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Abstract—The aim of our paper is to prove the Triple
Representation Theorem, which was established by Jenča
in the setting of complete lattice effect algebras, for a
special class of homogeneous effect algebras, namely TRT-
effect algebras. This class includes complete lattice effect
algebras, sharply dominating Archimedean atomic lattice
effect algebras and homogeneous orthocomplete effect
algebras.
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INTRODUCTION

Two equivalent quantum structures, D-posets and
effect algebras were introduced in the nineties of the
twentieth century. These were considered as ”un-
sharp” generalizations of the structures which arise
in quantum mechanics, in particular, of orthomod-
ular lattices and MV-algebras. Effect algebras aim
to describe ”unsharp” event structures in quantum
mechanics in the language of algebra.

Effect algebras are fundamental in investigations
of fuzzy probability theory too. In the fuzzy prob-
ability frame, the elements of an effect algebra
represent fuzzy events which are used to construct
fuzzy random variables.

The aim of our paper is to prove the Triple
Representation Theorem, which was established by
Jenča in [9] in the setting of complete lattice effect
algebras, for a special class of homogeneous effect
algebras, namely TRT-effect algebras. This class

includes complete lattice effect algebras, sharply
dominating Archimedean atomic lattice effect al-
gebras (see [12]) and homogeneous orthocomplete
effect algebras (see [13]).

I. PRELIMINARIES AND BASIC FACTS

Effect algebras were introduced by Foulis and
Bennett (see [3]) for modelling unsharp measure-
ments in a Hilbert space. In this case the setE(H)
of effects is the set of all self-adjoint operatorsA
on a Hilbert spaceH between the null operator0
and the identity operator1 and endowed with the
partial operation+ defined iff A + B is in E(H),
where+ is the usual operator sum.

In general form, an effect algebra is in fact a
partial algebra with one partial binary operation
and two unary operations satisfying the following
axioms due to Foulis and Bennett.

Definition I.1. [3] A partial algebra(E;⊕, 0, 1)
is called aneffect algebraif 0, 1 are two distinct
elements, called thezeroand theunit element, and
⊕ is a partially defined binary operation called the
orthosummationon E which satisfies the following
conditions for anyx, y, z ∈ E:

(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,
(Eii) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) if one side is

defined,
(Eiii) for every x ∈ E there exists a uniquey ∈

E such thatx⊕ y = 1 (we putx′ = y),
(Eiv) if 1⊕ x is defined thenx = 0.
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(E;⊕, 0, 1) is called anorthoalgebra if x ⊕ x
exists implies thatx = 0 (see [4]).

We often denote the effect algebra(E;⊕, 0, 1)
briefly by E. On every effect algebraE a partial
order 6 and a partial binary operation⊖ can be
introduced as follows:

x 6 y and y ⊖ x = z iff x⊕ z

is defined andx⊕ z = y .

If E with the defined partial order is a lattice (a
complete lattice) then(E;⊕, 0, 1) is called alattice
effect algebra(a complete lattice effect algebra).

Mappings from one effect algebra to another one
that preserve units and orthosums are calledmor-
phisms of effect algebras, and bijective morphisms
of effect algebras having inverses that are mor-
phisms of effect algebras are calledisomorphisms
of effect algebras.

Definition I.2. Let E be an effect algebra. Then
Q ⊆ E is called asub-effect algebraof E if

(i) 1 ∈ Q

(ii) if out of elementsx, y, z ∈ E with x ⊕ y = z

two are inQ, thenx, y, z ∈ Q.

Note that a sub-effect algebraQ of an effect
algebraE with inherited operation⊕ is an effect
algebra in its own right.

Definition I.3. (1): A generalized effect algebra(E;
⊕, 0) is a setE with element0 ∈ E and partial
binary operation⊕ satisfying, for anyx, y, z ∈ E,
the conditions

(GE1) x⊕ y = y ⊕ x if one side is defined,
(GE2) (x⊕y)⊕z = x⊕(y⊕z) if one side is defined,
(GE3) if x⊕ y = x⊕ z theny = z,
(GE4) if x⊕ y = 0 thenx = y = 0,
(GE5) x⊕ 0 = x for all x ∈ E.

(2) A binary relation6 (being a partial order)
and a partial binary operation⊖ onE can
be defined by:

x 6 y and y ⊖ x = z iff x⊕ z

is defined andx⊕ z = y .

(3) A nonempty subsetQ ⊆ E is called asub-
generalized effect algebraof E if out of
elementsx, y, z ∈ E with x ⊕ y = z at
least two are inQ thenx, y, z ∈ Q.

Every sub-generalized effect algebra ofE is a
generalized effect algebra in its own right. Every
effect algebra is a generalized effect algebra.

For an elementx of a generalized effect algebra
E we write ord(x) = ∞ if nx = x ⊕ x ⊕ · · · ⊕
x (n-times) exists for every positive integern and
we write ord(x) = nx if nx is the greatest positive
integer such thatnxx exists in E. A generalized
effect algebraE is Archimedeanif ord(x) < ∞ for
all x ∈ E.

A minimal nonzero element of a generalized
effect algebraE is called anatom andE is called
atomic if below every nonzero element ofE there
is an atom.

Definition I.4. We say that a finite systemF =
(xk)

n

k=1 of not necessarily different elements of a
generalized effect algebraE is orthogonal if x1 ⊕

x2 ⊕ · · · ⊕ xn (written
n⊕

k=1

xk or
⊕

F ) exists inE.

Here we definex1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕ x2 ⊕

· · · ⊕ xn−1) ⊕ xn supposing that
n−1⊕
k=1

xk is defined

and (
n−1⊕
k=1

xk) ⊕ xn exists. We also define
⊕

∅ = 0.

An arbitrary systemG = (xκ)κ∈H of not necessarily
different elements ofE is calledorthogonalif

⊕
K

exists for every finiteK ⊆ G. We say that for an
orthogonal systemG = (xκ)κ∈H the element

⊕
G

exists iff
∨
{
⊕

K | K ⊆ G is finite} exists inE
and then we put

⊕
G =

∨
{
⊕

K | K ⊆ G is
finite}. We say that

⊕
G is theorthogonal sumof

G andG is orthosummable. (Here we writeG1 ⊆ G

iff there is H1 ⊆ H such thatG1 = (xκ)κ∈H1
). We

denoteG⊕ := {
⊕

K | K ⊆ G is finite}. G is called
boundedif there is an upper bound ofG⊕.

A generalized effect algebraE is called ortho-
complete if every bounded orthogonal system is
orthosummable.

A generalized effect algebraE has themaximality
propertyif {u, v} has a maximal lower boundw for
everyu, v ∈ E.

Definition I.5. An elementx of an effect algebra
E is called

(i) sharp if x ∧ x′ = 0. The set S(E) = {x ∈
E | x ∧ x′ = 0} is called theset of all sharp
elementsof E (see [6]).



(ii) principal, if y⊕ z ≤ x for everyy, z ∈ E such
that y, z ≤ x andy ⊕ z exists.

(iii) central, if x andx′ are principal and, for every
y ∈ E there arey1, y2 ∈ E such thaty1 ≤
x, y2 ≤ x′, andy = y1⊕y2 (see [5]). Thecenter
C(E) of E is the set of all central elements of
E.

If x ∈ E is a principal element, thenx is sharp
and the interval[0, x] is an effect algebra with the
greatest elementx and the partial operation given
by restriction of⊕ to [0, x].

Statement I.6. [5, Theorem 5.4] The center C(E)
of an effect algebraE is a sub-effect algebra of
E and forms a Boolean algebra. For every central
elementx of E, y = (y∧x)⊕(y∧x′) for all y ∈ E.
If x, y ∈ C(E) are orthogonal, we havex∨y = x⊕y

andx ∧ y = 0.

Statement I.7. [10, Lemma 3.1.] LetE be an effect
algebra,x, y ∈ E and c, d ∈ C(E). Then:

(i) If x⊕y exists thenc∧(x⊕y) = (c∧x)⊕(c∧y).
(ii) If c⊕d exists thenx∧(c⊕d) = (x∧c)⊕(x∧d).

Definition I.8. ( [8], [9] ) A subsetM of a general-
ized effect algebraE is calledinternally compatible
(compatible) if for every finite subsetMF of M

there is a finite orthogonal family(x1, . . . , xn) of
elements fromM (E) such that for everym ∈ MF

there is a setAF ⊆ {1, . . . , n} with m =
⊕

i∈AF
xi.

If {x, y} is a compatible set, we writex ↔ y (see
[9], [11]).

II. HOMOGENEOUS EFFECT ALGEBRAS

Definition II.1. An effect algebraE satisfies the
Riesz decomposition property(or RDP) if, for all
u, v1, v2 ∈ E such thatu ≤ v1 ⊕ v2, there areu1, u2

such thatu1 ≤ v1, u2 ≤ v2 andu = u1 ⊕ u2.
A lattice effect algebra in which RDP holds is called
an MV-effect algebra.
An effect algebraE is calledhomogeneousif, for all
u, v1, v2 ∈ E such thatu ≤ v1 ⊕ v2 ≤ u′, there are
u1, u2 such thatu1 ≤ v1, u2 ≤ v2 andu = u1 ⊕ u2

(see [8]).

Statement II.2. [9, Proposition 2]

(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.

(iii) An effect algebraE has the Riesz decomposi-
tion property if and only ifE is homogeneous
and compatible.
Let E be a homogeneous effect algebra.

(iv) A subset B of E is a maximal sub-effect
algebra ofE with the Riesz decomposition
property (suchB is called ablockof E) if and
only if B is a maximal internally compatible
subset ofE containing1.

(v) Every finite compatible subset ofE is a subset
of some block. This implies that every homo-
geneous effect algebra is a union of its blocks.

(vi) S(E) is a sub-effect algebra ofE.
(vii) For every blockB, C(B) = S(E) ∩ B.

(viii) Let x ∈ B, whereB is a block ofE. Then
{y ∈ E | y ≤ x andy ≤ x′} ⊆ B.

An important class of effect algebras was in-
troduced by Gudder in [6] and [7]. Fundamental
example is the standard Hilbert spaces effect algebra
E(H).

For an elementx of an effect algebraE we denote

x̃ =
∨

E
{s ∈ S(E) | s ≤ x}

if it exists and
belongs to S(E),

x̂ =
∧

E
{s ∈ S(E) | s ≥ x}

if it exists and
belongs to S(E).

Definition II.3. ( [6], [7] ) An effect algebra
(E;⊕, 0, 1) is calledsharply dominatingif for every
x ∈ E there existŝx, the smallest sharp element
such thatx ≤ x̂. That isx̂ ∈ S(E) and if y ∈ S(E)
satisfiesx ≤ y then x̂ ≤ y.

Recall that evidently an effect algebraE is
sharply dominating iff for everyx ∈ E there exists
x̃ ∈ S(E) such that̃x ≤ x and if u ∈ S(E) satisfies
u ≤ x thenu ≤ x̃.

In what follows set (see [9], [14])

M(E) = {x ∈ E | if v ∈ S(E) satisfies
v ≤ x thenv = 0}.

An elementx ∈ M(E) is calledmeager. More-
over, x ∈ M(E) iff x̃ = 0. Recall thatx ∈ M(E),
y ∈ E, y ≤ x impliesy ∈ M(E) andx⊖y ∈ M(E).
Moreover, we have a maph : S(E) → 2M(E) that is
given byh(s) = {x ∈ M(E) | x ≤ s}.

Recall that M(E) equipped with a partial opera-
tion ⊕M(E) which is defined, for allx, y ∈ M(E),
by x⊕M(E) y exists if and only ifx⊕E y exists and



x⊕E y ∈ M(E) in which casex⊕M(E) y = x⊕E y
is a generalized effect algebra.

Statement II.4. [12, Lemma 2.4] LetE be an effect
algebra in which S(E) is a sub-effect algebra ofE
and letx ∈ M(E) such that̂x exists. Then

(i) x̂⊖ x ∈ M(E).
(ii) If y ∈ M(E) such thatx ⊕ y exists and
x⊕ y = z ∈ S(E) then x̂ = z.

Statement II.5. [12, Lemma 2.5] LetE be an
effect algebra in which S(E) is a sub-effect algebra
of E and let x ∈ E such that x̃ exists. Then
x⊖ x̃ ∈ M(E) andx = x̃ ⊕ (x⊖ x̃) is the unique
decompositionx = xS ⊕xM , wherexS ∈ S(E) and
xM ∈ M(E). Moreover,xS ∧ xM = 0 and if E is a
lattice effect algebra thenx = xS ∨ xM .

As proved in [1], S(E) is always a sub-effect
algebra in a sharply dominating effect algebraE.

Statement II.6. [9, Corollary 14], [13, Lemma
4.2] LetE be an orthocomplete homogeneous effect
algebra.
(i) E is sharply dominating and, for every block

B of E, x ∈ B implies that[x̃, x] ⊆ B.
(ii) Let x ∈ M(E). Then y = x̂ ⊖ x is the only

element such that
a) y ∈ M(E) such that̂y = x̂.
b) x ⊕M(E) (y ⊖M(E) (x ∧ y)) exists and
x⊕M(E) (y ⊖M(E) (x ∧ y)) ∈ h(x̂).
c) For all z ∈ h(x̂), z⊕M(E) x ∈ h(x̂) if and

only if z ≤ y andy ⊖M(E) z = x̂.

III. T RIPLE REPRESENTATIONTHEOREM FOR

TRT-EFFECT ALGEBRAS

In what followsE will be always a homogeneous
sharply dominating effect algebra such that, for
every blockB of E, x ∈ B implies that[x̃, x] ⊆ B

and, for allx ∈ M(E) the elementy = x̂⊖ x is the
only element such that

(i) y ∈ M(E) such that̂y = x̂.
(ii) x⊕M(E) (y⊖M(E) (x∧y)) exists andx⊕M(E)

(y ⊖M(E) (x ∧ y)) ∈ h(x̂).
(iii) For all z ∈ h(x̂), z ⊕M(E) x ∈ h(x̂) if and

only if z ≤ y andy ⊖M(E) z = x̂.
We will call such an effect algebra aTRT-effect
algebra. In this case S(E) is a sub-effect algebra
of E.

SinceE is sharply dominating we have that, for
all x ∈ M(E),

x̂=
∧

E
{s ∈ S(E) | x ∈ h(s)}

=
∧

S(E){s ∈ S(E) | x ∈ h(s)}.

This gives us

(M1) The mapping ̂ : M(E) → S(E).

Note that, if x ∈ M(E), s ∈ S(E) and B is a
block of E such thatx, s ∈ B then from Statement
I.6 we have thatx ∧B s ≤ x exists. Assume that
g ∈ E, g ≤ s andg ≤ x. Theng ∈ B and therefore
g ≤ x ∧B s. It follows that x ∧E s = x ∧B s. We
always have the following partial map.

(M2) For everys ∈ S(E), a partial mappingπs :
M(E) → h(s) is given byπs(x) = x ∧E s
wheneverπs(x) is defined.

Therefore, ifx ↔ s thenx∧E s exists andπs(x)
is defined.

We also have the following mapR which is
defined entirely in terms of the triple.

(M3) The mappingR : M(E) → M(E) given by
R(x) = x̂⊖E x.

Let x, y ∈ M(E). Let us put S(x, y) =
{z ∈ S(E) | z = (z ∧ x) ⊕E (z ∧ y)} =
{z ∈ S(E) | πz(x) and πz(x) are defined, z =

πz(x) andR(πz(x)) = πz(y)}.

(M4) The partial mappingS : M(E) × M(E) →
S(E) given byS(x, y) is defined if and only
if the setS(x, y) = {z ∈ S(E) | z∧x andz∧
y exist, z = (z ∧ x) ⊕E (z ∧ y)} has a top
elementz0 ∈ S(x, y) in which caseS(x, y) =
z0.

WhetherS(x, y) is defined or not we are able to
decide in terms of the triple. Since the eventual top
elementz0 of S(x, y) is in S(E) our definition of
S(x, y) is correct.

Triple Representation Theorem The triple
((S(E),⊕S(E)), (M(E),⊕M(E)), h) characterizesE
up to isomorphism within the class of all TRT-effect
algebras.

We have to construct an isomorphic copy of
the original effect algebraE from the triple
(S(E),M(E), h).



Lemma III.1. LetE be a TRT-effect algebra,x, y ∈
M(E). Thenx⊕E y exists inE iff S(x, y) is defined
in terms of the triple(S(E),M(E), h) and

(
x⊖M(E)

(S(x, y) ∧ x)
)
⊕M(E)

(
y ⊖M(E) (S(x, y) ∧ y)

)
exists

in M(E) such that
(
x ⊖M(E) (S(x, y) ∧ x)

)
⊕M(E)(

y⊖M(E) (S(x, y)∧ y)
)
∈ h(S(x, y)′). Moreover, in

that case

x⊕E y = S(x, y)⊕E

((
x⊖M(E) (S(x, y) ∧ x)

)

⊕M(E)

(
y ⊖M(E) (S(x, y) ∧ y)

))
.

Proof: Assume first thatx⊕E y exists inE and
let us putz = x⊕Ey. SinceE is sharply dominating
we have thatz = zS ⊕E zM such thatzS ∈ S(E)
and zM ∈ M(E). Sincex ↔ y by Statement II.2,
(e) there is a blockB of E such thatx, y, z ∈ B.
Moreover,E being a TRT-effect algebra yields that
[zS, z] ⊆ B and we obtain thatzS, zM ∈ B.
ThereforezS ∈ C(B) and by Statement I.7, (i) we
have thatzS = zS ∧ (x ⊕E y) = zS ∧ (x ⊕B y) =
(zS∧Bx)⊕B (zS∧B y) = (zS∧x)⊕E (zS∧y). Hence
zS ∈ S(x, y). Now, assume thatu ∈ S(x, y). Then
u = (u ∧ x)⊕E (u ∧ y) ≤ x⊕E y. Sinceu ∈ S(E)
we have thatu ≤ zS , i.e., zS is the top element of
S(x, y). Moreover, we have

zS ⊕E zM = x⊕E y

=

((
(S(x, y) ∧ x)

)
⊕E

(
x⊖E (S(x, y) ∧ x)

))

⊕E

((
(S(x, y) ∧ y)

)
⊕E

(
y ⊖E (S(x, y) ∧ y)

))

= S(x, y)⊕E

((
x⊖M(E) (S(x, y) ∧ x)

)

⊕E

(
y ⊖M(E) (S(x, y) ∧ y)

))
.

It follows that zM =
(
x ⊖M(E) (S(x, y) ∧ x)

)
⊕E(

y ⊖M(E) (S(x, y) ∧ y)
)

and evidentlyzM ∈ h(z′
S
).

Conversely, let us assume thatS(x, y) is defined
in terms of (S(E),M(E), h),

(
x ⊖M(E) (S(x, y) ∧

x)
)
⊕M(E)

(
y ⊖M(E) (S(x, y) ∧ y)

)
exists in M(E)

and
(
x⊖M(E)(S(x, y)∧x)

)
⊕M(E)

(
y⊖M(E)(S(x, y)∧

y)
)

∈ h(S(x, y)′). Then
(
x ⊖M(E) (S(x, y) ∧

x)
)
⊕M(E)

(
y ⊖M(E) (S(x, y) ∧ y)

)
≤ S(x, y)′, i.e.,

z = S(x, y)⊕E

((
x⊖M(E) (S(x, y) ∧ x)

)

⊕M(E)

(
y ⊖M(E) (S(x, y) ∧ y)

))

=

((
S(x, y) ∧ x

)
⊕E

(
S(x, y) ∧ y

))
⊕E

((
x⊖E (S(x, y) ∧ x)

)
⊕E

(
y ⊖E (S(x, y) ∧ y)

))
= x⊕E y

is defined.

Theorem III.2. Let E be a TRT-effect algebra. Let
T(E) be a subset ofS(E)× M(E) given by

T(E) = {(zS, zM) ∈ S(E)× M(E) | zM ∈ h(z′S)}.

Equip T(E) with a partial binary operation⊕T(E)

with (xS, xM )⊕T(E) (yS, yM) is defined if and only
if

(i) S(xM , yM) is defined,
(ii) zS = xS ⊕S(E) yS ⊕S(E) S(xM , yM) is defined,

(iii) zM =

(
xM ⊖M(E)

(
S(xM , yM) ∧ xM

))
⊕M(E)

(
yM ⊖M(E)

(
S(xM , yM) ∧ yM

))
is defined,

(iv) zM ∈ h(z′
S
).

In this case(zS, zM) = (xS, xM ) ⊕T(E) (yS, yM).
Let 0T(E) = (0E, 0E) and 1T(E) = (1E , 0E). Then
T(E) = (T(E),⊕T(E), 0T(E), 1T(E)) is an effect
algebra and the mappingϕ : E → T(E) given
by ϕ(x) = (x̃, x ⊖E x̃) is an isomorphism of effect
algebras.

Proof: Evidently,ϕ is correctly defined since,
for any x ∈ E, we have thatx = x̃ ⊕E (x ⊖ x̃) =
xS ⊕E xM , xS ∈ S(E) and xM ∈ M(E). Hence
ϕ(x) = (xS, xM) ∈ S(E)×M(E) andxM ∈ h(x′

S
).

Let us check thatϕ is bijective. Assume first that
x, y ∈ E such thatϕ(x) = ϕ(y). We havex = x̃⊕E

(x⊖E x̃) = ỹ⊕E (y⊖E ỹ) = y. Henceϕ is injective.
Let (xS, xM) ∈ S(E)×M(E) andxM ∈ h(x′

S
). This

yields thatx = xS ⊕E xM exists and evidently by
Lemma II.5, (i)x̃ = xS andx⊖E x̃ = xM . It follows
thatϕ is surjective. Moreover,ϕ(0E) = (0E, 0E) =
0T(E) andϕ(1E) = (1E, 0E) = 1T(E).



Now, let us check that, for allx, y ∈ E, x⊕E y is
defined iffϕ(x)⊕T(E)ϕ(y) is defined in which case
ϕ(x⊕E y) = ϕ(x)⊕T(E) ϕ(y). For anyx, y, z ∈ E
we obtain

z = x⊕E y ⇐⇒
z =

(
x̃⊕E (x⊖E x̃)

)
⊕E

(
ỹ ⊕E (y ⊖E ỹ)

)
⇐⇒

z = (x̃⊕E ỹ)⊕E

(
(x⊖E x̃)⊕E (y ⊖E ỹ)

)
⇐⇒

by Lemma III.1(∃u ∈ E) u = S(x⊖E x̃, y ⊖E ỹ)
and
z = (x̃⊕E ỹ)⊕E(

u⊕E

(
(x⊖E x̃)⊖E (u ∧ (x⊖E x̃))

)
⊕E

(
(y ⊖E ỹ)⊖E (u ∧ (y ⊖E ỹ))

))

⇐⇒ (∃u ∈ E) u = S(x⊖E x̃, y ⊖E ỹ) and
z = (x̃⊕E ỹ⊕Eu)⊕E((

(x⊖E x̃)⊖E (u ∧ (x⊖E x̃))
)
⊕E

(
(y ⊖E ỹ)⊖E (u ∧ (y ⊖E ỹ))

))

⇐⇒ (∃u ∈ E) u = S(x⊖E x̃, y ⊖E ỹ) and

z = (x̃⊕S(E)ỹ ⊕S(E) u)⊕E((
(x⊖E x̃)⊖M(E) (u ∧ (x⊖E x̃))

)
⊕M(E)

(
(y ⊖E ỹ)⊖M(E) (u ∧ (y ⊖E ỹ))

))

⇐⇒ (x̃, x⊖E x̃)⊕T(E) (ỹ, y ⊖E ỹ) is defined
and

ϕ(z)=

(
x̃⊕S(E) ỹ⊕S(E)

S(x⊖E x̃, y ⊖E ỹ),
(
(x⊖E x̃)⊖M(E)

(S(x⊖E x̃, y ⊖E ỹ)∧(x⊖E x̃))
)
⊕M(E)(

(y ⊖E ỹ)⊖M(E)

(S(x⊖E x̃, y ⊖E ỹ) ∧ (y ⊖E ỹ))
))

=( x̃, x⊖E x̃)⊕T(E) (ỹ, y ⊖E ỹ)
= ϕ(x)⊕T(E) ϕ(y).

Altogether, T(E) = (T(E),⊕T(E), 0T(E), 1T(E)) is
an effect algebra and the mappingϕ : E → T(E)
is an isomorphism of effect algebras.

The Triple Representation Theorem then follows
immediately.

Remark III.3. First, note that any sharply dom-
inating Archimedean atomic lattice effect algebra
is a TRT-effect algebra. Namely, any lattice effect
algebra is homogeneous. From [12, Theorem 2.10,
(iv)] we get that[x̃, x] ⊆ B, for every blockB of E
and everyx ∈ B. The remaining condition follows
from [12, Theorem 2.10, (v)].
Second, any homogeneous orthocomplete effect al-
gebra is a TRT-effect algebra in virtue of Statement
II.6. This immediately yields that any complete
lattice effect algebra is a TRT-effect algebra.
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