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Abstract

Multi-Valued (MV) fault trees can be used to rep-
resent a variety of probability distributions charac-
terizing system-related events. Representing MV fault
trees in the form of multiple-valued decision diagrams
(MDD) provides a means for representing overall sys-
tem probability distributions and are constructed from
structure functions. MDD edges are annotated with
component probability values and allow for computa-
tion of overall system probability values. MDD ‘phan-
tom’ vertices are presented to overcome inaccuracies
introduced by the ‘rare event approximation’. Addi-
tionally, a method that allows continuous probability
distributions as MDD edge annotations is described.
Experimental results are provided that illustrate the
viability of the method.

1. Introduction

Modern systems and processes are becoming more
complex and involve ever increasing numbers of sub-
systems and components. Design and analysis tasks
include calculations of overall reliability, availability,
threat vulnerability, and other system-level probabilis-
tically distributed events. A past approach devised for
these calculations uses “fault trees” that were devel-
oped at Bell Laboratories in 1961 [1]. Traditionally,
fault trees are used to model failure or reliability dis-
tributions where subsystem components are assumed
to have the binary states of “FAILURE” or “OPER-
ATIONAL.” Correspondingly, overall system analysis
based on a fault tree model results in a composite
estimate of the system being in one of these two states.

The idea of extending binary fault trees to multiple-
valued fault trees for multi-state system reliability is
described in [2]. In [3], the similar concept of a cyber
threat tree is used for the purpose of analyzing the
disaster tolerance of large systems in the presence
of threats. Because some threats can render a sys-
tem to be partially operational, the incorporation of

intermediate states of operability that are not fully
operational nor one of catastrophic failure motivates
the use of multiple-valued (p > 2) states rather than
only p = 2 states. The corresponding binary cyber
threat tree is extended to a multiple-valued (MV) tree
where symbolic AND and OR gates are replaced with
multiple-valued MIN and MAX gates.

The use of binary decision diagrams (BDD) for
representing fault trees was first proposed in [4] and
was extended to use Multiple-valued Decision Dia-
grams (MDD) in [2]. This concept is used for disaster-
tolerance analysis in [3] where a mark-up language,
CyTML, represents cyber-threat trees and a companion
parser converts the CyTML into a corresponding MDD
with edge annotations. The cyber-threat tree approach
is generalized for application to other analysis tasks
in [5]. The work in [6] extends that of [5] by using
an Edge-Valued MDD (EVMDD) software to provide
additional experimental results and analysis of the
computational memory resource requirements. New
algorithms to minimize the number of edges in the
EVMDDs are reported in [7]. Other applications of the
MV fault tree analysis approach are reported in [8] and
[9]. In [8], analysis of the fault tolerance of medical
devices is described and includes the use of conditional
probabilities. The work reported in [9] extends the
MV fault tree approach to that of processes instead
of systems.

In the work described here, we continue to use
the term ‘fault tree’ since it is widely recognizable;
however, the structure can represent any of a variety of
probability distribution functions characterizing events
within a system or process that may not necessarily be
“faults.” With this viewpoint, the fault tree structure is
used in general as a means for describing composite
system or process probability distribution functions in
a compact manner. An important distinction between
fault trees and switching circuit diagrams is that the
variables are events with corresponding probability



Figure 1. (a) System Diagram, (b) Fault Tree

distributions rather than circuit signal values.
The contribution of this paper is the introduction

of methods to increase the accuracy of overall system
probability values that are computed using MDDs. We
also discuss the process of determining the “structure
function” that indicates how events within a system
are combined to form a fault tree. Two methods are
introduced that increase the accuracy of system prob-
ability computations. First, we discuss the notion of a
“phantom” vertex used to account for higher-ordered
terms in probability computations. Secondly, a new
method for annotating the edge values of an MDD with
curve-fitting parameters obtained from system compo-
nent probability distribution functions is included.

2. Fault Tree Concepts

As an example to describe basic fault tree concepts,
we use a physical system as shown in Fig. 1a. We
assume that each component has one of two basic
states; either “OPERATIONAL” or “FAILURE.” Due
to the two-state nature of the system components, the
probability distribution for each component consists of
two point probabilities, R = 1 − F is the reliability
and F is the failure probability. The resulting fault
tree shown in Fig. 1b uses binary operators depicted
as binary switching circuit gates with inputs that are
events representing component failure.

The OR and AND switching circuit gates represent
additive and multiplicative probability relationships
respectively. In the example system, components A
and B are in series so the entire system will enter
a state of failure when either component A or B
fails and the corresponding probabilistic relationship
is F (Af + Bf ) = F (Af ) + F (Bf ) − F (Af \ Bf ).
Depending on the nature of the events being modeled,
it can be the case that the events are mutually exclusive
resulting in F (Af + Bf ) = F (Af ) + F (Bf ) since
F (Af \ Bf ) = 0. It is common that failure analyses
of system components assume the event of failure for
component A is independent of that for component
B. Using the independence assumption, the overall
expression becomes F (Af+Bf ) = F (Af )+F (Bf )−
F (Af )F (Bf ) since mutual exclusiveness does not

hold but F (Af \ Bf ) = F (Af )F (Bf ). A further
approximation is the so-called “rare event approxima-
tion” [1]. The rare event approximation states that since
the magnitude of component failure probabilities is
generally low, the joint failure term for non-mutually-
exclusive events, F (Af )F (Bf ), may be neglected,
resulting in F (Af+Bf ) ⇠= F (Af )+F (Bf ). Therefore,
the overall failure probability for series components is
additive in nature and is represented in the fault tree
with the OR gate in the lower left position in Fig. 1b.

Components C and D are in parallel and for overall
system failure to occur, both components C and D
must fail. Assuming independence of the component
failure events Cf and Df , the overall expression for
failure of both components C and D is F (Cf \
Df ) = F (Cf )F (Df ). This multiplicative relationship
is represented in the fault tree through the use of the
AND gate in the lower right of Fig. 1b. Finally, the
intermediate series combination of A and B and the
intermediate parallel combination of C and D are both
themselves in series, therefore the topmost OR gate in
Fig. 1b combines these component combinations.

2.1. System Structure Functions

A structure function refers to the switching func-
tion represented by the fault tree. The determination
of the structure function requires the states of each
component to be mapped to discrete values appropriate
for input to the logic gates followed by a synthesis
operation. The topology of the system only partially
dictates the structure function. Other important factors
are the discrete value mappings and the nature of the
events. In the current example, the fault tree is being
used to represent system failure; however, if a fault
tree were being constructed for system reliability, a
different structure function would result.

In the example system, the structure function and
resulting fault tree are constructed through a method-
ical reasoning about the failure events and knowledge
of the system interconnections. Similar techniques for
determination of the structure function are commonly
used and prior methods have generally not viewed
the fault tree construction process in terms of discrete
value mappings and synthesis. When considered in
terms of logic synthesis, the example system in Fig.
1a assumes that a failure is mapped to a logic 1 and
the operational states are mapped to logic 0. After
performing this mapping, a truth table is formulated as
shown in Fig. 2a and represents the structure function
Sf = Af +Bf + CfDf .

Switching functions can be efficiently represented
in the form of a decision diagram and this was first
proposed for fault tree structure functions in [4]. Fig.



Figure 2. Example System Structure Function

2b depicts the edge-annotated BDD representation of
the fault tree in Fig. 1b. The edges are annotated
with the point probability of failure (Fi) or reliability
(1− Fi) values and also with one of the two mapped
switching constants. The terminal vertices of the BDD
represent the overall system state of failure (mapped
to value 1) or operation (mapped to value 0). A depth-
first traversal can be used where the path probability
for each path from the initial to root node of interest
is computed by multiplying the edge weights along
the path followed by summing the path probabilities
together at the terminal vertex of interest. Details of
this algorithm are described in more detail in [3] [5]
[6].

From the preceding discussion, the combination of
the structure function and the probability distributions
of system components result in a fault tree that rep-
resents a composite probability distribution function.
Depending upon the particular types of events being
considered, any of a variety of distribution functions
may be represented. For this reason, the structure
function is only partially related to the topology of the
system and is not uniquely determined by the system
interconnections alone.

In traditional fault trees representing failure or
reliability, events are considered to have only two
outcomes, either “FAILURE” or “OPERATIONAL”
resulting in a binary structure function. The use of con-
stant probability values is appropriate when the failure
distribution curve is constant or nearly constant over
the lifetime of the component such as the the “bathtub”
curve. The nearly constant or “lifetime” portion of the
bathtub curve allows for a single probability value to
be used for the probability of failure.

Figure 3. Phantom DD Vertex

2.2. Rare Event Approximation

The rare event approximation is applicable when
individual probability values are sufficiently small.
This is often the case for system failure computations
since the probability of a component failure is typically
small, thus the multiplicative term F (Af )F (Bf ) be-
comes negligible. When the fault tree concept is used
to represent more general distributions of events, the
approximation may introduce too much error in the
overall system probability value. Thus, we introduce
the concept of a “phantom” vertex in the decision
diagram representation of the structure function. The
structure of the fault tree remains the same; however,
the extraction of the structure function from the tree for
the purpose of constructing a decision diagram changes
in that when an OR or MAX gate is encountered,
a decision is made as to whether a phantom node
should be included or not. This decision is based upon
the consideration of the size of the magnitude of the
probability values. To illustrate the use of phantom
nodes, we describe an example using a simple binary
OR operator, although the principle is easily extended
to higher-valued radices where the MAX gate is used.

Consider the portion of the system depicted in
Fig. 1a comprised of the series components A and
B. The expression for the probability of failure is
FAB = F (Af ) + F (Bf ) − F (Af \ Bf ). Assuming
the failure distributions for components A and B are
independent and not mutually exclusive, the overall
failure probability becomes FAB = F (Af )+F (Bf )−
F (Af )F (Bf ) and the “rare event approximation” ne-
glects the −F (Af )F (Bf ) term. When individual fail-
ure probabilities are sufficiently large, it may not be de-
sirable to neglect this term. The inclusion of a phantom
vertex in parallel with those representing components
A and B allows this term to be included in the overall
system probability computation. Fig. 3 illustrates the
phantom node occurring in parallel to the vertices
representing components A and B. The phantom node
has exiting edges that are annotated with negative
values corresponding to the term −F (Af )F (Bf ).



2.3. MV Fault Trees

When system components or sub-processes do not
have constant probability distributions or when more
than two event outcomes are desired, the use of binary
operators in the fault tree may not be adequate. This
observation provides the motivation for the use of MV
fault trees. for “multi-state” systems [2]. The analogous
MVL operations for the binary OR and AND operations
are the multi-valued MAX and MIN operators. The
MVL operators use identical switching gate symbols as
those used for the binary case with the understanding
that they produce non-binary results.

The radix, or number of permissible discrete switch-
ing values of each MVL fault tree operator, depends
upon the number of states being modeled. As an
example, a ternary or three-valued switching system
may be used to denote system failure states of “OPER-
ATIONAL”, “DEGRADED”, or, “FAILURE”. Higher
radices may be used to denote more intermediate states
or degrees of degradation. Furthermore, a mixed-radix
fault tree allows for each system component to be
characterized with different outcomes. For example,
some components may be more appropriately modeled
with the binary outcome of “OPERATIONAL” or
“FAILURE” while other components are modeled with
a different set of outcomes such as “OPERATIONAL”,
“DEGRADED”, and “FAILURE”.

As an example, consider the system shown in Fig.
1a where component A is modeled as having a ternary
(radix-3) discrete point probability distribution for the
states “OPERATIONAL”, “PARTIAL FAILURE”, and
“COMPLETE FAILURE”. In this case, a mixed-radix
MV fault tree is required to model the overall system
failure distribution function. The structure function
is determined by first assigning logic values to the
component states and then synthesizing the resulting
function. While the actual assignment of switching
values is arbitrary, it does affect the structure of the
resulting fault tree. We use the arbitrary discrete value
mappings of 2 for “FAILURE”, 1 for “PARTIAL
FAILURE”, and 0 for “OPERATIONAL”. Although
system components B, C, and D continue to have
binary states, their corresponding switching values are
0 for “OPERATIONAL” and 2 for “FAILURE” to
maintain consistency with the ternary mapping for
component A. The determination of optimal switching
value assignments in terms of producing a compact
decision diagram structure is left as an area of future
research. The MV fault tree and corresponding deci-
sion diagram are shown in Fig 4. The MDD is obtained
by synthesizing the fault tree using a standard MDD
APPLY algorithm.

The MDD edges are annotated with the probabilities

Figure 4. (a) MV Fault Tree, (b) MDD

of failure, Fi, partial failure, PFi, and operational, Oi

as well as the mapped switching values. For the binary-
state components B, C, and D, Oi = 1 − Fi and for
the ternary-state component A, FA + PFA + OA =
1. Overall system failure probabilities are computed
using the algorithms in the previously cited work [3]
[5] [6]. The EVMDD can be optimized through the use
of a variety of optimization methods such as sifting
resulting in a more compact structure.

3. Probability Distribution Representation

Many existing analysis methods for multi-state sys-
tems, including the methods described previously, uti-
lize discrete random variables and their associated
probability distributions. In practical applications, con-
tinuous random variables and their distributions are
often required. More accurate analysis results can be
achieved with a new extension to previous analy-
sis methods that incorporate continuous distributions.
Continuous probability distributions are usually given
as PDFs or CDFs. Thus, we formulate the system
analysis problem addressed in this section as follows:

Problem: Given a structure function S of a multi-
state system and probability distributions for com-
ponents as probability density functions (PDFs) or
cumulative distribution functions (CDFs), compute the
probability distribution of states in the multi-state
system.

Each state of the components represents an interval
of continuous values such as performance or reliability
of multi-state systems. That is, each component state
represents a range of continuous values. Probability
density functions (PDFs) and cumulative distribution
functions (CDFs) are continuous functions, and the
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probability for a range [a, b) can be computed by using
PDFs or CDFs as shown in the following equations,

P (a  X < b) =

Z b

a

PDF (x)dx (1)

P (a  X < b) = CDF (b)− CDF (a) (2)

where P (a  X < b) is the probability for the
range [a, b), PDF (x) and CDF (x) are given prob-
ability density or cumulative distribution functions,
respectively. In this way, the probability for each range
(i.e., the probability for each component state) can be
computed by Equations 1 and 2 even if probability
distributions are given as continuous functions. Since
the obtained probability for each component state is
a single value, we can analyze multi-state systems
using the same method as the analysis method for dis-
crete probability distributions described in the previous
work.

Fig. 5a shows an MDD vertex whose edges are
annotated with point probability values, and Fig. 5b
shows an MDD vertex whose edges are annotated
with probabilities obtained by the equation 1 or 2 for
ranges. As shown in this figure, we can easily incorpo-
rate continuous probability distributions into decision
diagrams. However, in the following subsections, we
describe other methods to incorporate continuous prob-
ability distributions into decision diagrams.

3.1. Curve-fitting Method

The objective of this section is to represent continu-
ous probability distributions using discrete MV struc-
ture functions so that the overall composite probability
distribution can be represented using the MDD data
structure. This requires determination of appropriate
partitions of the distribution curve followed by map-
ping or assigning a logic value to each partition. The
number of identified partitions becomes the radix value
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Figure 7. Computation of Probabilities at a Vertex

for the MDD vertex. The edge value(s) contain the
information required to approximate the corresponding
portion of the distribution curve. A variety of curve-
fitting techniques may be used to represent the various
portions of the distribution curve. One method is to
determine a linear equation for each partition and then
to annotate each edge with the slope of the fitted line
m and the vertical axis with the intercept point b. In
this manner, a linear interpolation can be performed
during the traversal of the MDD to determine a more
accurate value from the probability distribution curve.
Any of a variety of curve-fitting techniques is possible,
the key factors are the degree of accuracy required in
approximating the distribution function and the number
of parameters that are required for storing the curve-fit
information. The identified parameters are then stored
in the MDD data structure as edge value annotations.

Using a piecewise polynomial approximation, we
can analyze multi-state systems similarly to the pre-
vious MDD-based analysis methods [5] [8] [6] [7]
that use a single value for each probability. Instead
of a single value, we assign a polynomial to each
edge of an MDD, as shown in Fig. 6. Then, by
multiplying and adding the polynomials, we obtain
probability distributions of system states that are given



Table 1. Practical Systems Results

NAME MDD SIZE TIME
Redundant fire pumps [10] 1.6 KB < 1msec.

Engine starter [10] 41.1 KB < 1msec.
Overrun of motor [1] 44.3 KB < 1msec.

Table 2. Random Systems Results

Number of MDD SIZE TIME
Components n

4 0.2 MB 0.02 sec.
5 0.6 MB 0.19 sec.
6 1.5 MB 1.19 sec.
7 3.5 MB 7.01 sec.
8 8.3 MB 72.42 sec.

as continuous distribution functions (i.e., polynomi-
als). Multiplications and additions of polynomials can
be realized by multiplications and additions of the
corresponding coefficients obtained from the series
expansions as shown in Figs. 7. Note that coefficients
cannot be summed up when ranges for polynomial
approximations are different even if the variable is
the same. This is shown in Fig. 7b. In this figure,
the Y s’ ranges (i and j) are different from each
other. Multiplications and additions of polynomials
are performed at each MDD vertex in a top-down
manner, and polynomials obtained at terminal vertices
are probability distributions of the entire system state.

4. Experimental Results

To illustrate the usage of the technique described
here, we implemented the curve-fitting method using
MDDs to represent the structure function on the fol-
lowing computer environment: CPU: Intel Core2 Quad
Q6600 2.4GHz; memory: 4GB, OS: CentOS 5.7; and
C-compiler: gcc -O2 (version 4.1.2). The results of
the experiments are given in Tables 1 and 2. For all
these example systems, computer runtimes were less
than 1 msec. To show the effectiveness of our method
for larger systems, we randomly generated multi-state
systems consisting of n 6-valued components as in
[6]. From this table, it is shown that our method is
a practical and viable approach for large systems.

5. Conclusions

The use of the fault tree as a means to represent
probability distributions is shown to be viable for
continuous and empirical distribution data through the
use of MVL structure functions. The formulation of
the structure function is described as a process of
discrete switching value assignment followed by MVL
logic synthesis. We have described two techniques for
improving the accuracy of overall system or process
probability representations using MDDs. The tech-
nique of including phantom vertices allows higher-

ordered terms in additive probability relationships to be
included in the calculations. The second enhancement
involves the representation of continuous probability
distributions when decision diagrams are used to rep-
resent fault trees. Experimental results indicate that
our method is a practical approach for large system
analysis tasks.
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