
A Transfer Function Model for Ternary Switching Logic Circuits

Mitchell A. Thornton
Southern Methodist University
Dallas, Texas USA 75275–0122

Email: mitch@lyle.smu.edu

Abstract

Ternary switching functions are formulated as trans-
formations over vector spaces resulting in a character-
ization in the form of a transfer function. Ternary logic
constants are modeled as vectors, thus the transfer
functions are of the form of matrices that map vectors
representing logic network input values to correspond-
ing output vectors. Techniques for determination of the
transfer matrix from a logic switching model or directly
from a netlist are provided. The use of transfer matrices
for logic network simulation are then developed that
allow for multiple output responses to be obtained
through a single vector-matrix product calculation.

1. Introduction

Design and analysis tasks require some means to
specify logic network functionality that is compact and
useful for purposes such as simulation, implication,
synthesis, and others. We introduce a linear algebraic
model analogous to the transfer function model used
in other areas of engineering. The transfer function
captures the behavior of the network and can also be
used to determine the network output response for a
given set of input stimuli [1]. The transfer function
model is formulated as a mapping of elements over
vector spaces representing the function domain and
range sets. Transfer functions are in the form of a
matrix or linear transformation, thus, we use the terms
“transfer function” and “transfer matrix” interchange-
ably.

Ternary switching functions are traditionally mod-
eled with an algebraic structure consisting of a discrete
set of logic constants {0, 1, 2} and an appropriate set of
operators. Logic networks represent implementations
using electronic or some other technology with a
corresponding input/output characteristic modeled by
ternary switching functions. A ternary logic network is

an interconnection of symbols or gates whose function-
ality is modeled by the operators within the algebraic
structure. A common set of ternary logic network
elements are the MIN, MAX, and Literal Selection
gates whose corresponding functionalities provide for
the specification of a functionally complete algebra
with constants. For conciseness we refer to the Literal
Selection gate as a Ji gate where i denotes the polarity
of the selected literal, i ∈ {0, 1, 2} as defined in [2].

Here we use three-dimensional vectors to represent
ternary logic values instead of the integers {0, 1, 2}
and we model a ternary logic function or a ternary
logic network by a characterizing transfer matrix. The
transfer matrix transforms the logic network input
vectors to corresponding output vectors. This linear
algebraic model of a ternary logic network or function
is an alternative to the more commonly employed
switching model. While we do not propose that the
rich set of results based on switching functions be
abandoned in favor of the linear algebraic model,
we do propose that this alternative model may be
advantageous for certain ternary logic synthesis and
analysis tasks such as those described in [3], [4]. As
an example, we examine the use of the linear algebra
approach when used for ternary logic simulation. We
utilize a netlist as input where the term “netlist” is used
in the commonly accepted definition of representing
a structural interconnections of logic gates. Modern
EDA tools parse netlists into intermediate graphical
representations representing a structural logic circuit
and the term netlist does not refer to any specific
format.

The remainder of the paper is organized as follows.
In Section 2, background and notation is introduced
to support the derivations of the transfer matrices for
a logic network. Section 3 contains the definitions
and derivations of matrices that characterize a network
and also includes descriptions of how the matrices
can be obtained from a high-level switching function
specification or through direct traversal of a logic

Table 1. Ternary Logic Constants

Integral Bra-Vector Row-Vector
0 〈0|

[
1 0 0

]
1 〈1|

[
0 1 0

]
2 〈2|

[
0 0 1

]

network representation such as a netlist. Section 3
also contains examples that demonstrate of how the
matrices are used for computation of system responses.
Concluding remarks are provided in Section 4.

2. Background and Notation

2.1. Dirac Notation

“Bra-ket” notation was originally devised as a con-
cise representation of vectors and associated operations
to aid in quantum mechanical system calculations [5].
Due to the conciseness of this notation, we employ
its use in this paper. Column vectors are referred to
as “kets” and the notation for column vector x is |x〉.
Likewise, a row vector y is referred to as “bra-y” and
is written as 〈y|. The inner (or “dot”) product of two
vectors x and y is written as 〈x|y〉 and the outer (or
“Kronecker”) product as |x〉〈y|.

2.2. Ternary Logic Constants

Ternary logic switching models commonly use an
integral encoding {0, 1, 2} to represent logic values.
In the model presented here, we represent ternary
logic values as three-dimensional vectors, where each
logic value j is represented by a row vector whose
jth component is unity-valued and all other remaining
components are zero-valued. Table 1 shows the corre-
spondence of the integral and vector logic values. The
choice of using row vectors as models for ternary logic
values is arbitrary and column-vectors could have been
chosen. As will become apparent in a later section, the
choice of row-vectors for ternary constants results in
the logic network transfer function being expressed as
a matrix that closely resembles the switching model
truth table.

We use the notation H to represent a Hilbert vector
space whose elements are three-dimensional row vec-
tors. The 3n-dimensional Hilbert space is denoted as
Hn and may be constructed through use of the outer
product operation, denoted by the ⊗ operator, as shown
in Equation 1 where n is any natural number, n ∈ N.

Hn = H⊗H⊗ . . .⊗H =

n⊗
i=1

H (1)

Figure 1. Hasse Diagrams of Ternary Vector Con-
stants

In addition to the vector constants 〈0|, 〈1|, and
〈2|, five other constants are defined and used, denoted
as 〈t|, 〈t01|, 〈t02|, 〈t12|, and 〈∅|. 〈t| represents the
simultaneous presence of 〈0|, 〈1|, and 〈2| and is given
by 〈t| = 〈0|+ 〈1|+ 〈2| where the + operator denotes
vector space addition. Likewise, the constants 〈t12|,
〈t02|, and 〈t01| represent the simultaneous presence of
two logic values 〈t01| = 〈0|+〈1|, 〈t02| = 〈0|+〈2|, and
〈t12| = 〈1|+〈2|. In contrast, 〈∅| represents the absence
of all logic values and is given as 〈∅| =

[
0 0 0

]
.

〈∅| should not be confused with the logic-0 value,
〈0| =

[
1 0 0

]
. The collection of vector constants

can be expressed as a Hasse diagram as shown in
Figure 1 [2]. Two versions of the Hasse diagram are de-
picted using bra- and the row-vector notation. The five
additional constants can arise during calculations using
transfer function representations of logic networks.

2.3. Network Elements

Any of a variety of two- and one-place operators
can be defined and represented by logic gates within
a ternary logic network. For the algebraic construction
to enable representation of all possible functions, some
primitive set of operators is required such that all other
possible operators can be expressed as a function of the
primitives and constants [2]. In this work, we utilize
the ternary MIN , MAX , and Ji operators as logic
primitives.

3. Transfer Functions

The transfer function is an expression that yields the
output response of the corresponding network when
multiplied by an input stimulus. A particular input
stimulus is represented by a row vector of dimension
3n where n is the number of parallel network inputs.
Individual network input values are used to compute
the overall stimulus vector through the relationship in
Equation 1. Lemma 3.1 describes a characteristic that
is useful in the derivation of the transfer function.

Lemma 3.1: Linear Independence: Consider a
ternary logic network with n inputs. Two distinct
network input assignments (〈xi|, 〈xj |) ∈ Hn are
linearly independent vectors when i 6= j.

Proof: 〈xi| and 〈xj | are represented as
〈dndn−1 . . . d0|, where each di ∈ {0, 1} represents
a particular network input logic value. Using the
relation in Equation 1, the input vectors are expanded
as 〈dn| ⊗ 〈dn−1| ⊗ . . . ⊗ 〈d0|. Expressed as a row
vector, 〈x| =

[
0 0 . . . 1 . . . 0

]
where

the single unity-valued vector component exists in
a different location for 〈xi| and 〈xj | since i 6= j.
Therefore 〈xi|xj〉 = 0 and the norm of xi and xj
is L2(xi) = L2(xj) = 1, satisfying the definition
of linear independence. When i = j, 〈xi|xj〉 = 1
and this only occurs when 〈xi| = 〈xj |. Expressed
mathematically,

xi · xj = 〈xi|xj〉 =

{
0, i 6= j

1, i = j
(2)

Lemma 3.2: Input-Output Response: The output re-
sponse of a logic network due to a particular input
assignment 〈xi| is represented by 〈fi|. The output
response vector is obtained as the product of 〈xi| with
|xi〉〈fi|.

Proof: The lemma statement is expressed as
(〈xi|)(|xi〉〈fi|) = 〈xi|xi〉〈fi|.
From Lemma 3.1, 〈xi|xi〉 = 1, thus
(〈xi|)(|xi〉〈fi|) = (1)〈fi| = 〈fi|.
Theorem 3.3: Transfer Function: The transfer func-

tion representing the input-output relationship of a
logic network f is of the form of a matrix T and is
given by Equation 3.

T =

3n∑
i=1

|xi〉〈fi| (3)

Proof: By definition, the transfer function yields
the logic network output response vector 〈fi| when
multiplied with the corresponding logic network input
stimulus 〈xi|. Multiplying T with the jth logic net-
work stimulus vector 〈xj | yields

〈xj |T = 〈xj |

(
3n∑
i=1

|xi〉〈fi|

)
=

3n∑
i=1

〈xj |xi〉〈fi|

Using Equation 2,
〈xj |T = 〈fj |

3.1. Transfer Matrix Derivation

The transfer matrix as derived in the previous section
allows for a means to derive the system response for

one or more logic network input vectors through a
single vector-matrix multiplication operation. Modern
Electronic Design Automation (EDA) tools generally
implement this operation through the use of discrete
event simulation algorithms in conjunction with a
description of the logic network. For the transfer
matrix approach to be a practical alternative to EDA
approaches, the transfer matrix T must be obtained in
an efficient manner.

The transfer matrix T can be derived in several
ways. We focus on two approaches here; derivation
of T when the switching function behavior is given,
and alternatively, when a low-level characterization of
the network is provided in the form of a logic network
or netlist.

3.1.1. Transfer Functions from Switching Models.
For switching function specifications, common repre-
sentations include cube lists [6] or graphical represen-
tations such as the Binary Decision Diagrams (BDD)
[7] or their generalization as Multiple-valued Decision
Diagrams (MDD) [8]. These various descriptions allow
specific corresponding input and output responses to be
directly obtained.

A direct approach for the calculation of T is to
form the outer product terms expressed in Equation
3 and sum them together. Unfortunately, this approach
requires the formulation of an exponential number (3n)
matrices and then finding their sum. A better approach
is to use the existing switching function representation
as an implicit representation of the transfer matrix
T. This approach is viable and allows for system
response calculations to be accomplished through the
use of algorithms that implement the vector-matrix
product operation using the structure of the implicitly
represented transfer matrix T.

Observation 3.4: Transfer Function/Truth Table
Isomorphism: A truth table specification of a ternary
switching function is isomorphic to the corresponding
transfer function. �

To further illustrate Observation 3.4, consider a
switching function representation comprised of a single
MIN operation, f = x · y. Using the direct approach
for evaluating the transfer function of a MIN function
transfer matrix, denoted as A, results in the following
calculation.

A = |00〉〈0|+ |01〉〈0|+ |02〉〈0|+ |10〉〈0|
+ |11〉〈1|+ |12〉〈1|+ |20〉〈0|+ |21〉〈1|
+ |22〉〈2|

Expanding the outer product terms into 3×9 matri-
ces and summing together yields

A =



1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
1 0 0
0 1 0
0 0 1


.

Examination of the structure of TMIN reveals that
each row vector is simply the vector representation of
the MIN truth table output column. Thus, a truth table
representation can be used as an implicit representation
of the transfer matrix and algorithms can be formulated
that implement the vector-matrix product operation to
compute the output response. Since the transfer matrix
representation is isomorphic to the truth table, decision
diagram (DD) structures are sufficient to represent
the transfer matrix such as those described in [8].
Furthermore, the matrix operations can be efficiently
implemented using DDs as described in [9]. Thus,
the complexity of transfer matrix representation is
identical to that of using DDs.

3.1.2. Transfer Functions from Netlists. Many mod-
ern EDA analysis tasks require the derivation of a net-
work response using only a low-level description such
as a netlist. Methods requiring a switching behavioral
model can prove problematic since the conversion of
a netlist representation to a switching model represen-
tation can incur unacceptable complexity. Even when
state-of-the-art representations such decision diagrams
are used, parsing the netlist into such a structure can
require excessive amounts of memory. A commonly
cited example is a BDD representation of a fixed-point
multiplication circuit. It has been proven that BDD
representations of multiplier circuits grow exponen-
tially with operand wordsize regardless of the variable
orderings.

Another commonly encountered analysis task re-
quires analysis of an internal partition or subcircuit
within a netlist. Extraction of the switching model for
an internal subcircuit can also be difficult in some
cases. For these reasons, there is a need to devise
an efficient means of determining netlist responses
to various stimuli and motivates us to determine a
means to efficiently extract the corresponding transfer
function directly from a netlist representation while
avoiding the intermediate step of first extracting a
switching model, and then determining the transfer
matrix.

The transfer matrix can be determined directly from
a netlist representation of a logic network through two

Figure 2. Ternary Network Element Transfer Ma-
trices

traversals. In the first traversal, the netlist is partitioned
into a series of cascaded stages. The second traversal
requires computation of the transfer matrix for each
stage and the final step derives the overall transfer
matrix as the direct matrix product of each cascade
stage transfer matrix. The partitioning step determines
cuts through the netlist such that all elements in each
partition operate in parallel. Each partition is then
treated as a separate netlist whose inputs and outputs
are combined using the outer product operation in
accordance with Equation 1 where individual three-
dimensional vectors are combined into a single 3n-
dimension vector. Because the partitions are chosen as
serial cascade stages, the output of the prior cascade
serves as the input to the subsequent stage, and the
overall transfer matrix is simply the direct product of
the partition matrices.

This technique can be implemented through use of
a library of transfer matrices for the atomic logic
network elements such as the MIN, MAX, and Ji
gates. Additional atomic transfer matrices are needed
in the library that correspond to the single line (pass-
through), fanout, and fanin structures since they will
appear as parallel elements in some of the network
partitions. Figure 2 contains the transfer matrices for
a library composed of these elements. The transfer
matrix for the fanin gate FI has ∅ components for the
cases where the two inputs are different logic values.

Example 3.5: Transfer Matrix from Netlist: Con-
sider the logic network in Figure 3 with input stimulus
of 〈x1| = 〈1| and 〈x2| = 〈2|. The uppermost diagram
shows the partitioned cascaded stages denoted by φ1,
φ2, and φ3. Each partition is comprised of a set of

Figure 3. Partitioned Ternary Logic Network

parallel network elements and can be characterized
by individual transfer matrices Tφ1 , Tφ2 , and Tφ3 .
The logic network diagram in the center of Figure 3
depicts a specific input stimulus written as individual
vectors. From Equation 1, the network input values
can be combined into a single vector as shown on
the bottom-most diagram. The corresponding network
output response is shown on the right side of the
network diagrams, both as individual vectors and as
a combined vector formed as the outer product of the
individual vectors.

The output of φ1 is produced by a MIN gate,
therefore Tφ1 = A. Stage φ2 is comprised of a
single fanout network element and has a transfer matrix
Tφ2 = FO. Stage φ3 is comprised of two network
elements; a J1 literal selection gate and a single
pass through conductor. Just as the input vectors are
combined into a single vector using the outer product,
so is the overall transfer matrix Tφ3 = J1 ⊗ I.

Tφ3 = J1 ⊗ I =

 1 0 0
0 0 1
1 0 0

⊗
 1 0 0

0 1 0
0 0 1



=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


�

3.2. Switching Domain Response

As implied in Theorem 3.3, the transfer matrix can
be used to compute the output response of the char-
acterized logic network through multiplication with a

network stimulus vector.
Theorem 3.6: Network Response: The output re-

sponse 〈fj | of a logic network characterized by transfer
matrix T can be calculated by multiplying the input
stimulus vector 〈xj | with T as expressed in Equation
4. 〈fj | = 〈xj |T (4)

Proof: Multiplying Equation 3 with input stimulus
〈xj |

〈xj |T = 〈xj |

(
3n∑
i=1

|xi〉〈fi|

)
=

3n∑
i=1

〈xj |xi〉|fi〉
From Lemma 3.1, the inner product 〈xj |xi〉 = 0

for the 3n − 1 cases in Equation 4 where i 6= j.
Furthermore, 〈xj |xi〉 = 1 for the single case in
Equation 4 where i = j. When i = j, 〈fi| = 〈fj |,
hence 〈xj |T = 〈fj|.

Corollary 3.7: Multiple system Response: The sys-
tem response due to multiple logic network input vec-
tors can be calculated through a single multiplication
operation by forming the input stimulus vector using
the logic value 〈t| and using the transfer matrix T.

Proof: Three different input stimuli can be ex-
pressed in a single combined logic network input
vector, 〈xcomb| by specifying one of the network inputs
as 〈t| resulting in that particular input having logic
values 〈0|, 〈1|, and 〈2| simultaneously. By definition
of the logic value 〈t|, the combined input vector can
be expanded as 〈xcomb| = 〈x0| + 〈x1| + 〈x2| where
each 〈xi| represents a logic input vector with one input
assigned logic value i. Multiplying the input vector
〈xcomb| with T results in the logic network response
〈f0| + 〈f1| + 〈f2| where 〈fi| denotes the network
response for input stimulus 〈xi|. This result can be
generalized by setting more than one input to value 〈t|.
Furthermore, it is desired to restrict one of the inputs
to simultaneously be a subset of logic values {0, 1, 2},
a new value akin to 〈t| can be defined and used.

Example 3.8: Calculating Single Network
Response: The logic network depicted in Figure
3 is partitioned into three stages and the overall
transfer matrix, T, is computed as T = Tφ3Tφ2Tφ1 .

T = Tφ3Tφ2Tφ1 = (A)(FO)(J1⊗ I)

=



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0



To determine the logic network response 〈f12| for
an input stimulus of 〈x1x2| = 〈12|, the network inputs
are expressed as a single vector, 〈12| = 〈1| ⊗ 〈2| and
is multiplied with the transfer matrix T in accordance
with Theorem 3.6.
〈f12| = 〈12|T

=



0
0
0
0
0
1
0
0
0



T 

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0


=
[
0 0 0 0 0 0 0 1 0

]
=
[
0 0 1

]
⊗
[
0 1 0

]
= 〈2| ⊗ 〈1| = 〈21| �

Here, we arbitrarily choose to perform outer product
operations from the topmost signal to the bottommost
when forming the transfer matrices for partitions and
to perform the direct matrix multiplication operations
using the transfer matrix closest to the network inputs
as the leftmost operand. The network response to
multiple input stimuli can be computed with a single
evaluation of the transfer matrix through use of the 〈t|
value where 〈t| = 〈1|+〈1|+〈2| as proven in Corollary
3.7.

Example 3.9: Calculating Multiple Network Re-
sponses: The total network response due to all possible
network input values 〈ftot| is calculated as
〈ftot| = 〈tt|T

=



1
1
1
1
1
1
1
1
1



T 

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0


=
[
5 0 1 0 0 0 0 3 0

]
= 5

[
1 0 0 0 0 0 0 0 0

]
+
[
0 0 1 0 0 0 0 0 0

]
+ 3

[
0 0 0 0 0 0 0 1 0

]
= 5(

[
1 0 0

]
⊗
[
1 0 0

]
)

+ (
[
1 0 0

]
⊗
[
0 0 1

]
)

+ 3(
[
0 0 1

]
⊗
[
0 1 0

]
)

= 5〈00|+ 〈02|+ 3〈21| �

The result of Example 3.9 indicates that only three
different network responses are possible and that 〈00|
occurs five times, 〈02| occurs once, and 〈21| occurs

three times. Instead of computing the total system
response, this technique can be used to find partial
system responses through the use of input stimuli
vectors with a subset of inputs assigned the values 〈t|,
〈t01|, 〈t02|, or 〈t12|.

4. Conclusion

A model of a ternary switching function as a
transformation over vector spaces is presented. The
characteristic transfer matrix for a particular switching
function is introduced and methods for obtaining it
from either a switching function specification or a
netlist are provided. Inclusion of additional constants
that cover more than one logic value are described and
used to obtain multiple system responses through a
single calculation with the transfer matrix.

References

[1] C. T. Chen, Linear System Theory and Design. Holt,
Rinehart and Winston, 1984.

[2] D. M. Miller and M. A. Thornton, Multiple Valued
Logic: Concepts and Representations. Morgan &
Claypool Publishers, 2007.

[3] M. A. Thornton and J. Dworak, “Ternary logic net-
work justification using transfer matrices,” Proceed-
ings. IEEE International Symposium on Multiple-Valued
Logic, 2013.

[4] M. A. Thornton and T. W. Manikas, “Spectral response
of ternary logic netlists,” Proceedings. IEEE Interna-
tional Symposium on Multiple-Valued Logic, 2013.

[5] P. A. M. Dirac, “A new notation for quantum mechanics,”
Proc. of the Cambridge Philosophical Society, vol. 54,
p. 416, 1939.

[6] T. Sasao, Switching Theory for Logic Synthesis. Kluwer
Academic Publishers, 1999.

[7] R. E. Bryant, “Graph-Based algorithms for boolean
function manipulation,” IEEE Trans. Comput., vol. C-
35, no. 8, pp. 677 –691, Aug. 1986.

[8] D. M. Miller and R. Drechsler, “Implementing a
multiple-valued decision diagram package,” in Proceed-
ings. 1998 28th IEEE International Symposium on
Multiple-Valued Logic, May 1998, pp. 52 –57.

[9] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan,
J. C. Yang, and X. Zhao, “Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix
representation,” in Proceedings. IEEE Int. Workshop on
Logic Synthesis, 1993, pp. 1–15.

