
Finding Hard Instances of Satisfiability in Łukasiewicz Logics∗

Miquel Bofill
UdG

Girona, Spain

Felip Manyà
IIIA–CSIC

Bellaterra, Spain

Amanda Vidal
IIIA–CSIC

Bellaterra, Spain

Mateu Villaret
UdG

Girona, Spain

Abstract

One aspect that has been poorly studied in multiple-
valued logics, and in particular in Łukasiewicz logics, is
the generation of instances of varying difficulty for evalu-
ating, comparing and improving satisfiability solvers. In
this paper we present a new class of clausal forms, called
Łukasiewicz (Ł-)clausal forms, motivate their usefulness,
study their complexity, and report on an empirical inves-
tigation that shows an easy-hard-easy pattern and a phase
transition phenomenon when testing the satisfiability of Ł-
clausal forms.

1 Introduction

The proof theory of multiple-valued logics, as well as its

complexity, have been deeply studied for a wide variety of

logics [1, 10, 11]. However, the development of satisfia-

bility solvers has received less attention despite of the fact

that, without competitive solvers, it is extremely difficult to

apply multiple-valued logics to solve real-world problems.

In the quest for developing fast satisfiability solvers is

crucial to have both random and structured challenging in-

stances for evaluating and comparing solvers, as happens in

close areas such as Boolean satisfiability testing and con-

straint programming.

Given the recent development of Satisfiability Mod-

ulo Theory-based (SMT-based) SAT solvers for multiple-

valued logics [2, 3, 13, 14], as well as the need of empiri-

cally evaluating and comparing them with other existing ap-

proaches, the objective of this paper is to develop a suitable

benchmark for satisfiability testing in Łukasiewicz logics.

The ultimate goal is to devise a random generator of in-

stances of varying difficulty.

∗Research partially supported by the Generalitat de Catalunya grant

AGAUR 2014-SGR-118, and the Ministerio de Economı́a y Competivi-

dad projects AT CONSOLIDER CSD2007-0022, INGENIO 2010, CO-

PRIVACY TIN2011-27076-C03-03, EDETRI TIN2012-39348-C02-01

and HeLo TIN2012-33042. The second author was supported by Mobility

Grant PRX14/00195 of the Ministerio de Educación, Cultura y Deporte.

More specifically, this paper starts by analyzing how the

Conjunctive Normal Forms (CNFs) used by SAT solvers

can be extended to Łukasiewicz logics. In a first attempt,

we replace the classical disjunction in Boolean CNFs with

Łukasiewicz strong disjunction, and interpret negation us-

ing Łukasiewicz negation. Curiously, it turns out that the

satisfiability problem of these clausal forms can be solved

in linear time in the length of the formula, regardless of the

size of the clauses and the cardinality of the truth value set

(assuming it is greater than two). This result is surprising

because deciding the satisfiability of Boolean CNFs is NP-

complete when there are clauses with at least three liter-

als [9].

To produce computationally difficult instances we then

define a new class of clausal forms, called Łukasiewicz

(Ł-)clausal forms, that are CNFs in which, besides replac-

ing classical disjunction with Łukasiewicz strong disjunc-

tion, we allow negations above the literal level; i.e., clauses

are strong disjunctions of terms, and terms are either liter-

als or negated strong disjunctions of literals. We show that,

in this case, 3-SAT is NP-complete while 2-SAT has linear-

time complexity.1 Hence, these problems have the same

complexity as their Boolean counterparts.

Moreover, we report on an empirical investigation in

which we identify —when testing the satisfiability of Ł-

clausal forms having a fixed number of literals per clause,

and generated uniformly at random— an easy-hard-easy

pattern, and a phase transition phenomenon as the clause-

to-variable ratio varies. It turns out that there is a point

where the hardest instances occur. Such a point is between

an under-constrained region where the instances are almost

surely satisfiable, and an over-constrained region where the

instances are almost surely unsatisfiable. In the transition

region, there is a threshold where roughly half of the in-

stances are satisfiable, and half of the instances are unsatis-

fiable. So, we have a generator that is able to produce both

satisfiable and unsatisfiable instances of varying difficulty.

The paper is structured as follows. Section 2 defines ba-

1When the number of literals per clause is fixed to k, the corresponding

SAT problem is called k-SAT. In the following, when we say linear-time

complexity we mean that the complexity is linear in the size of the formula.

2015 IEEE 45th International Symposium on Multiple-Valued Logic

0195-623X/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMVL.2015.10

30

sic concepts in Łukasiewicz logics. Section 3 defines two

types of clausal forms with Łukasiewicz strong disjunction

and Łukasiewicz negation. We show that the satisfiabil-

ity problem is decidable in linear time for the first type of

clausal forms but is NP-complete for the second type. Sec-

tion 4 reports on an empirical investigation that shows an

easy-hard-easy pattern and a phase transition phenomenon

when testing the satisfiability of the second type of clausal

forms. Section 5 concludes and points out future research

directions.

2 Preliminaries

Definition 1. A propositional language is a pair

L =< Θ, α >, where Θ is a set of logical connec-

tives and α : Θ → N defines the arity of each connective.

Connectives with arity 0 are called constants. A language

< Θ, α > with a finite set of connectives Θ = {θ1, . . . , θr}
is denoted by < θ1/α(θ1), . . . , θr/α(θr) >.

Given a set of propositional variables V , the set LV of

L-formulas over V is inductively defined as the smallest set

with the following properties: (i) V ⊆ LV ; (ii) if θ ∈ Θ
and α(θ) = 0, then θ ∈ LV ; and (iii) if φ1, . . . , φm ∈ LV ,

θ ∈ Θ and α(θ) = m, then θ(φ1, . . . , φm) ∈ LV .

Definition 2. A many-valued logic L is a triplet 〈L, N,A〉
where L =< Θ, α > is a propositional language, N is

a truth value set, and A is an interpretation of the op-

eration symbols that assigns to each θ ∈ Θ a function

Aθ : Nα(θ) → N .

Many-valued logics are equipped with a non-empty sub-

set D of N called the designated truth values, which are the

truth values that are considered to affirm satisfiability.

Definition 3. Let L be a many-valued logic. An interpre-
tation on L is a function I : V → N . I is extended to

arbitrary formulas φ in the usual way:

1. If φ is a logical constant, then I(φ) = Aφ.

2. If φ = θ(φ1, . . . , φr), then I(θ(φ1, . . . , φr)) =
Aθ(I(φ1), . . . , I(φr)).

A formula φ is satisfiable iff there is an interpretation

such that I(φ) ∈ D.

Through this work, we focus in a particular family of

many-valued logics: the finite-valued and infinitely-valued

Łukasiewicz logics. These were born from the generaliza-

tion of a three valued logic proposed by J. Łukasiewicz in

the early 20th century, and have been deeply studied both

from theoretical and practical points of view. For a deeper

study on these matters, see for instance [10].

The language of Łukasiewicz logic is given by

LŁuk =< ¬/1,→ /2,∧/2,∨/2,
/2,⊕/2 > .

We refer to ¬ as negation,→ as implication, ∧ as weak con-

junction, ∨ as weak disjunction,
 as (strong) conjunction,

and ⊕ as (strong) disjunction.

Definition 4. The infinitely-valued Łukasiewicz logic, de-

noted by [0, 1]Ł, is the many-valued logic 〈LŁuk, N,AŁ〉
equipped with the set of designated values D = {1}, where

N is the real unit interval [0, 1], and the interpretation of the

operation symbols AŁ is given by:

A¬(x) = 1− x
A→(x, y) = min{1, 1− x+ y}
A∧(x, y) = min{x, y}
A∨(x, y) = max{x, y}
A�(x, y) = max{0, x+ y − 1}
A⊕(x, y) = min{1, x+ y}

The n-valued Łukasiewicz logic, denoted by Łn, is the

logic defined from the infinitely-valued Łukasiewicz logic

by restricting the universe of evaluation to the set Nn =
{0, 1

n−1 , ...,
n−1
n−1}. That is to say, Łn = 〈LŁuk, Nn, AŁ〉

equipped with D = {1}. Note that the operations are well

defined because Nn is a subalgebra of [0, 1] with the inter-

pretation of the operation symbols AŁ (for any operation

A∗ and any value/pair of values of Nn, the result of the A∗
over this/these values also belongs to Nn).

The function interpreting negation is called Łukasiewicz

negation, the function interpreting strong conjunction is

called Łukasiewicz t-norm, the function interpreting impli-

cation is called its residuum, and the function interpreting

strong disjunction is called Łukasiewicz t-conorm.

We say that a logic L is a Łukasiewicz logic if it is either

[0, 1]Ł or Łn for some natural number n.

Given a Łukasiewicz logic L, we denote by SATL the

set of satisfiable formulas in L; i.e.,

SATL = {ϕ : I(ϕ) = 1 for some interpretation I on L}.

The problem of deciding whether or not a formula belongs

to the set SATL is called the L-satisfiability problem.

It is worth mentioning that one of the reasons we focus

on Łukasiewicz logics is because SATBool ⊂ SATL. This

is not the case for other relevant logics such as Gödel (G)

and Product (Π), where SATG = SATΠ = SATBool [10].

So, while Boolean solvers suffice for deciding the satisfia-

bility of propositional formulas of G and Π, specific solvers

are needed to decide the satisfiability of propositional for-

mulas of L.

31

3 Łukasiewicz Clausal Forms

In Boolean satisfiability, benchmarks are commonly rep-

resented in Conjunctive Normal Form (CNF); i.e., as a

conjunction of clauses, where each clause is a disjunc-

tion of literals. This formalism is very convenient because

state-of-the-art Boolean SAT solvers implement variants

of the Davis-Putnam-Logemann-Loveland (DPLL) proce-

dure [7], and DPLL requires the input in CNF. Hence,

it seems reasonable to ask how Boolean CNFs could be

adapted to Łukasiewicz logic in order to define challeng-

ing benchmarks for evaluating and comparing Łukasiewicz

SAT solvers, as well as in order to develop DPLL-like pro-

cedures for Łukasiewicz logic.

At first sight, one could generalize Boolean CNF for-

mulas by replacing classical disjunction with Łukasiewicz

strong disjunction, and negation with Łukasiewicz nega-

tion: ∧
1≤i≤n

(
⊕

1≤j≤ki

lij)

for i, j, ki, n ∈ N and lij literals. In the following we re-

fer to these formulas as simple Łukasiewicz clausal forms
(simple Ł-clausal forms), and denote by mc(ϕ) the length

of the shorter clause in a simple Ł-clausal form ϕ. That is to

say, if ϕ =
∧

1≤i≤n(
⊕

1≤j≤ki
lij), then mc(ϕ) = min{ki :

1 ≤ i ≤ n}. Through this work, we assume that simple

Ł-clausal forms are interpreted using a truth value set with

at least three elements.

Unfortunately, the expressive power of these clausal

forms is quite limited. As Lemma 6 shows, the satisfiability

problem for simple Ł-clausal forms has linear-time com-

plexity, contrarily to what happens in Boolean SAT, which

is NP-complete when there are clauses with at least three

literals. Hence, complex problems cannot be encoded using

this formalism.

It is quite easy to prove (see Lemma 5) that any simple

Ł-clausal form ϕ is always satisfiable if mc(ϕ) is greater

than two, or if mc(ϕ) = 2 and the cardinality of the truth

value set is odd or infinite. Interestingly, there is a particu-

lar case, for finitely-valued logics, that is more subtle: when

mc(ϕ) = 2 and the cardinality of the truth value set is even.

In this case, deciding the satisfiability of a simple Ł-clausal

form ϕ turns out to be equivalent to deciding the satisfi-

ability, under Boolean semantics, of the subformula of ϕ
containing exclusively the clauses of ϕ with length 2; i.e.,

it is equivalent to deciding the satisfiability of a Boolean 2-

SAT instance. We denote such subformula by B2(ϕ); i.e.,

if ϕ =
∧

1≤i≤n Ci =
∧

1≤i≤n(
⊕

1≤j≤ki
lij), then

B2(ϕ) =
∧

Ci∈ϕ,ki=2

(li1 ∨ li2)

For example, the simple Ł-clausal form ϕ = (x1 ⊕ x2) ∧
(¬x1⊕x2)∧ (¬x1⊕¬x2)∧ (x1⊕x3)∧ (x2⊕x3)∧ (x1⊕

¬x2 ⊕¬x3) is satisfiable in Ł4 because the Boolean 2-SAT

instance (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨
x3) ∧ (x2 ∨ x3) is satisfiable. However, ϕ is unsatisfiable

under Boolean semantics. Recall that SATBool ⊂ SATL.

The treatment of formulas with unit clauses (i.e., con-

taining exactly one literal) is done by applying unit propa-

gation (UP). UP consists in applying the unit literal rule

until the empty clause is derived or a saturation state is

reached. Applying the unit literal rule to an Ł-clausal form

ϕ containing the unit clause li amounts to remove from ϕ
all the clauses containing li, and removing in ϕ all the oc-

currences of ¬li. If we remove a literal from a unit clause,

we obtain the bottom element ⊥. We denote by UP(ϕ) the

formula obtained after applying UP to ϕ. UP(ϕ) is either

empty (meaning that it is satisfiable), a formula containing

the bottom element ⊥ (meaning that there exists a contra-

diction at the unitary level, and so, the formula is directly

unsatisfiable) or mc(UP(ϕ)) > 1, and so we are in one of

the scenarios discussed above.

Formally, we can express the previous results as follows.

Lemma 5. Let ϕ be a simple Ł-clausal form, and let L
be a Łukasiewicz logic with a truth value set N such that
|N | > 2. Then,

1. If mc(ϕ) > 1, ϕ belongs to SATL if one of the fol-
lowing conditions hold:

• |N | = 2s+ 1 for s ≥ 1 or |N | ≥ ℵ0
• mc(ϕ) ≥ 3

2. If mc(ϕ) = 2 and |N | = 2s + 2 for s ≥ 1, then ϕ
belongs to SATL iff B2(ϕ) belongs to SATBool.

3. If mc(ϕ) = 1, then ϕ belongs to SATL iff UP(ϕ)
belongs to SATL.

Proof. 1. It is easy to see that whenever 1
2 belongs to the

universe of evaluation (i.e., whenever |N | = 2s + 1
or L is the infinitely valued Łukasiewicz logic), the

interpretation that assigns 1
2 to each variable satis-

fies any possible simple Ł-clausal form ϕ such that

mc(ϕ) ≥ 2.

On the other hand, if mc(ϕ) ≥ 3 and |N | = 2s + 2
for some s ≥ 1 (N = {0, 1

2s+1 , . . . ,
2s+1
2s+1}), the inter-

pretation that assigns s+1
2s+1 to each variable x satisfies

any clause of ϕ in L. It is clear that s + 1 < 2s + 1,

so s+1
2s+1 ∈ N . On the other hand, by the definition

of Łukasiewicz negation, the interpretation of ¬x is

1 − s+1
2s+1 = s

2s+1 , and it is routine to check that
s+1
2s+1 > s

2s+1 ≥ 1
3 . Thus, for any clause l1⊕ ...⊕ lk in

ϕ, the interpretation of each one of its literals is greater

than or equal to 1
3 . Since mc(ϕ) ≥ 3, we have that the

interpretation of each clause is always 1.

32

2. First suppose there is an interpretation I on L that sat-

isfies ϕ, and recall that 1
2 �∈ N . We can then define

a Boolean interpretation I ′ that satisfies B2(ϕ) by let-

ting

I ′(x) =

{
1 if I(x) > 1

2

0 otherwise

For each binary clause l1 ⊕ l2 from ϕ, at least one of

the strict inequalities I(l1) > 1
2 or I(l2) > 1

2 must

hold in order that I satisfies the clause. So, we can

assume, without loss of generality, that I(l1) > 1
2 . If

l1 is a positive literal (equal to a variable x1), then by

definition I ′(x1) = 1, and so, I(x1 ∨ l2) = 1. Oth-

erwise (l1 = ¬x1), it holds that I(x1) < 1
2 . Then,

by definition, I ′(x1) = 0. So I ′(¬x1) = 1, and thus

I ′(¬x1 ∨ l2) = 1.

To prove the other direction, let |N | = 2s+2 for some

s ≥ 1, and suppose I is an interpretation on {0, 1} that

satisfies B2(ϕ). Then, let I ′ be the interpretation in L
defined by

I ′(x) =

{
s+1
2s+1 if I(x) = 1

1− s+1
2s+1 otherwise

As it was proven in 1, this interpretation satisfies all the

clauses of length at least 3, so we just need to check

that the binary clauses from ϕ are also satisfied. Let

l1⊕ l2 be a binary clause of ϕ. Then, l1∨ l2 is a clause

from B2(ϕ), and thus, I(l1 ∨ l2) = 1. Without loss

of generality, assume that I(l1) = 1. If it is a positive

literal (l1 = x1), then I ′(x1) = s+1
2s+1 and I ′(l2) ≥

1 − s+1
2s+1 , so I ′(x1 ⊕ l2) ≥ s+1

2s+1 + 1 − s+1
2s+1 = 1.

Otherwise, I(¬x1) = 1 implies that I(x1) = 0, and

thus, I ′(x1) = 1− s+1
2s+1 . Then again, I ′(¬x1 ⊕ l2) ≥

1− (1− s+1
2s+1) + 1− s+1

2s+1 = 1.

3. UP preserves the satisfiability when applied to a sim-

ple Ł-clausal form ϕ. If UP(ϕ) contains the empty

clause, then ϕ is unsatisfiable. If UP(ϕ) is the empty

formula, then ϕ is satisfiable. In the rest of cases, since

UP(ϕ) contains no unit clauses, the satisfiability of

UP(ϕ) can be decided using either case 1 or case 2 of

this lemma.

Lemma 6. The satisfiability of any simple Ł-clausal form is
decidable in linear time.

Proof. Case 1 of Lemma 5 can be clearly solved in linear

time because we only have to check whether the cardinality

of the truth value set is either odd or even. In the latter

case, we also have to check whether all the clauses contain

at least three literals, and this can be achieved by traversing

once the clausal form.

Case 2 of Lemma 5 can be also solved in linear time.

Checking whether the cardinality of the truth value set is

even, and identifying the binary clauses in the simple Ł-

clausal form can be easily done in linear time. In addi-

tion, there are algorithms for solving the resulting Boolean

2-SAT problem in linear time [4].

Case 3 of Lemma 5 can be solved using the same algo-

rithms that are applied for Boolean unit propagation, which

have linear-time complexity [15].

To overcome the limitations of simple Ł-clausal forms

explained above, we now define a new family of test

instances, called Łukasiewicz clausal forms (Ł-clausal
forms). These instances have a higher expressive power,

and are interesting from a practical point of view because

they exhibit an easy-hard-easy pattern and a phase transi-

tion phenomenon similar to the ones found in other com-

binatorial problems like Boolean 3-SAT [12]. So, one can

generate both satisfiable and unsatisfiable instances of vary-

ing difficulty by adjusting the clause-to-variable ratio.

Definition 7. Let {x1, . . . , xm} be a set of propositional

variables. A literal is a propositional variable xi or a

negated propositional variable ¬xi. A term is a literal or

an expression of the form ¬(l1 ⊕ ... ⊕ ln), where l1, ..., ln
are literals. A Łukasiewicz clause (Ł-clause) is disjunction

of terms. A Łukasiewicz clausal form (Ł-clausal form) is a

conjunction of Ł-clauses.

Definition 8. The SAT problem for an Ł-clausal form con-

sists in finding an interpretation that satisfies all its Ł-

clauses. If each Ł-clause contains exactly k variable occur-

rences, it is called the k-SAT problem for Ł-clausal forms.

For example, the Ł-clausal form ¬x2 ∧ (x1 ⊕ x3) ∧
(¬(x1 ⊕ x2) ⊕ ¬x3) is satisfied by the interpretation that

assigns the value 0 to x1 and x2, and assigns the value 1 to

x3.

Lemma 9. The 3-SAT problem for Ł-clausal forms is NP-
complete.

Proof. We will show that (i) this problem belongs to NP and

(ii) the Boolean 3-SAT problem is polynomially reducible

to the 3-SAT problem for Ł-clausal forms.

The 3-SAT problem for Ł-clausal forms clearly belongs

to NP: given a satisfiable Ł-clausal form, a nondeterministic

algorithm can guess a satisfying interpretation and check

that it satisfies the formula in polynomial time.

Let {lji |1 ≤ i ≤ n, 1 ≤ j ≤ 3} be a set of literals

over the set of Boolean variables {x1, . . . , xm}, and let φ =∧n
i=1(l

1
i ∨ l2i ∨ l3i) be a Boolean 3-SAT instance. We derive

an Ł-clausal form 3-SAT instance φ′ from φ as follows:

1. For every Boolean variable xk, 1 ≤ k ≤ m, we add

the Ł-clause ¬(xk ⊕ xk)⊕ xk in φ′.

33

2. For every clause l1i ∨ l2i ∨ l3i in φ, we add the Ł-clause

l1i ⊕ l2i ⊕ l3i in φ′.

So, φ′ =
∧m

k=1(¬(xk⊕xk)⊕xk)∧
∧n

i=1(l
1
i ⊕l2i ⊕l3i). This

reduction can obviously be performed in polynomial time,

and the size of φ′ is linear in the size of φ.

We now prove that φ′ is satisfiable iff φ is satisfiable.

Assume that φ′ is satisfiable. Then, every variable xk must

be evaluated to either 0 or 1. This is so because ¬(xk ⊕
xk) ⊕ xk evaluates to 1 iff xk evaluates to either 0 or 1.

Since the semantics of Łukasiewicz strong disjunction when

restricted to 0 and 1 is identical to the semantics of Boolean

disjunction, any model of φ′ is a model of φ. Therefore, φ
is satisfiable.

Assume that φ is satisfiable. Any Boolean model of φ
can be transformed to a many-valued model by assigning 0

to the variables that evaluate to false, and 1 to the variables

that evaluate to true. If xk evaluates either to 0 or 1, ¬(xk⊕
xk)⊕ xk evaluates to 1, and l1i ⊕ l2i ⊕ l3i also evaluates to 1

because we assumed that every Boolean clause l1i ∨ l2i ∨ l3i
is satisfied. Therefore, φ′ is satisfiable.

These instances are interesting because the 3-SAT prob-

lem for Ł-clausal forms is NP-complete while it is decid-

able in linear time if negations are not allowed above the

literal level; i.e., the 3-SAT problem for simple Ł-clausal

forms. Moreover, Ł-clausal forms are genuinely multiple-

valued in the sense that there exist Ł-clausal forms that

are satisfiable under Łukasiewicz semantics but are unsat-

isfiable under Boolean semantics. For example, (x1 ⊕
x2) ∧ (¬x1 ⊕ x2) ∧ (x1 ⊕ ¬x2) ∧ (¬x1 ⊕ ¬x2) is satis-

fied in Łukasiewicz logic if x1 and x2 evaluate to 1
2 , but

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2) is

unsatisfiable in the Boolean case.

We now prove that the 2-SAT problem for Ł-clausal

forms can be solved in linear time.

Lemma 10. The 2-SAT problem for Ł-clausal forms is de-
cidable in linear time.

Proof. The only Ł-clauses of 2-SAT instances that are dif-

ferent from the clauses in simple Ł-clausal forms are of the

form ¬(li ⊕ lj), where li, lj are literals. However, clauses

of the form ¬(li ⊕ lj) can be replaced with ¬li ∧ ¬lj be-

cause ¬(li⊕ lj) is satisfiable iff li and lj evaluate both to 0.

Hence, replacing all the Ł-clauses ¬(li ⊕ lj) with ¬li ∧¬lj
produces a simple Ł-clausal form, whose satisfiability can

be decided in linear time according to Lemma 6.

4 Experimental Results

We first describe the generator of Ł-clausal forms that

we have developed, and then report on the empirical inves-

tigation conducted to identify challenging benchmarks.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

20

40

60

#clauses

S
ec

o
n
d

s

Ł7 median time

Ł5 median time

Ł3 median time

0

0.2

0.4

0.6

0.8

1

P
ro

b
(s

at
)Prob(sat)

Figure 1. Phase transition and easy-hard-
easy pattern for Ł-clausal form 3-SAT in-
stances with 1500 variables, in 3-valued, 5-
valued and 7-valued Łukasiewicz logics.

The generator of Ł-clausal form 3-SAT instances used

works as follows: given n variables and k clauses,

each of the k clauses is constructed from three variables

(xi1 , xi2 , xi3) which are drawn uniformly at random. Then,

one of the following eleven possible Ł-clauses xi1 ⊕ xi2 ⊕
xi3 , ¬xi1 ⊕ xi2 ⊕ xi3 , xi1 ⊕¬xi2 ⊕ xi3 , xi1 ⊕ xi2 ⊕¬xi3 ,

¬xi1 ⊕¬xi2 ⊕ xi3 , ¬xi1 ⊕ xi2 ⊕¬xi3 , xi1 ⊕¬xi2 ⊕¬xi3 ,

¬xi1⊕¬xi2⊕¬xi3 , ¬(xi1⊕xi2)⊕xi3 , ¬(xi1⊕xi3)⊕xi2 ,

and xi1⊕¬(xi2⊕xi3) is selected with the same probability.

We consider this set of clauses because it can be observed in

the reduction from Boolean 3-SAT to Ł-clausal forms that

these types of negations suffice to get NP-hardness.

In the experiments, we solved sets of 100 Ł-clausal form

3-SAT instances with 1,500 variables, and a number of vari-

ables ranging from 100 to 6,000 with steps of 100. We con-

sidered the 3-valued, 5-valued and 7-valued Łukasiewicz

logics, as well as the infinitely-valued Łukasiewicz logic.

Instances were solved with the SMT solver Yices [8] (ver-

sion 2.2.2), with a theorem prover similar to those de-

scribed in [2]. The experiments were run on a cluster of

machines, running the CentOS operating System, equipped

with Intel R© Xeon R© E3-1220v2 Processors at 3.10 GHz

with Turbo Boost disabled, and 8GB of main memory.

Figure 1 shows the results for the finitely-valued case.

We observe a phase transition between satisfiability and un-

satisfiability similar to that of Boolean random 3-SAT, as

well as an easy-hard-easy pattern in the median difficulty

of the problems around the phase transition. Prob(sat) in-

dicates the probability that an instance has to be satisfiable.

In the threshold point of the phase transition roughly half

of the instances are satisfiable, on its left most of the in-

stance are satisfiable, and on its right most of the instance

34

0 1,000 2,000 3,000 4,000 5,000 6,000

0

1,000

2,000

#clauses

S
ec

o
n
d

s

[0, 1]Ł median time

0

0.2

0.4

0.6

0.8

1

P
ro

b
(s

at
)

Prob(sat)

Figure 2. Phase transition and easy-hard-
easy pattern for Ł-clausal form 3-SAT in-
stances with 1500 variables, in infinitely-
valued Łukasiewicz logic. The number of vari-
ables is fixed to 1500.

are unsatisfiable. Moreover, we observe that the difficulty

increases with the cardinality of the truth value set, espe-

cially in the hardest instances.

It is worth noting that in [6] the threshold point for

Boolean random 3-SAT was accurately identified to corre-

spond to a clause-to-variable ratio equal to 4.24. Interest-

ingly, in our case it corresponds to a ratio of approximately

1.9, regardless of the cardinality of the truth value set.

Figure 2 shows the results for the infinitely-valued case.

We observe a phase transition with a threshold point again

of approximately 1.9, and a similar easy-hard-easy pattern.

Finally, it is worth mentioning that we have identified

the phase transition phenomenon and easy-hard-easy pat-

tern for Ł-clausal form 3-SAT instances with other SMT

solvers, as well as with a MIP solver in the infinitely-valued

case. Hence, our results are independent from the encoding

and the solver used, and provide a challenging benchmark.

5 Concluding Remarks

We have defined a new class of clausal forms for

Łukasiewicz logics, studied their complexity, and devel-

oped a generator that produces both satisfiable and unsat-

isfiable instances of varying difficulty. As future work, we

plan to analytically derive tight lower and upper bounds of

the threshold point, and find suitable encodings of combi-

natorial problems using the formalism of Ł-clausal forms.

Finally, we would like to mention that after the submis-

sion of our work we knew that recently, and independently

of our work, Borgwardt et al. [5] proved that the satisfia-

bility problem of a subclass of finitely-valued Łukasiewicz

formulas is NP-complete when the cardinality of the truth

value set is greater than three.

References

[1] S. Aguzzoli, B. Gerla, and Z. Haniková. Complexity issues

in Basic logic. Soft Computing, 9(12):919–934, 2005.
[2] C. Ansótegui, M. Bofill, F. Manyà, and M. Villaret. Build-

ing automated theorem provers for infinitely-valued logics

with satisfiability modulo theory solvers. In Proceedings,
42nd International Symposium on Multiple-Valued Logics
(ISMVL), Victoria, BC, Canada, pages 25–30. IEEE CS

Press, 2012.
[3] C. Ansótegui, M. Bofill, F. Manyà, and M. Villaret. SAT and

SMT technology for many-valued logics. Multiple-Valued
Logic and Soft Computing, 24(1-4):151–172, 2015.

[4] R. Aspvall, M. Plass, and R. Tarjan. A linear time algorithm

for testing the truth of certain quantified boolean formulae.

Information Processing Letters, 8(3):121–123, 1979.
[5] S. Borgwardt, M. Cerami, and R. Peñaloza. Many-valued

horn logic is hard. In Proceedings of the First Workshop on
Logics for Reasoning about Preferences, Uncertainty, and
Vagueness, PRUV 2014, co-located with (IJCAR 2014), Vi-
enna, Austria, pages 52–58, 2014.

[6] J. M. Crawford and L. D. Auton. Experimental results on the

crossover point in satisfiability problems. In 11th National
Conference on Artificial Intelligence, AAAI-93, Washington,
DC, USA, pages 21–27. AAAI Press / The MIT Press, 1993.

[7] M. Davis, G. Logemann, and D. Loveland. A machine pro-

gram for theorem-proving. Communications of the ACM,

5:394–397, 1962.
[8] B. Dutertre. Yices 2.2. In Proceedings of the 26th Inter-

national Conference on Computer Aided Verification, CAV
2014, volume 8559 of Lecture Notes in Computer Science,

pages 737–744. Springer, 2014.
[9] M. R. Garey and D. S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of NP-completeness. Freeman,

San Francisco, 1979.
[10] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dor-

drecht, 1998.
[11] G. Metcalfe, N. Olivetti, and D. M. Gabbay. Proof Theory of

Fuzzy Logics, volume 36 of Applied Logic Series. Springer,

2009.
[12] D. Mitchell, B. Selman, and H. Levesque. Hard and easy dis-

tributions of SAT problems. In Proceedings of the 10th Na-
tional Conference on Artificial Intelligence, AAAI’92, San
Jose/CA, USA, pages 459–465. AAAI Press, 1992.

[13] A. Vidal. NiBLoS: a nice BL-logics solver. Master’s thesis,

Universitat de Barcelona, Barcelona, Spain, 2012.
[14] A. Vidal, F. Bou, and L. Godo. An SMT-based solver

for continuous t-norm based logics. In Proceedings of the
6th International Conference on Scalable Uncertainty Man-
agement, SUM 2012, Marburg, Germany, pages 633–640.

Springer LNCS 7520, 2012.
[15] H. Zhang and M. E. Stickel. An efficient algorithm for unit

propagation. In In Proceedings of the Fourth International
Symposium on Artificial Intelligence and Mathematics (AI-
MATH96), Fort Lauderdale (Florida USA, pages 166–169,

1996.

35

