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Abstract—We provide a uniform proof of standard complete-
ness for a large class of axiomatic extensions of Uninorm Logic.

I. INTRODUCTION

Logics based on uninorms were introduced in [1] as a

generalization of the t-norm based logic approach developed

by Hájek [2]. In this approach the real unit interval [0, 1] is

taken as set of truth values and conjunction “·” and implication

“→” are interpreted as suitable t-norms1 (or classes of t-norms)

and their residua. Introduced in [3] and successfully used in

various applications ranging from expert systems to fuzzy

modeling, uninorms are a generalization of t-norms where the

identity element can be any value in [0, 1].
Uninorm-based logics arise by extending the logic UL of

left-continuous uninorms [1] with suitable Hilbert axioms.

This design leads however to a fuzzy logic (in the sense of

Hájek) only when the resulting system is standard complete,

that is complete w.r.t. algebras whose lattice reduct is [0, 1].
Proving that is often challenging, especially for axiomatic

extensions of UL that do not contain weakening/integrality (i.e.

not extending the logic of left continuous t-norms MTL [4]).

Standard completeness has been indeed established for a hand-

ful such logics, namely UL with the addition of contraction

α → α2 and mingle α2 → α (αk stands for α · α · · ·α k times)

in the seminal paper [1], UL with n-contraction αn−1 → αn

and n-mingle αn → αn−1 (n > 2) in [5], and UL with knotted

axioms αk → αj (for j, k > 1 ) in [6]. These proofs are all

tailored to the specific axiomatic extensions considered and

seem hard to generalize. The main idea behind the proofs in

[1], [6] – which use proof theoretic methods – is that the

addition of a special rule, called density, to any axiomatic

extension of UL makes the resulting logic rational complete,

i.e. complete with respect to algebras over the rationals in

[0, 1]. Thus, the admissibility (or elimination) of the density

rule entails rational completeness for the original logic. Once

this has been established, standard completeness follows (in

many cases) by means of the Dedekind-MacNeille completion.

In this paper we present a proof of standard completeness that

uniformly applies to many extensions of UL with axioms in

the class N2 of the syntactic classification of [7]. Its core

is a general proof of the elimination of the density rule in

hypersequent calculi extending that for UL [1] with a host of

1T-norms are commutative, associative, monotonic binary functions with
identity 1.

(rules capturing a large class of N2) axioms. Our proof applies

to all logics lying between UL and MTL already known to

be standard complete and allows for the discovery of new

uninorm-based fuzzy logics. The latter include UL extended

with contraction or mingle, and UL with f -knotted axioms

f · αk → αn (k ≥ 1, n > 1) .

II. PROOF THEORY FOR AXIOMATIC EXTENSIONS OF UL

Uninorm logic UL [1] is based on a propositional language

with propositional variables, the constants ⊤,⊥, t, f and the

connectives ·,∧,∨ and → . A Hilbert-system for UL is obtained

by adding the prelinearity axiom ((α→ β)∧ t)∨ ((β → α)∧ t)

to any Hilbert calculus for MAILL (the multiplicative-additive

fragment of intuitionistic linear logic), see e.g. [8], [9]. A

Gentzen-style calculus for UL was introduced in [1] and is

based on (single-conclusioned) hypersequents.

Definition 1: [10] A (single-conclusioned) hypersequent is a

finite multiset Γ1 ⇒ Ψ1 | . . . | Γn ⇒ Ψn of sequents, where for

each i = 1, . . . , n, Γi is a multiset of formulas and Ψi is either

empty or a single formula. Γi ⇒ Ψi is called a component of

the hypersequent.

Notation. In the following, hypersequents will be denoted

by G,H and sequents (possibly built from metavariables) by

Si, Ci . Within a sequent S := Γ ⇒ Ψ we will denote by

L(S) the multiset Γ in its left hand side, and by R(S) its

right hand side Ψ . The notation Γk stands for k comma-

separated occurrences Γ, . . . ,Γ of a multiset Γ . ⊙Γ stands for

the multiplicative conjunction · of all the formulas in Γ , and

it is twhen Γ is empty.

The hypersequent calculus HUL for UL is displayed in Ta-

ble I. Notice that its rules are actually rule schemes and that the

(cut) rule is redundant (eliminable, in fact). The rule (com),
which operates on different components of hypersequents,

allows us to prove the prelinearity axiom (which cannot be

captured by a sequent structural rule [7]). A concrete instance

of a rule scheme will be referred to as a rule application.

Following standard practice, we do not always distinguish

explicitly between a rule instance and a rule schema. Given a

rule (r), we call active the components of the premises and

of the conclusion on which (r) operates. We denote multiple

applications of a rule (r) by (r).
Defining hypersequent calculi admitting cut-elimination for

axiomatic extensions of a logic is in general a difficult task.

This task was automated in [11] for extensions of UL with

large classes of axioms of a certain shape. We recall below



G | Γ ⇒ α G | α,∆ ⇒ Ψ

G | Γ,∆ ⇒ Ψ
(cut)

G | α ⇒ α
(init)

G | Γ,⊥ ⇒ Ψ
(⊥)

G | Γ ⇒ ⊤
(⊤)

G | Γ ⇒ Ψ

G | t,Γ ⇒ Ψ
(tl)

⇒ t
(tr)

f ⇒
(fl)

G | Γ ⇒

G | Γ ⇒ f
(fr)

G | α, β,Γ ⇒ Ψ

G | α · β,Γ ⇒ Ψ
(· l)

G | Γ ⇒ α G | ∆ ⇒ β

G | Γ,∆ ⇒ α · β
(· r)

G | Γ ⇒ α G | β,∆ ⇒ Ψ

G | Γ, α → β,∆ ⇒ Ψ
(→ l)

G | α,Γ ⇒ β

G | Γ ⇒ α → β
(→ r)

G | αi,Γ ⇒ Ψ

G | α1 ∧ α2,Γ ⇒ Ψ
(∧l)i=1,2

G | Γ ⇒ α G | Γ ⇒ β

G | Γ ⇒ α ∧ β
(∧r)

G | α,Γ ⇒ Ψ G | β,Γ ⇒ Ψ

G | α ∨ β,Γ ⇒ Ψ
(∨l)

G | Γ ⇒ αi

G | Γ ⇒ α1 ∨ α2

(∨r)i=1,2

G | Γ ⇒ Ψ | Γ ⇒ Ψ

G | Γ ⇒ Ψ
(ec)

G

G | Γ ⇒ Ψ
(ew)

G | Γ1,∆1 ⇒ Ψ1 G | Γ2,∆2 ⇒ Ψ2

G | Γ1,Γ2 ⇒ Ψ1 | ∆1,∆2 ⇒ Ψ2

(com)

TABLE I
HYPERSEQUENT CALCULUS HUL FOR UL

the class of acyclic N2 axioms from [11], define the proper

subclass of nonlinear axioms and the corresponding rules

obtained by using the algorithm in [7].

Definition 2: [11] A UL formula α is in the class N2 if

α =
∧

1≤i≤n
δi , and every δi is α1 · · ·αm → β where

• β = f or β1 ∨ · · · ∨ βk and each βl is a multiplicative

conjunction of propositional variables or t .

• αi =
∧

1≤j≤p
γj
i → βj

i where βj
i = f or a propositional

variable, and γj
i is a multiplicative conjunction or a dis-

junction of propositional variables (or t ).

A formula in N2 is acyclic if for each δi the following

condition holds: for no propositional variable p (and multiset

of formulas Π ) the sequent Π, p ⇒ p arise applying (cut) to

{γj
i ⊢ βj

i }j=1,...,p in all possible ways.

A nonlinear formula is an acyclic N2 formula in which no

propositional variable appears only once in any of the βl, γ
j
i .

Lemma 1: Let A be a set of acyclic N2 axioms. (1) There

is a set R of hypersequent structural rules such that a formula

γ is derivable in the Hilbert system for UL + A iff ⇒ γ is

cut-free derivable in the hypersequent calculus HUL extended

with R. Moreover, (2) each rule (r) ∈ R has the form:

G|S1 . . . G|Sm

(r)
G|Π,Γ1, . . . ,Γn ⇒ Ψ

and satisfies the following properties:

(a) Each metavariable occurring in L(Si) (respectively in

R(Si) ), occurs in the left (respectively right) hand side

of the conclusion

(b) All metavariables Π,Γ1, . . .Γn,Ψ are distinct

(c) Whenever R(Si) = Ψ , the metavariable Π ∈ L(Si) .

For any nonlinear axiom in A, the corresponding rule (r) ∈ R

satisfies in addition

(d) For any premise G|Si of (r) s.t. R(Si) 6= ∅ , none of the

multisets Γ1, . . . ,Γn appears only once in L(Si)

Proof: Claim (1) and the fact that (r) satisfies (a)-(c)

follow by the results in [7]. To show that, for nonlinear axioms,

the rules obtained by using the algorithm in [7] also satisfy

(d), we sketch below the algorithm. This is based on applying

backwards the invertible rules of HUL (i.e. (tl), (fr), (·l),
(∧, r), (∨l) and (→ r)) as much as possible and on the

following observation (known as Ackermann’s lemma): The

rule
S1 · · · Sm

ψ1, . . . , ψn ⇒ ξ
(r′) is interderivable –using (init) and

(cut)– with each of the rules

~S Λ1 ⇒ ψ1 · · · Λn ⇒ ψn

Λ1, . . . ,Λn ⇒ ξ
(r1)

~S Π, ξ ⇒ Ψ

ψ1, . . . , ψn,Π ⇒ Ψ
(r2)

where ~S = S1 · · · Sm and Λ1, . . . ,Λn,Π are fresh metavariables

for multisets of formulas and Ψ is either a formula or the empty

set. Let α =
∧

1≤i≤n
δi be a nonlinear axiom. We start with

⇒ α and, applying backwards (∧r) we get n sequents ⇒ δi
that, as shown below, all give rise to structural rules satisfying

(d). Let δi be α1 · · ·αm → β as in Definition 2. By applying

backwards (→ r) we get α1, . . . , αm ⇒ β . Assume that β 6= f

(as otherwise we can simply remove f by (fr)), Ackermann’s

lemma and subsequent applications of the invertible rules give

{Π, βj ⇒ Ψ}j=1,...,k {Γi, γ
j

i
⇒ β

j

i
}j=1,...,p

Γ1 · · ·Γm,Π ⇒ Ψ

By applying backwards the invertible rules for t and f together

with (·l) to all βj and (∨l) and (·l) to all γj

i we remove all

connectives and constants from the premises. Now if there are

propositional variables that appear in the premises only on

the same side, then the premises containing that variables are

simply removed. We cut the remaining premises in all possible

ways. Since the propositional variables on the left hand side of

the premises appear all with multiplicities (α being a nonlinear

axiom), the resulting rule satisfies (d).

Henceforth we call nonlinear, the hypersequent rules satis-

fying conditions (a)-(d) in the above lemma.

Example 1: The rules (c), (knotnk ),(fknot
n
k ) for n > 1 (and

corresponding axioms) in Table II are nonlinear. This is not

the case of mingle (mgl) and (knot1k).

III. DENSITY ELIMINATION

We now consider the extension of our hypersequent calculi

with the density rule. This rule, first introduced Hilbert-style

in [12], will be considered here as

G|Λ ⇒ p|p⇒ ∆
(D)

G|Λ ⇒ ∆

where p is an eigenvariable, i.e. p should not appear in the
lower hypersequent. Ignoring G, (D) can be read contrapos-

itively as saying (very roughly) “if Λ > ∆ , then Λ > p and

p > ∆ for some p”; hence the name “density”.



Axiom Rule generated by the algorithm in [7]

α → α2

G1|Π,Γ1,Γ1 ⇒ Ψ

G1|Π,Γ1 ⇒ Ψ
(c)

α2 → α

G1|Π,Γ1 ⇒ Ψ G1|Π,Γ2 ⇒ Ψ

G1|Π,Γ1,Γ2,⇒ Ψ
(mgl)

αk → αn

G1|Π,Γn
1 ⇒ Ψ . . . G1|Π,Γn

k
⇒ Ψ

G1|Π,Γ1, . . .Γk ⇒ Ψ
(knotn

k
)

f · αk → αn

{G1|Π,Γn
i ⇒ Ψ}i=1,...k G1|Γk+1 ⇒

G1|Π,Γ1, . . .Γk,Γk+1 ⇒ Ψ
(fknotn

k
)

TABLE II
SOME N2 AXIOMS AND THE CORRESPONDING STRUCTURAL RULES

In this section we prove density-elimination for any hy-

persequent calculus extending HUL with nonlinear rules and

possibly (mgl) (cf. Table II). This means that any derivation

containing an application of (D) can be transformed into

a derivation of the same end-hypersequent which does not

contain (D). Our proof generalizes that in [11] which is

applied to a small subset of the calculi/logics we can deal

with. To this end, we first recall the idea behind the density

elimination proof in [11]. Assume we have a derivation d

ending in an application of (D) as the one above. By Lemma 1

we can safely assume d to be cut-free. We remove the

application of (D) by substituting all occurrences of p in d in

an “asymmetric” way. More precisely, each p occurring on the

left hand side of a sequent is replaced by Λ , and each p on

the right hand side by ∆ . The above application of (D) would

then be simply replaced by (ec). However, this procedure

in general does not result in a “correct” derivation anymore.

For instance if d contains an axiom p ⇒ p , the asymmetric

substitution would transform it into Λ ⇒ ∆ , that is not an

axiom. The idea is then to replace each component of the form

Π, pk ⇒ p by Π,Λk−1 ⇒ t (and hence p ⇒ p is simply ⇒ t ),

perform the asymmetric substitution in all other hypersequents

in the derivation and add suitable cuts to handle problematic

applications of (com). This method, originally introduced in

[11] to deal with extensions of HUL with sequent structural

rules having the same number of occurrences of metavariables

in the premises and in the conclusion, was applied in [6] to

deal with HUL with the rules (knotnk ) for n, k > 1. The

method however does not work, e.g. for important structural

rules such as (c). Consider indeed the case in which the

derivation d (below left) contains an application of (c). After

the substitution we get the derivation below right, where the

“incorrect” application of (c) is marked with (?).

p ⇒ p
·
·
·

Π, p, p ⇒ p

(c)

Π, p ⇒ p
·
·
·

G|Λ ⇒ p|p ⇒ ∆

(D)

G|Λ ⇒ ∆

⇒ t
·
·
·

Π,Λ ⇒ t

(?)

Π ⇒ t
·
·
·

G|Λ ⇒ ∆|Λ ⇒ ∆

(ec)

G|Λ ⇒ ∆

To solve the problem we look back at the whole original

derivation d, with the additional knowledge that Π,Λ ⇒ t

is derivable (this is always the case if we start the proof

transformation from the uppermost application of (c) in d).

The idea is to perform a new substitution: recall that an axiom

p⇒ p should be replaced with something derivable. This time,

instead of ⇒ t, we let the sequent Π,Λ ⇒ t do the job. More

precisely, we perform the following substitution to the whole

derivation d: we replace each Σ, pk ⇒ pwith Σ,Λk−1,Π,Λ ⇒ t

and in all other sequents any p occurring on the left with Λ

and any p occurring on the right with ∆ . As shown below

this new substitution eventually leads to a derivation d1 of

G|Λ ⇒ ∆|Π,Λ,Λ ⇒ ∆ . The (?) in the derivation above will

thus be replaced by the subderivation

Π,Λ ⇒ t
·
·
·
d1

G|Λ ⇒ ∆|Π,Λ,Λ ⇒ ∆

(c)

G|Λ ⇒ ∆|Π,Λ ⇒ ∆ ⇒ t

(com)

G|Λ ⇒ ∆|Λ ⇒ ∆|Π ⇒ t

Notice that the additional components G|Λ ⇒ ∆ can be

removed by applications of (ec) at the end of our restructured

derivation. This procedure is formalized in the following. We

start by recalling a technical lemma needed for our density

elimination proof.

Lemma 2: [13] Let HL be a hypersequent calculus extending

HUL with any rule obtained by the algorithm in [7]. Let d be

a cut-free, density-free derivation of G|p ⇒ ∆|Λ ⇒ p (p 6∈

G,∆,Λ ). The following rule is derivable in HL

G|Θ,Π ⇒ Ψ

(splitd)

G|Θ,Λ ⇒ Ψ|Π ⇒ ∆

Notation. Let S be a sequent. We denote with

S[p⇒p/Λ⇒∆]

the sequent obtained by replacing one occurrence of p on
L(S) with Λ and R(S) with ∆ , if R(S) = p. We use the
notation

S[p⇒p/Λ⇒∆]

for the substitution of each occurrence of p in L(S) with a Λ.

As an example, for S := Π, pk ⇒ p , we have S[p⇒p/Λ⇒∆] =

Π,Λ, pk−1 ⇒ ∆ , and S[p⇒p/Λ⇒∆] = Π,Λk ⇒ ∆ .

Sequents of the form Π, pk ⇒ pwill be called pp-

components in the following.

Theorem 1: Let HL be any hypersequent calculus extending

HUL with any nonlinear rule and possibly (mgl). The calculus

HL + (D) admits density elimination.

Proof: Let d be a (cut),(D)-free derivation ending in

·
·
·

G|Λ ⇒ p|p ⇒ ∆

(D)

G|Λ ⇒ ∆

We show that we can get a (D)-free derivation of G|Λ ⇒ ∆ .

Let H be H = S1| . . . |Sn , we define H∗ as S∗
1 |...|S

∗
n where for

each i = 1, ..., n

• S∗
i = (Si[

p⇒p/⇒t])[
p⇒/Λ⇒] , if Si is a pp-component.



• S∗
i = Si[

p⇒p/Λ⇒∆] otherwise

We prove the following by induction

Claim : For each hypersequent H in d we can find a

(D)-free derivation of G|Λ ⇒ ∆|H∗

Density elimination follows by applying the claim to the

hypersequent G|Λ ⇒ p|p ⇒ ∆ . We have indeed G|Λ ⇒

∆|(G|Λ ⇒ p|p ⇒ ∆)∗ = G|Λ ⇒ ∆|G|Λ ⇒ ∆|Λ ⇒ ∆ .

(Observe that G∗ = G by the eigenvariable condition on p).

The desired hypersequent is obtained by (ec). All the cases,

but the ones involving nonlinear rules or (mgl), are treated

as in [11]. Let (r) be the last rule applied in d to derive H .

We distinguish cases according to the active pp-components

of the rule application. In case the conclusion of (r) is not a

pp-component, by the property (a) of Lemma 1, none of the

premises is a pp-component. The claim simply follows by the

i.h. and an application of (r). Assume that (r) is a non linear

rule and its conclusion is a pp-component as in

G1|S1 ... G1|Sm

(r)

G1|Π,Γ1, ...,Γn, p
k ⇒ p

If none of the premises is a pp-component, we can simply

apply the i.h. and consider the following

G|Λ ⇒ ∆|G∗

1|S
∗

1 . . . G|Λ ⇒ ∆|G∗

1|S
∗

m

(r)

G|Λ ⇒ ∆|G∗

1|Π,Γ1, ...,Γn,Λ
k ⇒ ∆ ⇒ t

(com)

G|Λ ⇒ ∆|G∗

1|Π,Γ1, ...,Γn,Λ
k−1 ⇒ t|Λ ⇒ ∆

(ec)

G|Λ ⇒ ∆|G
∗

1|Π,Γ1, ...,Γn,Λ
k−1

⇒ t

Assume now that the conclusion of (r) is a pp-component

and the metavariable Π , which witnesses for (r) the property

(c) in Lemma 1 is instantiated with at least one p. By the

properties (a) and (c), all the premises of (r) are either of the

form Θi, p
ni ⇒ p , for ni ≥ 1 or Θi ⇒ . Consequently any S∗

i

will be either of the form Θi,Λ
ni−1 ⇒ t or Θi ⇒ . The claim

just follows by applying the rule (r) to all the S∗
i ’s.

Assume now that Π is not instantiated with any p and that at

least some Si , say those for i ∈ {1, ..., q} , are pp-components.

Thus, by property (d), pp-components should necessarily con-

tain more than one p, i.e. we can assume that any Si, for

i ∈ {1, ..., q} is of the form Π,Θi, p
ni ⇒ p , with ni ≥ 2 . In

addition, we might have premises of the form Π,Θi ⇒ p or

Θi ⇒ . The sequents S∗
i will be of the form Π,Θi,Λ

ni−1 ⇒ t

or Π,Θi ⇒ ∆ or Θi ⇒ , respectively. By the i.h., we have

derivations of G|Λ ⇒ ∆|G∗
1|S

∗
1 , ..., G|Λ ⇒ ∆|G∗

1 |S
∗
m, which

cannot be used as premises of (r). We instead apply Lemma

3 below to each of the G|Λ ⇒ ∆|G∗
1|S

∗
i , for i = 1, ...q , thus

obtaining G|Λ ⇒ ∆|G∗
1 |Π,Θi,Λ

ni ⇒ ∆ . We then apply the

rule (r) as follows.

{G|Λ ⇒ ∆|G∗

1|Π,Θi,Λ
ni ⇒ ∆}i=1,...,q

{G|Λ ⇒ ∆|G∗

1|S
∗

i }i=q+1,...,m

G|Λ ⇒ ∆|G∗

1|Π,Γ1, ...,Γn,Λ
k ⇒ ∆

(r)
⇒ t

G|Λ ⇒ ∆|G∗

1|Π,Γ1, ...,Γn,Λ
k−1 ⇒ t|Λ ⇒ ∆

(com)

G|Λ ⇒ ∆|G∗

1|Π,Γ1, ...,Γn,Λ
k−1 ⇒ t

(ec)

The application of (r) above is correct, being nothing more

(apart from the hypersequent context) than the original

rule application in which every premise Si is replaced by

Si[
p⇒p/Λ⇒∆] . Assume that the last rule applied is (mgl) and

that its conclusion contains a pp-component. Two subcases can

appear: both premises of (mgl) are pp-component or only one

of the premises is. The latter case can be reduced to the former.

Indeed, assume that we have

G1|Π,Γ1 ⇒ p G1|Π,Γ2, p ⇒ p

(mgl)

G1|Π,Γ1,Γ2, p ⇒ p

We apply (mgl) with premises G1|Π,Γ2, p ⇒ p , thus getting

G1|Π,Γ2,Γ2, p, p ⇒ p . Similarly, we obtain G1|Π,Γ1,Γ1 ⇒ p

from G1|Π,Γ1 ⇒ p . Hence we get

G1|Π,Γ1,Γ1 ⇒ p G1|Π,Γ2,Γ2, p, p ⇒ p

(com)

G1|Π,Γ1,Γ2, p ⇒ p|Π,Γ1,Γ2, p ⇒ p

(ec)

G1|Π,Γ1,Γ2, p ⇒ p

Assume that both premises contain pp-components, e.g., as in

G1|Π,Γ1, p ⇒ p G1|Π,Γ2, p ⇒ p

(mgl)

G1|Π,Γ1,Γ2, p, p ⇒ p

W.l.o.g. we assume G1 = G∗
1 = ∅ . By i.h. we have derivations

of G|Λ ⇒ ∆|Π,Γ1 ⇒ t and G|Λ ⇒ ∆|Π,Γ2 ⇒ t . Consider

the following derivation d1

G|Λ ⇒ ∆|Π,Γ1 ⇒ t G|Λ ⇒ ∆|Π,Γ1 ⇒ t

(mgl)

G|Λ ⇒ ∆|Π2
,Γ2

1 ⇒ t

(splitd)

G|Λ ⇒ ∆|Π,Γ1,Λ ⇒ t|Π,Γ1 ⇒ ∆

(∗)

G|Λ ⇒ ∆|Π,Γ1,Λ ⇒ t|Π,Γ1 Λ ⇒ ∆ G|Λ ⇒ ∆|Π,Γ2 ⇒ t

(mgl)

G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒ t|Π,Γ1,Λ ⇒ ∆

Where (∗) stands for an application of Lemma 4 below. Simi-

larly, we can obtain a derivation d2 of G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒

t|Π,Γ2,Λ ⇒ ∆ . Applying (mgl) to the end-hypersequent of

d1 and d2 we obtain a derivation of G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒

t|Π,Γ1,Γ2,Λ
2 ⇒ ∆. The desired hypersequent is finally

obtained as follows

G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒ t|Π,Γ1,Γ2,Λ
2 ⇒ ∆ ⇒ t

(com)

G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒ t|Π,Γ1,Γ2,Λ ⇒ t|Λ ⇒ ∆

(ec)

G|Λ ⇒ ∆|Π,Γ1,Γ2,Λ ⇒ t

Lemma 3: Let HL and d be as in Theorem 1 and assume to

have a derivation of a hypersequent G1|Π,Λ
k−1 ⇒ t , where

k ≥ 2 , and no p appears. We can find a (D) -free derivation

of the hypersequent H1 = G|Λ ⇒ ∆|G1|Π,Λ
k ⇒ ∆

Proof:

Let H = S1| . . . |Sn . We define H∗∗ as S∗∗
1 |...|S∗∗

n where for

each i = 1, ..., n

• S∗∗
i = (Si[

p⇒p/Π,Λk−1⇒t])[
p⇒/Λ⇒] if Si is a pp-

component.

• S∗∗
i = Si[

p⇒p/Λ⇒∆] otherwise

Our statement is a consequence of the following



Claim: For each hypersequent H in d we can find a (D)-free

derivation of H1|H
∗∗

We prove the claim by induction on the length of the derivation

d. Let H be the axiom p ⇒ p . Recall that the hypersequent

G1|Π,Λ
k−1 ⇒ t is derivable by assumption. Hence, applying

(ew) to the latter, we obtain H1|(p ⇒ p)∗∗ = G|Λ ⇒

∆|G1|Π,Λ
k ⇒ ∆|Π,Λk−1 ⇒ t . Logical rules (but (→ l)),

(ec) and (ew) are easy to handle. The case of (→ l) with

active pp-component in the conclusion and no pp-component

in the active premises is handled by using (com).
Assume now that the last rule applied in a derivation of

H is (com). In case neither the premises nor the conclusion

contain active pp-components, the claim is straightforward.

We discuss below all non-trivial cases. First, we assume that

the conclusion of (com) does not contain any active pp-

component, while one of the premises does, as in:

G2|Γ1,Γ2, p ⇒ p G2|Π1,Π2 ⇒ ∆1

G2|Γ1,Π1, p ⇒ ∆1|Γ2,Π2 ⇒ p
(com)

Our aim is to get a (D)-free derivation of H1|G
∗∗
2 |Γ1,Π1,Λ ⇒

∆1|Γ2,Π2 ⇒ ∆. By i.h. we have derivations of

H1|G
∗∗
2 |Π1,Π2 ⇒ ∆1 and H1|G

∗∗
2 |Γ1,Γ2,Π,Λ

k−1 ⇒ t. The

desired hypersequent is obtained as follows (the application

of (ec) is justified as Π,Λk ⇒ ∆ is a component of H1)

H1|G
∗∗

2 |Γ1,Γ2,Π,Λ
k−1 ⇒ t

H1|G
∗∗

2 |Π1,Π2 ⇒ ∆1

(tl)

H1|G
∗∗

2 |Π1,Π2, t ⇒ ∆1

(cut)

H1|G
∗∗

2 |Γ1,Γ2,Π1,Π2,Π,Λ
k−1 ⇒ ∆1

(splitd)

H1|G
∗∗

2 |Γ1,Π1,Π,Λ
k ⇒ ∆1|Γ2,Π2 ⇒ ∆

(splitd)

H1|G
∗∗

2 |Γ1,Π1,Λ ⇒ ∆1|Π,Λ
k ⇒ ∆|Γ2,Π2 ⇒ ∆

(ec)

H1|G
∗∗

2 |Γ1,Π1,Λ ⇒ ∆1|Γ2,Π2 ⇒ ∆

The case of an application of (com) with two pp-

components in the premises and one in the conclusion is

similar. Assume now that the conclusion of (com) contains

one active pp-component, while none of the premises does

G2|Γ1,Γ2, p ⇒ ∆1 G2|Π1,Π2 ⇒ p

G2|Γ1,Π1 ⇒ ∆1|Γ2,Π2, p ⇒ p
(com)

Our aim is to get a (D)-free derivation of H1|G
∗∗
2 |Γ1,Π1 ⇒

∆1|Γ2,Π2,Π,Λ
k−1 ⇒ t . By i.h. we have derivations of

H1|G
∗∗
2 |Γ1,Γ2,Λ ⇒ ∆1 and H1|G

∗∗
2 |Π1,Π2 ⇒ ∆. We obtain

the desired hypersequent as follows (the application of (ec) is

justified as Λ ⇒ ∆ is a component of H1)

H1|G
∗∗

2 |Γ1,Γ2,Λ ⇒ ∆1 H1|G
∗∗

2 |Π1,Π2 ⇒ ∆

(com)

H1|G
∗∗

2 |Γ1,Π1 ⇒ ∆1|Γ2,Π2,Λ ⇒ ∆ H1|Π,Λ
k−1

⇒ t

(com)

H1|G
∗∗

2 |Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−1 ⇒ t|Λ ⇒ ∆

(ec)

H1|G
∗∗

2 |Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−1

⇒ t

The case of (com) with one pp-component on a premise and

two in the conclusion is similar. Assume now that the last rule

(r) applied in a derivation of H is a nonlinear rule or (mgl)
and that its conclusion is a pp-component, i.e. we have

G2|P1 ... G2|Pm

(r)

G2|Π1,Σ1, ...,Σn, p
s ⇒ p

By (a) in Lemma 1, each Pj can have one of the following

forms: either Π1,Ξj , p
mj ⇒ p (say the Pj ’s with j ∈ {1, ..., l}

, with l ≤ m ), or Π1,Ξj ⇒ p (say the Pj ’s with j ∈

{l + 1, ..., r} , with r ≤ m ), or Ξj ⇒ . The i.h. gives us

derivations of H1|G
∗∗
2 |P ∗∗

1 , ..., H1|G
∗∗
2 |P ∗∗

m . In particular, this

means that, for G2|Pj , with j ∈ {1, ..., l}, we have derivations

of H1|G
∗∗
2 |Π1,Ξj ,Λ

mj−1,Π,Λk−1 ⇒ t. The i.h. applied to

the premises of (r) of the form G2|Π1,Ξj ⇒ p leads to

derivations of H1|G
∗∗
2 |Π1,Ξj ⇒ ∆. From the latter, recalling

that H1|Π,Λ
k−1 ⇒ t is derivable, we get

H1|G
∗∗

2 |Π1,Ξj ⇒ ∆ H1|Π,Λ
k−1

⇒ t

(com)

H1|G
∗∗

2 |Π1,Ξj,Π,Λ
k−2 ⇒ t|Λ ⇒ ∆

(ec)

H1|G
∗∗

2 |Π1,Ξj ,Π,Λ
k−2 ⇒ t

Summing up for any premise of the form G2|Π1,Ξj , p
mj ⇒ p

we have a derivation of H1|G
∗∗
2 |Π1,Ξj ,Λ

mj ,Π,Λk−2 ⇒ t, for

G2|Π1,Ξj ⇒ p, a derivation of H1|G
∗∗
2 |Π1,Ξj ,Π,Λ

k−2 ⇒ t

and for any premise G2|Sj with R(Sj) = ∅ , a derivation of

H1|G
∗∗
2 |P ∗∗

j . We can then apply the rule (r) as follows:

{H1|G
∗∗

2 |Π1,Ξj ,Π,Λ
k−2 ⇒ t}j=l+1,...,r {H1|G

∗∗

2 |P∗∗

j }j=r+1,...,m

{H1|G
∗∗

2 |Π1,Ξj ,Λ
mj ,Π,Λk−2 ⇒ t}j=1,...,l

H1|G
∗∗

2 |Π1,Σ1, ...,Σn,Λ
s,Π,Λk−2 ⇒ t

(r)

This a correct application of (r). Indeed, apart from the hyper-

sequent context, it is the original rule application, where Π1 is

replaced by Π1,Π,Λ
k−2 , each p on the left is replaced by Λ

and each p on the right by t. Notice that what we derived above

can also be written as H1|G
∗∗
2 |Π1,Σ1, ...,Σn,Λ

s−1,Π,Λk−1 ⇒ t

which is the desired hypersequent.

Lemma 4: Let HL and d be as in Theorem 1 and assume

we have a derivation of a hypersequent G1|Π ⇒ ∆ where no p

appears. We can find a (D)-free derivation of the hypersequent

H1 = G|Λ ⇒ ∆|G1|Π,Λ ⇒ ∆

Proof: Let H be H = S1| . . . |Sn , we define H∗∗ as

S∗∗
1 |...|S∗∗

n where for each i = 1, ..., n

• S∗∗
i = (Si[

p⇒p/Π⇒∆])[p⇒/⇒] , if Si is a pp-component.

• S∗∗
i = Si[

p⇒p/Λ⇒∆] otherwise

The statement of the lemma is a consequence of the following:

Claim: For each hypersequent H in d we can find a (D)-free

derivation of H1|H
∗∗

which is proved by induction on the length of the derivation d.
If H = p⇒ p then H1|Π ⇒ ∆ is derivable by applying (ew) to
the hypersequent G1|Π ⇒ ∆ which is derivable by assumption.
For logical rules, (ec) and (ew), the proof is similar to that of
the previous lemma. Assume now that the last applied rule in a
derivation of H is (com). We discuss some problematic cases
involving pp-components, the remaining ones being similar or
trivial. First, we assume that the conclusion does not contain
any active pp-component, while one of the premises does. We
have:

G2|Γ1,Γ2, p
k ⇒ p G2|Π1,Π2 ⇒ ∆1

G2|Γ1,Π1, p
k ⇒ ∆1|Γ2,Π2 ⇒ p

(com)

By i.h. we have derivations of H1|G
∗∗
2 |Π1,Π2 ⇒ ∆1 and

H1|G
∗∗
2 |Γ1,Γ2,Π ⇒ ∆ . We restructure the derivation as



follows (the last application of (ec) is justified by the fact

that Π,Λ ⇒ ∆ is in H1 )

H1|G
∗∗

2 |Γ1,Γ2,Π ⇒ ∆

(mgl)

H1|G
∗∗

2 |Γ1,Γ2,Γ2,Π ⇒ ∆

H1|G
∗∗

2 |Π1,Π2 ⇒ ∆1

(mgl)

H1|G
∗∗

2 |Π1,Π2,Π2 ⇒ ∆1

(com)

H1|G
∗∗

2 |Γ1,Γ2,Π1,Π2,Π ⇒ ∆1|Γ2,Π2 ⇒ ∆

(splitd)

H1|G
∗∗

2 |Γ1,Π1,Π,Λ ⇒ ∆1|Γ2,Π2 ⇒ ∆|Γ2,Π2 ⇒ ∆

(mgl + (ec))

H1|G
∗∗

2 |Γ1,Π1,Π,Λ
k ⇒ ∆1|Γ2,Π2 ⇒ ∆

(splitd)

H1|G
∗∗

2 |Γ1,Π1,Λ
k ⇒ ∆1|Π,Λ ⇒ ∆|Γ2,Π2 ⇒ ∆

(ec)

H1|G
∗∗

2 |Γ1,Π1,Λ
k ⇒ ∆1|Γ2,Π2 ⇒ ∆

For space reasons, in all the above applications of (mgl) the

single premise actually stands for two equal premises. Assume

now that the conclusion of (com) contains one active pp-

component, while none of the premises does.

G2|Γ1,Γ2, p
k ⇒ ∆1 G2|Π1,Π2 ⇒ p

(com)

G2|Γ1,Π1 ⇒ ∆1|Γ2,Π2, p
k ⇒ p

Assume, w.l.o.g that G2 = ∅ . By i.h. we have derivations

of H1|Γ1,Γ2,Λ
k ⇒ ∆1 and H1|Π1,Π2 ⇒ ∆ from which,

by applying (com), we obtain a derivation of H1|Γ1,Π1 ⇒

∆1|Γ2,Π2,Λ
k ⇒ ∆ . Then, recalling that H1|Π ⇒ ∆ is

derivable, the desired hypersequent is obtained as follows (the

(ec)s are justified as Λ ⇒ ∆ and Π,Λ ⇒ ∆ are in H1)

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Λ
k ⇒ ∆ H1|Π ⇒ ∆

(com)

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−1

⇒ ∆|Λ ⇒ ∆

(ec)

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−1 ⇒ ∆ H1|Π ⇒ ∆

(com)

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−2 ⇒ ∆|Π,Λ ⇒ ∆

(ec)

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π,Λ
k−2 ⇒ ∆

·
·
·

H1|Γ1,Π1 ⇒ ∆1|Γ2,Π2,Π ⇒ ∆

The case in which the last rule applied to derive H is (mgl)
or any nonlinear rule, is handled by suitably applying the i.h.,

(mgl), (com) and the rule.

IV. STANDARD COMPLETENESS

Henceforth, we fix L to be a logic extending UL with any

set A of nonlinear axioms and possibly mingle α2 → α . For

all concepts of universal algebra below we refer to [1], [8].

We call L-algebra the variety of UL-algebras satisfying the

equations A∗ corresponding to the axioms in A. It follows

e.g. from [1] that L is complete w.r.t to the class of linearly

ordered L-algebras (L-chains).

Using Theorem 1, we can obtain a stronger result: the

completeness of the logic L with respect to the class of

linearly, densely ordered L-algebras (rational completeness)

Theorem 2: L is rational complete.
Proof: It was shown in [1], that any axiomatic extension

of UL in which the following hypersequent rule

G|Λ ⇒ p|Σ, p ⇒ ∆

G|Λ,Σ ⇒ ∆

(p eigenvariable) does not enlarge the set of provable the-

orems, is complete w.r.t. to the class of densely ordered L-

chains. The claim follows by Theorem 1, being the above rule

derivable from the density rule considered in Section III, as

follows:

G|Λ ⇒ p|Σ, p ⇒ ∆

(·l)

G|Λ,⇒ p| ⊙ Σ, p ⇒ ∆

(→ r)

G|Λ,⇒ p|p ⇒ ⊙Σ → ∆

(D)

G|Λ ⇒ ⊙Σ → ∆

Σ ⇒ ⊙Σ ∆ ⇒ ∆

(→ l)

Σ,⊙Σ → ∆ ⇒ ∆

(cut)

G|Λ,Σ ⇒ ∆

Standard completeness is then achieved through so called

Dedekind Mac-Neille completion (DM-completion, for short).

Indeed it is shown, e.g. in [1], that the DM-completion of

a dense UL-chain is still a dense UL-chain (in other words,

UL-chains are preserved by DM-completion). Moreover, the

results in [14] ensure the preservation under DM-completion

for the equations corresponding to acyclic N2 axioms, hence

in particular for A∗. The DM-completion of a dense countable

L-chain is thus a dense L-chain, which in addition is order-

isomorphic to [0, 1]. This fact, together with Theorem 2 and

the results in [1], leads to:

Theorem 3: L is standard complete.
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