lies in providing a uniform classic-like framework in
which a plethora of different non-classical logics can be
specified, and more easily compared with each other. From
a model-theoretic viewpoint, besides helping in establishing
decidability for a large class of non-classical logics, another
productive application for a bivalent semantics consists in
being a useful intermediary step in the process of associating
another more informative kind of semantics for the same logic.
Such has been the case, for instance, with the use of bivalent
semantics in the proof of completeness of a certain semantics
given by way of combinations of finite-valued truth-functional
scenarios, even when the given non-classical logic turn out
not to be characterizable by way of a genuinely finite-valued
truth-functional semantics (cf. [29]). The underlying idea is
somehow to ‘split’ a given complex logic in terms of more
well-behaved ingredients (cf. [28]), a very generally applicable
approach to model theory known as possible-translations
semantics, first proposed in [16].

Now, for the case of logics that do have a finite-valued truth-
functional semantics, the constructive procedure for extracting
a bivalent characterization for them, reported upon in the
previous section, has borne some juicy fruits also from a proof-
theoretical perspective. Even though general axiomatization
algorithms for finite-valued logics have been known for long,
they are typically based on indiscriminate extensions of the
linguistic resources of the original logics, as in [36], or else
they produce rules, as in [22] and [4], that do not easily
allow for the comparison of a genuinely κ1-valued to a
genuinely κ2-valued logic, when κ1 6= κ2. Such a general non-
uniform approach to finite-valued logics in terms of tableaux,
for example, has been available at least since [17]. Only
recently, however, an algorithm has been proposed (cf. [8]) that
produces tableau rules with only two labels, as in the classical
case, exactly by exploring the underlying bivalence behind
the notion of T -entailment, as supplied by our constructive



rendering of the S-theorem. Furthermore, as argued in [32], the
uniform classic-like approach may benefit even the user that
wishes to compare the deductive strength of truth-functional
logics based on the same structures, with κ1 = κ2.

A full implementation of the above mentioned algorithm,
receiving as input the specification of a sufficiently expressive
finite-valued logic, together with the appropriate formulas that
are able to produce the effective separation of each pair of
truth-values, and producing as output a complete set of tableau
rules as a ready-to-use Isabelle theory (cf. [34]) was pre-
sented in [33], and made available at http://tinyurl.com/5cakro.
The tableau theory implemented in the framework of the
higher-order metalanguage of a very flexible proof-assistant
includes structural rules that allow for the relatively easy
derivation, by the user, of theorems and rules of the given
logics, as well as the comparison between different logics,
all re-specified now in a uniform two-signed framework.
Progress toward the complete automation of the associated
proof procedures, however, was initially hindered by the fact
that the set of tableau rules produced by the procedure laid
out in [8] includes a kind of dual-cut branching rule that in
principle would sanction the production of derivations that
will not terminate, should the user make some bad choices
along their construction. Though it had been known that in
general this dual-cut rule was not eliminable, a conjecture had
been made that all uses of cut in our systems could be made
‘analytic’, as in [21]. Such non-eliminable use of a clause
representing the dual-cut rule was in fact an ordinary feature
of the bivaluation semantics presented in dyadic format, as
studied in [8], even for non-finite-valued logics.

Now, instead of proceeding toward directly proving the
above mentioned conjecture about analytic cuts, for the finite-
valued case, we have recently proposed, in [14], a novel algo-
rithm that receives the very same many-valued specifications,
and outputs adequate cut-free tableau systems. However, such
systems allow for some non-determinism in the choice of rules
for building the derivations, and in that case a bad choice
of rule by the user in constructing his derivations could in
fact result in non-termination. To fix that, and to guarantee
deduction in the new systems to be completely automatic,
our novel algorithm comes associated to a convenient proof
strategy, in each case, based on a non-canonical measure of
complexity of the involved formulas, to such an effect that the
tableau system becomes ‘analytic’ in an extended sense, once
the adherence to the proof strategy does guarantee termination
of the task of verifying the validity of a given inference.
Moreover, as usual, when that task terminates by producing
a non-closed tableau, exhausted according to the new def-
inition of complexity measure, full counter-models may be
immediately extracted from the open branches of the tableau.
Challenges and developments toward the implementation of
this new axiom-extraction procedure, together with a fully
automated deduction tactic in a computer-assisted environ-
ment, are reported in [30]. To extend the procedure from
sufficiently expressive finite-valued truth-functional logics so
as to be applicable to any finite-valued truth-functional logic, a

conservative extension of the given input logic might of course
be needed, as we have explained in Section I, and in [15]
we show how such aim may be attained, introducing only
‘minimal’ changes to the original logic.

Analyticity has also been the focus of a recent study on
non-deterministic semantics (cf. [1], and recall Section II),
and this study has been showing some interesting counterparts
in the modularity of the approach, though still not as much
reflected in the development of uniform classic-like proof-
theoretical frameworks. Canonical multi-signed sequent-style
proof systems have been developed, at any rate, for this kind
of semantics (cf. [3]). Cut-free classic-like sequent systems
adequate for logics presented by way of a bivalent semantics
have also been studied elsewhere (cf. [7]). In [9] we are to
show how our novel classic-like automated axiomatization
procedure may indeed be extended from bivalent semantics
extracted from finite-valued logics to all other logics whose
semantics can be specified in dyadic format, coupling the
obtained proof system, in each case, with a convenient proof
strategy originated from a non-canonical complexity measure.

Further extensions of such constructive procedures and
strategies should target also genuinely infinite-valued logics,
logics endowed with other kinds of semantics that generalize
the traditional notion of truth-functionality, and first-order
logics. Improvements on efficiency of the associated proof
theories should be expected if the format of the extracted rules
is modified, for instance, in order to have them be produced
as KE-tableaux (cf. [21]), allowing for a finer negotiation with
the notion of analyticity.

Suszko’s Thesis is certainly fruitless if we regard it as a
dogma, but it can be an insightful tool of logical analysis,
as we hope to have illustrated here. Truth-functionality is for
sure a nice and simple rule for our algebraic-oriented minds,
but there is no reason to fear its absence, even from a strictly
algebraic point of view, as results from recent developments
in algebraic logic (cf. [13] and [12]) have shown.
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[6] J.-Y. Béziau, “Recherches sur la logique abstraite: Les logiques nor-
males,” Logika, vol. 18, pp. 105–114, 1998.

[7] ——, “Sequents and bivaluations,” Logique et Analyse (N.S.), vol. 44,
no. 176, pp. 373–394, 2001.

[8] C. Caleiro, W. Carnielli, M. E. Coniglio, and J. Marcos, “Two’s
company: “The humbug of many logical values”,” in Logica Universalis,
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