
An Evolutionary Algorithm for Optimization of
Pseudo Kronecker Expressions

Alexander Finder Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

Email: {final,drechsle}@informatik.uni-bremen.de

Abstract—Using EXOR gates in logic synthesis often results
in smaller circuit realizations. While in AND/OR synthesis the
problem definition is clear, in AND/EXOR synthesis several
classes of optimization problems have been considered. In this
context Pseudo Kronecker Expressions (PSDKROs) are highly
relevant, since they allow very compact representations while
the optimization can be carried out efficiently.

But the size of PSDKROs depends on a chosen order in
which the variables are considered. In this paper an Evolutionary
Algorithm (EA) is presented for determining a good decompo-
sition order for PSDKROs. Experimental results are given to
demonstrate the efficiency of the approach.

Keywords: logic synthesis, AND/EXOR, PSDKRO, evolutionary
algorithm, 2-level minimization, BDD, ordering problem

I. INTRODUCTION

The use of EXOR gates in the synthesis process reduces the
hardware costs in many cases [25], [24]. Additionally EXOR
based circuits often have nice testability properties [18], [20],
[21], [5]. Recently, synthesis approaches for quantum circuits
have been proposed that also make use of AND/EXOR forms
[10], i.e. the expression can be directly mapped to a target
circuit.

In contrast to AND/OR minimization — that in the mean-
time is well understood — in AND/EXOR minimization
several restricted classes are considered, like e.g. Fixed Po-
larity Reed-Muller Expression (FPRM) [19] and Kronecker
Expression (KRO) [6]. (For an excellent overview see [22].)
These subclasses are of interest, since the minimization of
general Exclusive Sum of Product Expressions (ESOPs) turned
out to be computationally very hard, i.e. all programs presented
so far have long run times and often fail to determine the
optimal result (see e.g. [23], [14]).

As one alternative Pseudo Kronecker Expressions (PSD-
KROs) [6], [22] have been proposed, since they are an
interesting compromise: the resulting 2-level forms are of
moderate size, i.e. close to ESOPs, and additionally the
minimization process can be handled within reasonable time
bounds. PSDKROs for example are used as a preprocessing
step for ESOP minimization to determine a good starting point
in [16]. For symmetric functions the optimal PSDKRO can
even be determined in polynomial time, as has been shown

in [8]. In this paper also an efficient implementation based on
Binary Decision Diagrams (BDDs) [4] has been proposed.

But, as has already been observed by an example in [22],
the size of a PSDKRO is only optimal with respect to a chosen
ordering of the variables that is used to decompose the original
function. This ordering has not been further studied so far.

Especially for ordering problems EAs have shown to give
very good results and a large set of operators, like e.g. PMX
[12], is available.

In this paper an EA is presented for determining a good
variable ordering for PSDKROs. While only a single example
was given in [22] to show that the size of PSDKROs varies
dependent on the ordering, here this effect is studied in more
detail. The EA is applied for some larger single and multiple
output benchmark functions and compared by experiments
to the initial order as given in the benchmark. Further ex-
periments are given to show the efficiency of the presented
algorithm.

The paper is structured as follows: In Section II PSDKROs
are defined and in Section III the algorithm for minimizing PS-
DKROs for a fixed variable ordering is given. This algorithm
from [8] has been extended and is later used for determining
the fitness in the EA that is presented in Section IV. In Section
V experimental results are given. The paper is finished with a
resume of the results in Section VI.

II. PSEUDO KRONECKER EXPRESSIONS

In this section briefly the essential definitions of Pseudo
Kronecker Expressions (PSDKROs) are reviewed and an ex-
ample for their creation is given. (For more details see [6],
[22], [8].)

Let f0i (f1i) denote the cofactor of function f with respect
to xi = 0 (xi = 1) and f2i is defined as f2i := f0i ⊕f1i , ⊕ being
the Exclusive OR operation. A Boolean function f : Bn → B
then can be represented by one of the following formulae:

f = xif
0
i ⊕ xif1i Shannon (S) (1)

f = f0i ⊕ xif2i positive Davio (pD) (2)

f = f1i ⊕ xif2i negative Davio (nD) (3)

If to a function f either S, pD or nD is applied two
subfunctions are obtained. To each subfunction again S, pD
or nD can be applied. This is done until constant functions are
reached. If the resulting expression is multiplied out, a 2-level
AND/EXOR form is maintained, called a PSDKRO.

The decompositions are applied with respect to a fixed vari-
able ordering. Notice that the choice of the variable ordering
in which the decompositions are applied and the choice of the
decomposition per subfunction largely influence the size of the
resulting representation [22].

Example 1: Let f(x1, x2, x3) = x1 + x2x3. If first f is
decomposed using S we get:

f0x1
= x2x3 and f1x1

= 1

Then f0x1
is decomposed using nD:

(f0x1
)1x2

= x3 and (f0x1
)2x2

= x3

Finally, pD is applied for both (f0x1
)1x2

and (f0x1
)2x2

:

((f0x1
)1x2

)0x3
= 0 and ((f0x1

)1x2
)2x3

= 1

((f0x1
)2x2

)0x3
= 0 and ((f0x1

)2x2
)2x3

= 1

If we multiply out the expression we obtain:

f = (x3 ⊕ x2x3)x1 ⊕ x1
= x1 ⊕ x1x2x3 ⊕ x1x3

III. EFFICIENT COMPUTATION OF PSDKROS BASED ON

BDDS

For the computation of the optimal PSDKRO for a fixed
variable order the algorithm from [8] based on BDDs is used
for reduced ordered BDDs (ROBDDs). The starting point of
the algorithm is the ROBDD representation of the function
that has to be minimized. In the following the short term BDD
instead of ROBDD is used. Starting from the root of the BDD
the graph is recursively traversed and at each node an EXOR
operation is carried out. An EXOR operation on BDDs can
be performed in polynomial time [4], [2]. Using the fact that
for each of the decomposition formulae above two out of the
three possible successors f0i , f1i and f2i are needed the two
minimizing the resulting PSDKRO are chosen1. For each node
v a minimal number of terms needed for the representation as
a PSDKRO is stored in the variable v.val. Thus, each node
has to be evaluated only once.

In the following two improvements are presented to speed
up the algorithm from [8]. Since this algorithm is the core
function for the evaluation of the fitness value in the following,
this has a significant influence on the overall run time as will
be shown by experiments later (see Section V).

A sketch of the algorithm is given in Fig. 1.

1The idea of the algorithm is the same as used in [22] for PSDKRO
minimization using Ternary Decision Diagrams.

ps dk ro (node v , upperbound){
i f (v == ZERO) re turn 0 ;
i f (v == ONE) re turn 1 ;
i f (v.val d e f i n e d) re turn v . v a l ;
node v0 = c o f a c t o r 0 (v) ;
node v1 = c o f a c t o r 1 (v) ;
i f (v complemented){

v0 = v0 ;
v1 = v1 ;

}
c0 = p sd k r o (v0) ;
c1 = p sd k r o (v1) ;
i f (p rune ())

re turn ∞ ;
upda teUpperbound () ;
node v2 = EXOR(v0 , v1) ;
c2 = p sd k r o (v2) ;
v . v a l = c0 + c1 + c2 − max (c0 , c1 , c2) ;
re turn v . v a l ;

}

Fig. 1. Sketch of the algorithm

A. Complemented Edges

The idea of complemented edges is that a node represents
a Boolean function f and its complement f coincidently [2].
A complemented edge is an ordinary edge within the decision
diagram additionally marked with a complement bit. Since the
computation of the complement of a Boolean function takes
constant time, the influence of complemented edges on the
runtime of the application is minimal.

The use of complemented edges has several advantages [1].
First of all the number of nodes needed to represent a Boolean
function ideally can be reduced by half. This implies that there
are also less computations necessary for obtaining minimal
PSDKROs for subfunctions within the decision diagram.

Each node in the BDD either has two children (low and
high) or is a leaf with a constant value. Thereby the low

child can be complemented. The principal of reducing BDDs
by complemented edges is shown in Fig. 2.

If the PSDKRO for the subtree representing fhigh(v)
(flow(v)) has been computed a further computation for the
subtree of flow(v) (fhigh(v)) is not necessary. Moreover, the
result of fhigh(v)⊕ flow(v) can be directly derived in constant
time in case fhigh(v) = f low(v) in using complemented edges,
see Fig. 3.

B. Upper Bound

In addition to the root node of a BDD the algorithm
described above computes an upper bound which at the
beginning is set to ∞. For each node the algorithm first

Fig. 2. Principal of reduction by complemented edges.

Fig. 3. Fast deriving of f2 with complemented edges.

computes the minimum PSDKROs for the successors f0i and
f1i recursively. If the respective costs c0 and c1 exceed the
upper bound, the computation is stopped and ∞ is returned
because none of the three possible decompositions would
create a PSDKRO smaller than the upper bound. Otherwise
the upper bound is updated with max(c0, c1) if both the cost
of v0 and v1 are less than the current upper bound. Furthermore
the size of the decision diagram that has to be traversed can
be reduced by this technique.

IV. EVOLUTIONARY ALGORITHM

In this section a short introduction is given to Evolutionary
Algorithms (EAs) and the evolutionary operators that are
applied to the problem given above are described.

A. Representation

For the implementation integer permutations of length n

are used to encode the problem, where n denotes the number
of input variables of the considered Boolean function. Each
integer string represents a variable ordering. A binary encoding
of the problem would require special repair algorithms to avoid
the creation of invalid solutions2. (The occurring problem
is similar to the problem of tour encoding in the traveling
salesman problem. Similar observations concerning encoding

2In contrast “classical” EAs use a binary encoding of the problem.

are reported in [27]. The same holds true for algorithms
for BDD ordering [9].) As can be seen each integer vector
represents a valid ordering. A population is a set of these
elements.

B. Objective Function and Selection

As an objective function that measures the fitness of each
element the number of terms in the PSDKRO is used that is
computed by the algorithm presented in the previous section.

The parent selection is performed by a deterministic tour-
nament selection. Hereby a tournament between q uniformly
chosen individuals is carried out and the best individual is
chosen as a parent used for recombination or mutation.

For environment selection (µ+λ)-selection [28] is applied,
where the best individuals of the current population and the
offspring are chosen equally. This strategy guarantees that the
best individual never gets lost and a fast convergency of the
EA is obtained. Further parent and environment selection pro-
cedures have been tested, like (µ,λ) and stochastic tournament
selection, but EA experiments have shown that the methods
used are usually advantageous.

C. Initialization

At the beginning of each EA-run an initial population is
randomly generated as follows: The first individual represents
an integer permutation containing a variable order as it is read
from the benchmark file. A copy of this individual is made and
for each variable on position i = 1 to n−1 an exchange with a
randomly chosen variable on position r (r ∈ [i, n]) is applied
if i 6= r. The method guarantees that only valid solutions are
generated and additionally it performs very fast.

After that to each element of the initial population a fitness
is assigned, i.e. the number of terms of the corresponding
PSDKRO.

The following example shows how the generation of random
permutations work:

Example 2: An element of length 6 is considered.
Initial individual: 1 2 3 4 5 6

Next, a copy of the initial individual is made and for i = 1 to
5 r takes the random numbers (3, 4, 5, 4, 6). The variables on
position i and ri are exchanged, i.e. variable 1 is exchanged
with 3, 2 with 4, again 1 with 5 and so on. The resulting
permutation determines a newly created element of the initial
population.
Step 1, r = 3: 1 2 3 4 5 6
Step 2, r = 4: 3 2 1 4 5 6
Step 3, r = 5: 3 4 1 2 5 6
Step 4, r = 4: 3 4 5 2 1 6
Step 5, r = 6: 3 4 5 2 1 6

New individual: 3 4 5 2 6 1

D. Evolutionary Operators

In this subsection the evolutionary operators are introduced
that are used in the EA. Two crossover operators for the
recombination of two parent elements and three mutation
operators that change some positions in a single element at
random are integrated into the application. These strategies
are explained in the following.

1) Crossover: In the presented application Partially
Matched Crossover (PMX) [12] and Edge Recombination
Crossover (ERX) [27] are used equally. Both recombination
methods create two children from two parents. The parents are
selected by the tournament selection described above.

The PMX operator chooses two cut positions at random.
Notice that a simple exchange of the parts between the cut po-
sitions (as often applied to binary coded EA-problems) is not
possible, since this would usually produce invalid solutions,
i.e. the resulting element needs not to be a permutation any
longer. The operator works as follows to validate the children
after the exchange:

PMX:
Construct the children by choosing the part between
the cut positions from one parent and preserve the
position and order of as many variables as possible
from the second parent.

Example 3: For the PMX operator an example is given to
explain how the validation process works. Let p1 and p2 be the
parents and let i1 = 3 and i2 = 5 be the two cut positions. The
temporarily constructed child c′1 (c′2) is created by copying the
part between the cut positions – 4 5 (2 6) – from p1 (p2). Then
the characters 5 3 1 and 0 4 (2 0 3 and 1 6) are taken from
p2 (p1). As can easily be seen c′1 and c′2 are invalid solutions.
They are validated by exchanging the characters 2 and 4 and
also 5 and 6. The resulting children are c1 and c2.

PMX: p1 : 2 0 3 4 5 1 6
p2 : 5 3 1 2 6 0 4

c′1 : 5 3 1 4 5 0 4
c′2 : 2 0 3 2 6 1 6

c1 : 6 3 1 4 5 0 2
c2 : 4 0 3 2 6 1 5

For more details about PMX see [17], [11], [15].

The ERX operator on the contrary does not consider the
ordering of the variables but the connections among them.
The operator is based on an adjacency matrix, which lists the
neighbors of each variable in both parents. Beginning with a
randomly chosen variable of a parent element next a variable is
chosen at random which has the smallest neighbor set. Thereby
already chosen variables are removed from all the neighbor

sets. This procedure is repeated until all variables are appended
to the newly created individual.

Also further crossover operators have been tested, like
merging [17], ordered [15] and cycle crossover [7], but they
did not improve the results obtained.

2) Mutation: Three different mutation operators are used
as follows:

Mutation (SWAP):
Select two positions of a parent at random and
perform the exchange of the values of these two
positions.

Mutation with neighbor (NEIGH):
Choose one position i randomly. Then perform
SWAP at positions i and i+ 1.

Mutation with inversion (INV):
Select two positions i < j at random. The difference
j − i should be at the maximum not larger as the
third size of an individual. Invert all variables within
i and j.

Example 4: For the operators SWAP and INV examples are
given to show the strategy of the mutation operators. Let 2 and
5 in both cases be the chosen positions. The child results from
exchanging the corresponding values for SWAP respectively
inverting the variables between positions 2 and 5 for INV.

SWAP: p : 6 3 1 2 5 0 4 9 7 8
c : 6 5 1 2 3 0 4 9 7 8

INV: p : 6 3 1 2 5 0 4 9 7 8
c : 6 5 2 1 3 0 4 9 7 8

The mutation operators are a generalization of exchanging
neighboring variables that is the basic operation for dynamic
variable ordering.

E. Algorithm

Using the operators introduced above the EA works as
follows:
• Initially a random population of finite integer strings is

generated. Each of these strings corresponds to a variable
ordering of the BDD.

• An offspring of the same size of the parent population
is created in each iteration. This is done by applying
the genetic operators described above. Then the newly
created elements are evaluated.

• According to the fitness the best individuals of both
populations are chosen to build the next generation.
After each iteration the size of the population is constant
(steady-state reproduction).

• The optimization process stops in three cases. The ter-
mination criterions are chosen based on experiments in
a way that the EA provides a compromise between
acceptable runtime and high quality results:

e v o l u t i o n a r y a l g o r i t h m (benchmark){
g e n e r a t e r a n d o m p o p u l a t i o n () ;
c a l c u l a t e f i t n e s s () ;
{

s e l e c t p a r e n t s () ;
r e combine and muta t e () ;
c a l c u l a t e f i t n e s s () ;
µ+ λ s e l e c t i o n () ;

}whi le (s t o p p i n g c r i t e r i o n u n f i l l e d)
re turn b e s t i n d i v i d u a l () ;

}

Fig. 4. Sketch of the basic evolutionary algorithm

1) No improvement is obtained for

20 · ln(number of variables)

iterations.
2) A maximum number of 500 iterations has been

carried out. The number of generations also can be
parameterized by the user.

3) The best individual has reached a given lower
bound.

A sketch of the evolutionary algorithm is given in Figure 4.

F. Parameter Settings

The size of the population is chosen two times larger than
the number of variables of the considered Boolean function,
if the number of input variables is smaller or equal to 25. For
larger functions the population size is set constant to 50, since
otherwise the EA is too time consuming.

PMX and ERX are applied with a probability of 35% while
the different mutation operators are used with a probability of
65% to create the offspring of a population. The probability
values have been determined by experiments and are a good
compromise between runtime and the quality of results. Mu-
tation also could be carried out on newly elements that are
created from PMX or ERX. However, the probability of all
types of operators and the size of the population also can be
parameterized by the user.

V. EXPERIMENTAL RESULTS

In this section experimental results are presented based on
several benchmark functions out of the LGSynth91 benchmark
set [29]. The techniques described above have been imple-
mented in C/C++ using the BDD package CUDD [26]. The
evolutionary operators and algorithm have been embedded into
the EO library [13]. All runtime measures are given in CPU
seconds on an Intel Core 2 Duo E6700 workstation with 4096
MByte of main memory.

In Table I the results of a maximizing and a minimizing EA
are compared to show the influence of the variable ordering

TABLE I
MINIMIZING AND MAXIMIZING EA.

Benchmark EAmin EAmax

name in out
co14 14 1 14 14
sym9 9 1 90 90
sym10 10 1 134 134
5xp1 7 10 48 60
alu4 14 8 498 917
clip 9 5 100 146
duke2 22 29 194 265
misex3 14 14 851 1444
sao2 10 4 50 64
vg2 25 8 184 326

on the size of the corresponding PSDKROs. The results
for the maximizing algorithm are obtained by changing the
minimizing fitness function to a maximizing one.

As can be seen for the first three benchmarks in the
table both algorithms carry out identical results. The reason
for this is that the concerned benchmarks are representing
totally symmetric Boolean functions. This implies that the
variable ordering has no effect on the size of the corresponding
PSDKROs [8].

Concerning the remaining asymmetrically functions of the
table it is obvious that the results delivered from maximizing
EA (EAmax) in almost all cases have twice the size as the
results obtained from minimizing EA (EAmin). Especially for
the benchmarks alu4 and misex3 the difference between
the minimal and the maximal EA solution is remarkable.

In Table II the results delivered from the EA are compared
with PSDKROs created by using the initial order (IO) as given
in the benchmark. This is done to demonstrate the advance of
the EA towards the standalone algorithm like it is used in [8],
[16], [24].

Further the AND/EXOR representations are compared with
Sum of Product Expressions (SOPs) generated by ESPRESSO
[3]. It can be seen that the EA often generates much better
PSDKROs with respect of their size than the conventional al-
gorithm. It is also striking that the AND/EXOR representations
in many cases contain fewer cubes than the corresponding
AND/OR expressions. Particularly for t481 and add6 there
exists much smaller PSDKROs than SOPs.

Next, in Table III the influence of the use of the upper
bound (see Section III-B) is investigated. Therefore the fitness
computation in the EA first has been performed using an upper
bound (pruning) and after that without. The number of cuts
in the table depicts the overall number of aborts during the
evaluation process of an EA run, i.e. the stopping of recursive
traversals through the BDD during fitness computation. It
can be seen clearly that for larger benchmark instances often
several 100000 cuts are carried out within a single run of the
EA. The average number of cuts diverges in dependence on
the output function and the variable ordering. It has also been

TABLE II
NUMBER OF TERMS.

Benchmark SOP IO EA
name in out cubes time cubes time
co14 14 1 14 14 0.01 14 0.03
rd84 8 4 255 90 0.01 90 0.05
sym9 9 1 84 90 0.01 90 0.02
sym10 10 1 210 134 0.01 134 0.04
5xp1 7 10 65 48 0.01 48 0.17
add6 12 7 355 132 0.02 132 0.38
alu4 14 8 575 677 0.06 498 5.26
clip 9 5 120 113 0.01 100 0.10
duke2 22 29 86 198 0.11 194 7.53
misex3 14 14 690 1056 0.49 851 8.63
sao2 10 4 58 54 0.01 50 0.09
t481 16 1 481 13 0.01 13 0.01
vg2 25 8 110 324 0.09 184 4.80

TABLE III
COMPARISON OF EA WITH AND WITHOUT PRUNING.

Benchmarks Pruning EA EA
Name #cuts time time
add6 > 1200 0.38 0.54
alu4 > 300000 5.26 5.57
duke2 > 380000 7.53 7.89
misex3 > 520000 8.63 9.65
sym10 > 800 0.04 0.04
vg2 > 340000 4.8 5.29

determined that for some functions only few cuts are carried
out while for others hundreds of cuts per variable ordering
are performed. In almost all cases the runtime of the pruning
EA is better than the runtime of the EA without pruning and
many cuts are performed. Thus the advance of the algorithm
by using an upper bound is distinctive.

VI. CONCLUSIONS

In this paper, an evolutionary algorithm for the optimization
of PSDKROs has been presented. A BDD based implementa-
tion was given. The results of the EA have been compared
to the conventional algorithm which does not consider an
optimization of the variable ordering. Further the speed-up
techniques introduced in the section for the computation of
PSDKROs based on BDDs have been evaluated.

The experimental results achieved show that the proposed
EA is a practical approach to create small PSDKROs which
further may be used for computing a good starting cover for
the minimization of general ESOPs. The presented algorithm
is also applicable for functions with more than 20 variables.

REFERENCES

[1] S.B. Akers. Binary decision diagrams. IEEE Trans. on Comp., c-
27(6):509–516, June 1978.

[2] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of
a BDD package. In Design Automation Conf., pages 40–45, 1990.

[3] R.K. Brayton, G.D. Hachtel, C. McMullen, and A.L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[4] R.E. Bryant. Graph - based algorithms for Boolean function manipula-
tion. IEEE Trans. on Comp., 35(8):677–691, 1986.

[5] M. Chatterjee, D. K. Pradhan, and W. Kunz. LOT: logic optimization
with testability - new transformations using recursive learning. In Int’l
Conf. on CAD, pages 318–325, 1995.

[6] M. Davio, J.P. Deschamps, and A. Thayse. Discrete and Switching
Functions. McGraw-Hill, 1978.

[7] L. Davis. Handbook of Genetic Algorithms. van Nostrand Reinhold,
New York, 1991.

[8] R. Drechsler. Pseudo kronecker expressions for symmetric functions. In
VLSI Design, 1997. Proceedings., Tenth International Conference on,
pages 511–513, Jan 1997.

[9] R. Ebendt, G. Fey, and R. Drechsler. Advanced BDD Optimization.
Springer, 2005.

[10] K. Fazel, M.A. Thornton, and J.E. Rice. Esop-based toffoli gate cascade
generation. In Communications, Computers and Signal Processing,
2007. PacRim 2007. IEEE Pacific Rim Conference on, pages 206–209,
Aug. 2007.

[11] D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addision-Wesley Publisher Company, Inc., 1989.

[12] D.E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman
problem. In Proceedings of an International Conference on Genetic
Algorithms and their Applications, pages 154–159, 1985.

[13] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving
Objects: a general purpose evolutionary computation library. In 5th
International Conference on Artificial Evolution, 2001.

[14] T. Kozlowski, E. L. Dagless, and J. M. Saul. An enhanced algorithm
for the minimization of exclusive-or sum-of-products for incompletely
specified functions. In Int’l Conf. on Comp. Design, pages 244–249,
1995.

[15] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, 1994.

[16] Alan Mishchenko and Marek Perkowski. Fast Heuristic Minimization
of Exclusive-Sums-of-Products. In Proc. Reed-Muller Workshop ’01,
pages 242–250, 2001.

[17] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation
crossover operators on the traveling salesman problem. In International
Conference on Genetic Algorithms, pages 224–230, 1987.

[18] S.M. Reddy. Easily Testable Realizations for Logic Functions. IEEE
Trans. on Comp., c-21(11):1183–1188, Nov. 1972.

[19] I.S. Reed. A class of multiple-error-correcting codes and their decoding
scheme. IRE Trans. on Inf. Theory, 3:38–49, 1954.

[20] K.K. Saluja and S.M. Reddy. Fault Detecting Test Sets for Reed-Muller
Canonic Networks. IEEE Trans. on Comp., c-24:995–998, 1975.

[21] A. Sarabi and M.A. Perkowski. Design for testability properties of
AND/XOR networks. IFIP WG 10.5 Workshop on Applications of the
Reed-Muller Expansion in Circuit Design, pages 147–153, 1993.

[22] T. Sasao. AND-EXOR expressions and their optimization. In T. Sasao,
editor, Logic Synthesis and Optimization, pages 287–312. Kluwer Aca-
demic Publisher, 1993.

[23] T. Sasao. EXMIN2: A Simplification Algorithm for Exclusive-OR-Sum-
of Products Expressions for Multiple-Valued-Input Two-Valued-Output
Functions. IEEE Trans. on CAD, 12(5):621–632, May 1993.

[24] T. Sasao. Logic Synthesis and Optimization. Kluwer Academic
Publisher, 1993.

[25] J. Saul, B. Eschermann, and J. Frössl. Two-level logic circuits using
EXOR sums of products. IEE Proceedings, 140:348–356, 1993.

[26] F. Somenzi. Efficient manipulation of decision diagrams. STTT,
3(2):171–181, 2001.

[27] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems
and traveling salesman: The genetic edge recombination operator. In
International Conference on Genetic Algorithms, pages 133–140, 1989.

[28] Darrell Whitley. The genitor algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 116–
121. Morgan Kaufmann, 1989.

[29] S. Yang. Logic synthesis and optimization benchmarks user guide.
Technical Report 1/95, Microelectronic Center of North Carolina, 1991.

