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Abstract—The Euler characteristic can be defined as a spe-
cial kind of valuation on finite distributive lattices. This work
begins with some brief consideration on the dle of the Euler
characteristic on NM algebras, the algebraic counterpart ®
Nilpotent Minimum logic. Then, we introduce a new valuation,
a modified version of the Euler characteristic we callidempotent
Euler characteristic. We show that the new valuation encodes
information about the formulee in NM propositional logic.
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I. INTRODUCTION

Let L be a distributive lattice. A functiomw: L — R is a
valuationif it satisfies

v(z) +v(y) =v(zVy) +v(zAy) (1)

for all z,y,z € L. Recall that an element € L is join-
irreducibleif it is not the bottom element of, andz =y Vv z
impliesz = y or z = z for all y,z € L. When L is finite,
it turns out [19, Corollary 2] that any valuatianis uniquely
determined by its values on the join-irreducible elemefitg,o
along with its value at the bottom elementof L.

A special kind of valuation, introduced by V. Klee and
G.-C. Rota, is the Euler characteristic, defined as follows.

Definition 1.1 ([16, p. 120], [19, p. 36]) The Euler charac-
teristic of a finite distributive latticd. is the unique valuation
x: L — R such thaty(z) = 1 for any join-irreducible element
x € L,andx(L) =0.
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In this paper we approach the same problem on a different
many-valued logic, the Nilpotent Minimum logic NM. We wiill
briefly investigate the logical meaning of the Euler chaeact
istic on NM algebras, the algebraic counterpart of NM logic,
showing that such valuation, as is, can not carry infornmatio
about assignments making a formula classically true. Iriord
to obtain such a result we will introduce a new valuation, a
modified version of the Euler characteristic we ¢démpotent
Euler characteristic and prove that such valuation indeed is
capable of capturing the desired information.

The NM logic is briefly presented in the next section.
Section Il contains our main results. In Section IV we spend
a few word to describe a particular schematic extension of NM
logic, known as the logic NM We easily obtain, as a corollary
of our main result, that thédempotent Euler characteristic
on NM algebras plays exactly the same rble as the Euler
characteristic on Godel algebras. We conclude our work wit
some consideration on possible further results.

II. THE LOGIC OF THENILPOTENT MINIMUM

A triangular norm(also called-nornt see [17]) is a binary,
commutative, associative and monotonically non-decneasi
operation on[0, 1]? that hasl as unit element. Thalilpotent
Minimumt-norm is a first example of a left-continuous but not
continuous t-norm. It has been introduced by Fodor [13], and
it is defined as

~ [main{z,y} fax4+y>1,
rOy= {O otherwise.

(2)

In [9], [10], the authors investigate the notion of Euler for everyz,y € [0,1].

characteristic in a particular case of finite distributiedtite:
Godel algebras, the algebraic counterpart of the manyedhl
logic known as Godel logfc Specifically, they consider the
Lindenbaum algebra of Godel logic over a finite set of vari

ables and then they investigate the values assigned by tee Eu

characteristic to each equivalence class of formulee. istout
that the Euler characteristic encode logical informatibouw
the formulae, but such information is classical, i.e. caleci

with the analogous notion defined in classical proposifiona
logic; namely, the Euler characteristic of a formula is the

Hence, theNilpotent Minimum propositional logi¢NM
for short) lies in the hierarchy of extensions of th®noidal
T-norm based LogiqMTL), introduced in [12] by Esteva
and Godo. The propositional language of MTL is built over
the binary connectives), A, — and the constant.. Usually
derived connectives are < y = (z — y) © (y — z),
zVy = ((z =y = y)AN({(y = x) = z), the negation
-z =1z — 1, and the constant = —1. We lety? = ¢ ® .

The WNM logic is obtained from MTL by adding the

number of Boolean assignments which makes the formula truexiom:

Further, the authors generalize the notion of Euler chareet

tic to a family of new valuations, the many-valued versiohs o

the Euler characteristic. The latter valuations are shawbet
able to separate many-valued tautologies from non-tagjiedo

1For background on Godel logic see, e.g., [15]. The charaetion of
Godel algebra used in the cited papers is provided in [3],[1&].

(oY) V((zAy) = (z0y), (WNM)

while NM logic is given by WNM plus involutivity axiom:

x> . (INV)
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The aforementioned Godel logic can be obtained by addingamily (C;);c; of NM chains, for some index sét When A
the idempotency axiom to MTL logic. If we add the axiom is finite and not trivial, then the familyC;);c; of non trivial
—(=2?)? ++ (—=(—z)?)? to NM, we obtain its negation fixpoint- chains is essentially unique up to reordering of the finitéein
free version, called NM [14]. set I. Hence, there exist; : A — C; such thatr;(a) = a;
for everya € A. We calla; the i*"-projectionof a. Then, we
can display every elementin A by means of its projections
(aiier-

Since every finite NM chaid' = (C,®, —,V,A, L, T) is
a subalgebra 0f0,1], then by (2) and (4) and the fact that
=08y .= 2 011 0, we have

The following form of local deduction theorem holds in
NM logic [2],

(pFNMﬂJ if and only if Fnar (p2—>’l/). (3)

Hence, we say that NM logiprovesy from ¢, in symbols
© Fnar v, whenp? — 1 is a theorem of NM logic.

The algebraic semantic of MTL is given by the variety rOy= {mm(%y) T >y (5)
of MTL algebras[12]. As Godel algebras are exactly the 1 r < .
prelinear Heyting algebras, NM algebras are the prelinear T z <y
Nelson algebras [7]. Hence, NM logic is tdelson logic Ty = {max(ﬁx Y N y7 (6)

(constructive logic with strong negation) as Godel logida
Intuitionistic logic.

The algebraic variety of NM algebras corresponding to

NM logic has a nice property, that it iBcally finite [18].

forall z,y € C.

Note that, given a NM chair’, everyx € C is either
positive, negative or a negation fixpoint.

This means that finitely generated free algebras are finite.
Hence, a combinatorial treatment of freegenerated algebras
is feasible. Indeed, a characterization of fregenerated NM
algebras based on partially ordered sets (posets for dhast)
been given in [4].

Denote by ©RM, the set of all well-formed formulae
of NM logic whose propositional variables are contained in
{z1,...,x,}. Let A be a NM algebra, witha,...,a, € A,
and lety € FORM,,. By cpA(al, ..., ap, ) We denote the element
of A obtained by the evaluation af in A interpreting every

In the next section we introduce some algebraic and:; with the corresponding,, in particularz* = a;. With this
combinatorial notion that will be useful throughout the pap notation a formulay is atautologyof NM logic if and only

if for every algebrad € NM and for everya,...,a, € A,
A. NM algebras ¢*(a1,...,a,) = T*. Moreover, given two logical formulee
¢ and vy, we say that they ardogically equivalentif and

Abusing notation, in the following we identify logical only if (¢ «» )4 = T4, for every A € NM. In symbols,
connectives with their algebraic interpretations. An blge , = 4. Note that= is an equivalence relation. The algebra
A=(ANV,0,—,1,T)of type(2,2,2,2,0,0) isa WNM  whose elements are the equivalence classes of formulee of NM
algebra if and only i A, A, v, L, T) is a bounded lattice, with |ogic with respect to= is called theLindenbaum Algebraf
top T and bottomlL, (A,®, T) is a commutative monoid, and NM and its elements are denotgd—. The freen-generated
it satisfies theresiduationequation,z © y < z if and only if  algebraNM,, in NM is the Lindenbaum algebra of the logical
z <y — z, theprelinearityequation(z — y)V(y — 2) = T,  formulae over the first variables. Sinc€0, 1] is generic for
the weak nilpotent minimurequation—(z © y) vV ((x Ay) =  NM, thenNM.,, is isomorphic to the subalgebra of, 1]©-1)"
(zx ©y)) = T. Therefore, WNM algebras are a class of generated by the projection functiots, ,. .., a,) — a;. It
involutive residuated lattices. When the lattice OrdeDtaltA follows that there exists a map from equiva'ence classes of
is called achain A WNM algebra that satisfies thavolutivity  formulze[y]- to real-valued functiong : [0, 1] — [0, 1].
equation(zx — 1) — 1 = z is calledNM algebra while a B
Godel algebra is an WNM algebra that satisfidempotency
that isz © x = x. Negation—z is usually defined by — L.
An NM algebra satisfying—(—z2)? < (=(-x)?)2 = T is
called aNM~ algebra Given an element of a NM algebra
A, we say that: is negativewhenz < —z, x is positivewhen
x > —z. We call z a negation fixpointwhenz = —x. Note
that if A has a negation fixpoint, then it is unique.

Given a finite posef” andS C F, the lower setof S is
1 S={ze F|z<yfor somey € S}, and theupper setof
SistS={xeF|z>yforsomey € S}. A forestis a
finite poset such that for every € F' the lower set| {z} is
a chain. A forest with a bottom element is calledree, and
its bottom element is callembot.

Let A be a finite NM algebra. A nonempty subsgtof
A is called afilter of A when S is an upper set, and for
all z,y € Sthenz ©y € S . SinceS is finite, then it has
a minimum elemeny\ g (that is, S is principal). We call
generatorof S the minimum element of the filte$. A filter S
of A isprimeif S # A and forallz,y € A, xVy € S implies
x € S ory € S. Note that, for every prime filte6 of A, its
generator is an idempotent join irreducible elemenfofWe
consider the reverse inclusion as a partial order betwderepr
filters, that isS < S’ if and only if S C S, for every couple

. . ?f filters S and S’.
By the subdirect representation theorem [6] and the fac
that subdirectly irreducible MTL algebras are chains [12],Proposition 1.1 ([2]). The set of prime filters olNM,,
every NM algebraA is isomorphic to a subdirect product of a ordered by reverse inclusion is a forest.

The varietyNM of NM algebras is generated by tktan-
dard NM algebrago,l] = ([0, 1], A0 vI01] 5[01] (0]
,0,1) where %! is the NM t-norm (2),z A0 ¢y =
min{z,y}, = VIO y = mazx{z,y} and

1 if x<
01, — Sy
Ty {ma:c{—'x, y} otherwise. “)

for everyz,y € [0, 1].



As a direct consequence of Proposition 1.1, whgns  join irreducible element oNM;. Indeed, one can check that
generated by a minimal idempotent join irreducible elemefit  for every formulayy € FORM; such that[¢)]= < [a]=, either
NM.,,, thensS is the root of a tree in the forest of prime filters [¢)]= = [a]=, or [¢]= = L. Thus,x(a) = 1. Compare with
of NM,,. In such case, following the classical terminology, Fig. 1.
we say thatS is maximal (with respect to the inclusion among
Lemma 1l.2. Let2 and 3 be the two-elements and the three-
elements NM chains, respectively. Then, given a finite NMrig. 1: NM; is isomorphic to the product of the three depicted NM

filters).
algebra A and a maximal prime filtep, the quotientA /p chains ([1]). The dqsheq line on the left is the generatoileathe
is either isomorphic t®, or isomorphic to3. dotted line on the right iga]=.

We conclude the Section with a simple Lem#nthat will ~
be useful in the following.

Proof: Let (C;);cr be the subdirect representation Af
and letp € A be the join irreducible element that generates
p. Note that since is maximal and prime, thep is minimal
and idempotent.

Since the truth value ofv is strictly lower thanl under
any assignment, but the Euler characteristicaofs greater
than 0, we can not directly interprey as a measure of the
number of classes of assignments making a formula true. We
Sincep is join irreducible then there exists only oniec [ do not discuss further the rble of Euler characteristic M N
such thap; # L ;. Moreoverp; > —p;, for elsep;©p; = L;,  logic here. Instead, we provide a new valuation that, as vie wi
in contradiction with the idempotency of Finally, sincep is  see later in this section, can be interpreted similarly to ho
minimal, p; is the least positive element ifi;. Moreover, if  the Euler characteristic has been interpreted in Godet liog
C; does not have a negation fixpoiit —p; is the greatest [10].

negative element ii0';, otherwisef covers—p;. : . . .
g J / pi Let us introduce such a valuation, slightly different from

Denote with~, the congruence associated o By the the Euler characteristic, defined as follows.
above discussion, if'; does not have a negation fixpoint then
NM.,, /p is isomorphic to the two element NM chalpl ., >
[-p]~,. Otherwise, ifC; has a negation fixpoint then A /p

Definition 111.2. We define thadempotent Euler characteristic
x* : NM,, — R as the valuation olNM,, such that

is isomorphic to the three element NM chéin.., > [f]~, > 1) xT(L)=0;
[=p)~p- . 2) for each join irreducible element € NM,,,
lIl.  VALUATIONS IN NM LOGIC Y g) = 1 ifgog=y,
0 otherwise.

SinceNM,, is a finite distributive lattice whose elements
are formulee inn variables, up to logical equivalence, we can
extend the scope of valuations to formulae, as follows.

Remark. Observe that, ify is a join irreducible element, but
goOg#g, thengog= 1.

Definition 1l.1. Let v : NM, — R be a valuation on The following proposition highlights a fundamental prop-
the finite distributive latticeNM,,. The valuationv(¢) of a  erty of this newly defined valuation. The name given to the
formulay € FORM,, is the number ([¢]=). valuation is due to such property.

As mentioned in the introduction, one of the goals of Proposition I11.3. Fix n > 1. The idempotent Euler charac-

[10] is the interpretation of the logical meaning of the Eule NiStic satisfies, for every € NM.,,
characteristic on Godel algebras. In that specific cagerits YTz o) =xH(2)
out that the Euler characteristic of a formufacoincide with

the number of Boolean assignments satisfying Proof: Let z € NM,,. Three cases are to be considered.

Turning now to the case of NM-algebras, we can hope
that the Euler characteristig(p) of a formulay encodes 1) zoz==
information about assignments makiggtrue. At least, this 2) zoz=L1.
should work for the join irreducible elements D¥M,,. But, )
unfortunately, this is not the case. Indeed, take, for insta 3 zoOz=y withyeNM,, y#z andy # L.

the formula If 1) holds the proposition immediately follows. Suppose

2) holds. We need to prove thgtt(z) = x (L) = 0. First,
. o . Observe that for every € NM,, such thaty < x, we have

A strglghtforward verification showsN}hat for every assign-, oy < 2 @ 2. Thus,y 0y = L. Let G = {g1,...,gm}
ments: FORM; — [0,1], u(a) < 1. Moreover[al= is @  he the poset of join irreducibles @M, such thatg; < z.

2We thank the anonymous referee for pointing out that Lemn2adan be Note thatz = V:il gi- We proceed by induction on the
generalized to any NM-algebra, and not just to finite oness Tdllows from structure ofG. If m = 1, thenz is a join irreducible (an

the fact that the quotient by a maximal filter is a simple atgesnd that up ~atom of NM,,), G = {z}, and x*(z) = 0. Letm > 2, and
to isomorphism the only simple NM-algebras &end 3. suppose (inductive hypothesis) that the proposition hédds

a= (X -X)P2AX.




every elemeny = \/ ... g, with G’ C G. Supposer is not
a join irreducible (otherwise, the result follows by Definit
[11.2). Say, without loss of generality, that,, is maximal in
G, and lety = \/7"" g;. By Equation (1),
(

X (@) = x (gm) +x W) —xT(gm A Y)

By Definition 1.2, x™(g,,) = 0. Further, by inductive
hypothesisy ™ (y) = 0. Let G’ be the poset of join irreducible
g of NM,, such thatg < y. Sinceg,, is join irreducible, and
it is maximal inG, y < gn. Thus,G’ C G. By inductive
hypothesisyx* (g, Ay) = 0. We concludex™ (z) = 0.

Suppose, finally, that 3) holds. Let = —-x A x. By
monotonicity of ®, we obtainz ® z = L. Thus,x"(z) = 0.
Moreover,y A z < z, thus(y A z) ® (y A z) = L. Therefore,

xT(y A z) = 0. Using the subdirect representation, one can

see thatr = y vV z. We obtain
XF(@) =x"(y) +xT(2) —xTyAz) =xT(y),

and the proposition is proved. [ ]

We do not provide here an example of the values of thPU{
idempotent Euler characteristic on a free NM algebra, begau

of the dimension of such structureNM; has 48 elements).

However, a clarifying example is depicted in Fig. 2, for the

case ofNMj .
Lemma lll.4. Fix integern > 1, and letxz € NM,,.

Then,x ™ (z) equals the number of minimal idempotent join-

irreducible elementg € NM,, such thatg < z.

Proof: Let x € NM,,. If z = L the Lemma trivially
holds. Suppose © x = L, with = # L. By Proposition 111.3,
xT(z) = 0. Observe that for aly < z, y©y < x ® z, and
thusy ©y = L. That is, no idempotent element, exceptis
underz, as desired.

Suppose nowr ® x # L. Let F' be the forest of all
idempotent join irreducible elemenig € NM,, such that
g < x. Sincex ®x # L, we haveF # (. Recall that

T = \/qug. We proceed by induction on the structure of

F. If F has only one element, thefi = {«}. By Definition
.2, x*(z) = 1, as desired.

Let now|F| > 1, let! € F be a maximal element df, let
F~ = F\{l}, and letz~ be the join of the elements df .
Observe thatr = 2~ Vv [. Denote byM and M~ the number
of minimal elements of’, and F'—, respectively.

If [ is a minimal element ofF, then M = M~ + 1.

Lemma IIl.5. Fix n > 1, and lety € FORM,,. Let O(¢,n)
be the set of assignments: Form,, — {0, 3,1} such that
u(p) = 1. Then, there is a bijection betweé&h ¢, n) and the
set of minimal idempotent join irreducible elemegts NM,,
such thatg < [¢]=.

Proof: Equipping {0, 1,1} with the structure of an NM
algebra, the resulting chain will be isomorphic to the three
element NM algebra.

Fix an assignment : FOrRM, — {0,3,1}. Then, there

exists a uniqgue homomorphisiy, : NM,, — 3 defined by

hu(lel=) = pul(e). (7

Conversely, for everyh : NM,, — 3 we can define a

,3,1} such that

() = h([¢l=).

unique assignmenty, : FORM,, — {0

(8)

This yields a bijection between assignmentsFORM,, —
0, %, 1} and NM homomorphisma : NM,, — 3. In partic-
lar, consider thaj,(¢) = 1 if and only if h,([p]=) = 1.
Moreover,h;l(l) is a prime filterp;,, in NM.,,.

By Lemma 1.2 and the fact that, is an NM algebra
homomorphismp;, has to be maximal. Hence, for every
u € O(p,n) we can associate the minimal idempotent join
irreducible element ilNM,, that generatepy, , .

Conversely, for everp maximal prime filter inNM,, there
exists an NM algebras homomorphisty : NM,, — 3,
induced by the natural quotient maNM,, — NM,,/p
composed with the embeddinfM,,/p — 3 given by
Lemma 11.2. Thanks to the bijection established by (7) and
(8), we are able to associate an assignment with every
minimal idempotent join irreducible elementin NM,,. And
the Lemma is settled. ]

Combining Lemma 1.4 and Lemma 1.5 we can now state
our main result.

Theorem 1l1.6. Fix an integern > 1. For any formula
¢ € FORM,, the valuationy™(y) equals the number of
assignmentg.: FORM,, — {0, 1,1} such thatu(¢) = 1.

Remark. If ¢ is a tautology in NM logic, theny™ () = 3.

IV. VALUATIONS IN NM™ LOGIC

As mentioned in Section Il, NM is the schematic ex-

Let I~ = I A z~. One can check (for instance, using thetension of NM logic obtained adding the axiof{—z?)? «

subdirect representation), tlhe satisfiesl— © [~ = L. Thus,
by Proposition 111.3,x*(I7) = 0. By (1), using the inductive
hypothesis, we have ™ (z) = xT(1) + xT(z7) — xT(I7) =
1+ M~ —0= M, as desired.

If [ is not a minimal element of’, thenM = M. Let

(—(—x)?)2. On the algebraic side we have that an NM algebra
is an NM~ algebra if and only if it does not have a negation
fixpoint. Since Definitions I11.1 and IIl.2 easily apply toeh
NM~ case, we can consider the idempotent Euler characteristic
on freen-generated NM algebras. As we will see later in
this Section, the results we obtain in this case are infeggst

I =1z~ Clearly, the forest of idempotent join irreducible zthough easy corollaries of the results obtained in theipos

elements undei forms a chain, we denoté&. Moreover,

one easily see that the forest of idempotent join irredecibl

elements undei~ is the chainLZ \ {i}. Thus,x™(I7) = 1.
By (1), we havex*(z) = x*(I) + x"(27) — x*(17) =
1+ M~ —1= M, as desired. [ |

Section.

First of all, observe that Proposition I11.3 and Lemma 111.4
clearly hold onNM,, algebras. Furthermore, we can easily
adapt Lemma Il.2 (and its proof) NM algebras, as follows.



Lemma IV.1. Let 2 be the two-elements NM chain. Then,
given a finite NM algebra A and a maximal prime filtep,
the quotientA /p is isomorphic to2.

Appealing at the proof of Lemma I111.5, given a maximal

of the ordinal sum of Goddel and NM standard chains. The
study of the Euler characteristic, or some modified versions
of such valuation, on NMG algebras is a natural prosecution
of this work. In order to address the more difficult case
given by WNM logic, a useful and clarifying intermediate

prime filter p, there exists an embedding from the quotientstep is the study of RDP logic [21]. Indeed, the structure

NM,, /p to the two-elements NM chai®. Lemma III.5 thus
takes the following form, in the NM case.

Lemma IV.2. Fix n > 1, and lety € FORM,,. Let O(¢p,n)
be the set of assignments: ForRm,, — {0,1} such that
u(p) = 1. Then, there is a bijection betweéh ¢, n) and the
set of minimal idempotent join irreducible elements NM.
such thatg < [¢]=.

This fact, together with a revised version of Lemma Iil.4,
allow us to restate our main theorem for NMogic.

Theorem IV.3. Fix an integern > 1. For any formula
¢ € FORM,, the valuationx™ () equals the number of
assignmentg:.: FORM,, — {0, 1} such thatu(yp) = 1.

Remark. If ¢ is a tautology in NM, theny™ (o) = 2".

Example 1. Consider the subdirect representation M,
given in Fig. 1. Since the freé-generated NM algebra is
a subalgebra olNM;, we can obtainNM; by removing

of join irreducible elements of RDP logic has already been
investigated in [5], while a poset representations of itefr
n-generated algebras has been provided in [20].
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