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Abstract—This paper is a contribution to the understanding
of the relation between pivotal decompositions of operations on
a set A and clones on the same set. In this preliminary study we
establish sufficient conditions on a pivotal operation Π so that
the corresponding class of Π-decomposable operations constitutes
a clone, and discuss the normal form representations that such
pivotal operations induce. We also outline several open questions,
providing directions for further research.

I. MOTIVATION

Several classes of operations have the remarkable feature
that each member f : An → A is decomposable into simpler
operations that are then combined by a single operation,
in order to retrieve the values of the original operation f .
A noteworthy example is the class of Boolean operations
f : {0, 1}n → {0, 1} that can be decomposed into expressions
of the form

f(x) = xkf(x1
k) + (1− xk)f(x0

k), (1)

for x = (x1, . . . , xn) ∈ {0, 1}n and k ∈ [n] and where xc
k

denotes the n-tuple obtained from x by substituting its k-
th component by c ∈ {0, 1}. Such decomposition scheme is
referred to as Shannon decomposition (or Shannon expansion)
[16], or pivotal decomposition [1]. Boolean operations are
similarly decomposable into expressions in the language of
Boolean lattices

f(x) = (xk ∧ f(x1
k)) ∨ (xk ∧ f(x0

k)) (2)

where xk = 1− xk.

More recent examples include the class of polynomial
operations over a distributive lattice (essentially, combinations
of variables and constants using the lattice operations ∧ and ∨)
that were shown in [11] to be decomposable into expressions
of the form

f(x) = med(f(x0
k), xk, f(x1

k)), (3)

where med is the ternary lattice polynomial given by

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

The latter decomposition scheme is referred to as median
decomposition in [4] and [11]. We refer the reader to [3], [13],
[17] for applications of the median decomposition formula to
obtain median representations of Boolean operations.

Note that decomposition schemes (1), (2) and (3) share the
same general form, namely,

f(x) = Π(xk, f(x1
k), f(x0

k)).

Indeed,

• in (1) we have Π(x, y, z) = xy + (1− x)z,

• in (2) we have Π(x, y, z) = (x ∧ y) ∨ (x ∧ z), and

• in (3) we have Π(x, y, z) = med(x, y, z).

These facts were observed in [12] where these decomposi-
tion schemes, called pivotal decompositions, were investigated.
In particular, it was observed that not every ternary operation
serves as a pivotal operation.

In this paper we are interested in classes of pivotally
decomposable operations that constitute clones of operations
over a set A. Our motivation is rooted in [2] where a study
of normal form representations of Boolean operations was
presented and based on compositions of Boolean clones. In
particular, it was shown that normal form representations of
Boolean operations that have the ternary operator med as the
only logical connective, allow shorter representations than the
classical DNF, CNF and polynomial representations.

As we will see, clones of pivotally decomposable opera-
tions provide nice normal form representations having a unique
operation as logical connective, namely, the corresponding
pivotal operation.

The paper is organised as follows. After recalling in Section
II basic notions and terminology needed throughout the paper,
we define the concept of pivotal operation and that of pivotally
decomposable class in Section III and introduce the notion of
normal form associated with a pivotal operation and mention
some related properties. In Section IV we establish sufficient
conditions on pivotal operations so that the corresponding
pivotal decomposable classes constitute clones. As it turns out,
such a clone can be generated by the corresponding pivotal
operation together with constant operations. As a concrete
example, we analyse the case of Boolean operations and
conclude that only 4 of them can be used as pivotal operations,
and we also provide the descriptions of the corresponding
clones of pivotally decomposable operations.

We finish the paper with some concluding remarks as well
as few unsettled questions that we present as open problems
in Section V.



II. PRELIMINARIES: BASIC NOTIONS AND NOTATIONS

For any positive integer n, we denote by [n] the set
{1, . . . , n}. For a nonempty set A, a function f : An → A
is called an n-ary operation on A. We denote by O(n)

A the set
of n-ary operations on A and by OA =

⋃
n≥1O

(n)
A the set

of operations on A. For any f ∈ O(n)
A , S ⊆ [n] and a ∈ An

we define the S-section fa
S of f as the |S|-ary operation on

A defined by fa
S(x) = f(axS), where axS is the n-tuple whose

i-th coordinate is xi, if i ∈ S, and ai, otherwise. For k ∈ [n],
we say that the k-th argument of f ∈ O(n)

A is essential if there
is a tuple b ∈ An such that fb

k is non-constant. Otherwise, we
way that it is inessential.

A clone on A is a set C ⊆ OA of operations on A that

1) contains all projections on A, i.e., operations
pni : An → A given by pni (x1, . . . , xn) = xi for
i ∈ [n], and

2) is closed under compositions, i.e., if f ∈ C ∩ O(n)
A

and g1, . . . , gn ∈ C ∩ O(m)
A , then their composition

f(g1, . . . , gn) ∈ O(m)
A that is defined by

f(g1, . . . , gn)(x) = f(g1(x), . . . , gn(x)) (x ∈ Am)

also belongs to C.

In the case when A is finite, the set of all clones on A
forms an algebraic lattice, where the lattice operations are
the following: meet is the intersection, join is the smallest
clone that contains the union. The greatest element is the clone
OA of all operations on A; the least element is the clone JA
of all projections on A. For sets A of cardinality at least 3,
this lattice is uncountable, and its structure remains a topic of
current research; see, e.g., [6], [8]. In the case when |A| = 2,
the lattice of clones on A is countably infinite, and it was
completely described by E. Post [15]. In particular, it follows
that each Boolean clone can be generated by a finite set of
Boolean operations. For instance,

• the clone O{0,1} of all Boolean operations can be
generated by {¬,∧} or, equivalently, by {0,¬,med};

• the clone M of all monotone Boolean operations, i.e.,
verifying x ≤ y =⇒ f(x) ≤ f(y), can be generated
by {0, 1,∧,∨} or, equivalently, by {0, 1,med};

• the clone SM of all self-dual monotone Boolean op-
erations, i.e., monotone operations verifying f(¬x) =
¬f(x), is generated by {med}.

For further background see, e.g., [6], [8].

III. PIVOTAL OPERATIONS AND INDUCED NORMAL FORMS

In what follows, A denotes an arbitrary fixed nonempty
set, and 0 and 1 are two fixed elements of A. In the setting
of operations, the notion of pivotal operation Π and that of
Π-decomposable operation can be defined as follows.

Definition 1 (Definition 2.1 in [12]). A pivotal operation on
A is a ternary operation Π on A that satisfies the equation

Π(x, y, y) = y. (4)

If Π is a pivotal operation, then f ∈ O(n)
A is Π-decomposable

if

f(x) = Π(xi, f(x1
i ), f(x0

i )), x ∈ An, i ∈ [n]. (5)

Also, we denote by ΛΠ the class of Π-decomposable opera-
tions on A.

Note that condition (4) ensures that Π-decomposability of
an operation does not depend on its inessential arguments.
Indeed, if the ith argument of f is inessential, then f(x) =
f(x1

i ) = f(x0
i ) for every x ∈ An. It follows from (4) that

f(x) = Π(xi, f(x1
i ), f(x0

i )) for any x ∈ An. In particular,
we can state the following result.

Lemma 2. If Π is a pivotal operation, then every constant
operation on A is Π-decomposable.

Note that if an operation f is Π-decomposable, then we
arrive at a representation of f by an expression built from the
pivotal operation Π and applied to variables and constants,
by iterating its Π-decomposition expression (5). This fact
motivates the following notion of Π-normal form.

Definition 3. Let Π ∈ O(3)
A . We define the classes of k-ary

Π-normal forms Nk
Π inductively on k ≥ 0 by the following

rules.

1) N0
Π = O(0)

A .
2) For any k ≥ 0, the class Nk+1

Π is defined by Nk+1
Π =

{Π(xk+1, g, g
′) | g, g′ ∈ Nk

Π}.

We denote by NΠ the class
⋃

k≥0 N
k
Π of the Π-normal forms.

Observe that Nk
Π ⊆ O

(k)
A for every k ≥ 0. By repeated

applications of (5), we get the following result.

Proposition 4. If Π is a pivotal operation, then ΛΠ ⊆ NΠ.

IV. CLONES OF PIVOTALLY DECOMPOSABLE OPERATIONS

We aim to give conditions on a pivotal operation Π for
ΛΠ to be a clone. To this extent, we consider the following
equations:

Π(x, 1, 0) = x, (6)
Π(Π(x, y, z), t, u) = Π(x,Π(y, t, u),Π(z, t, u)). (7)

The relevance of property (7) is made apparent by the
following lemma.

Lemma 5. Let Π be a pivotal operation that satisfies (7). If
f : An → A and g1, . . . , gn : Am → A are Π-decomposable,
then so is f(g1, . . . , gn).

Proof: For every i ∈ [n] let g′i : Anm → A be
the operation defined by g′i(x) = gi(xi) where xi =



(x(i−1)m+1, . . . , xim). We prove that f(g′1, . . . , g
′
n) is Π-

decomposable. For x ∈ Anm, set

c0
x = f(0, g′2(x), . . . , g′n(x)),

c1
x = f(1, g′2(x), . . . , g′n(x)),

a0
x = g′1(0, x2, . . . , xnm),

a1
x = g′1(1, x2, . . . , xnm).

We obtain by Π-decomposability of f that

f(g′1(x), . . . , g′n(x)) = Π(g′1(x), c1
x, c

0
x).

By iterating the pivotal decomposition expression (to each
argument), we get the following equalities

Π(g′1(x),c1
x, c

0
x)

= Π(Π(x1,a
1
x,a

0
x), c1

x, c
0
x),

= Π(x1,Π(a1
x, c

1
x, c

0
x),Π(a0

x, c
1
x, c

0
x)),

= Π(x1, f(g′1, . . . , g
′
n)(x1

1), f(g′1, . . . , g
′
n)(x0

1)),

where the first equality is obtained by Π-decomposability of
g′1, the second one by equation (7) and the last one by Π-
decomposability of f . Thus, we have proved that condition
(5) holds for f(g′1, . . . , g

′
n) and i = 1. We can proceed in a

similar way to obtain

f(g′1(x), . . . , g′n(x)) = Π(x`, f(g′1, . . . , g
′
n)(x1

`),

f(g′1, . . . , g
′
n)(x0

`)), ` ∈ [nm]. (8)

The decomposability of Π(g1, . . . , gn) follows from (8) by
identifying all arguments in {xi, xm+i, . . . , x(n−1)m+i} for
every i ∈ [m].

Similarly, if the pivotal operation satisfies equation (6), then
ΛΠ must contain all projections.

Lemma 6. Let Π be a pivotal operation. The following
conditions are equivalent.

1) Π satisfies equation (6).
2) ΛΠ contains all projections on A.
3) ΛΠ contains the unary projection p1

1.

Proof: 1) =⇒ 2): Let n ≥ 1 and k ∈ [n]. For every
i ∈ [n] such that i 6= k and for every x ∈ An,

Π(xi, p
n
k (x1

i ), pnk (x0
i )) = Π(xi, xk, xk) = xk

where the last equality is obtained by (4). If i = k, then

Π(xi, p
n
k (x1

i ), pnk (x0
i )) = Π(xk, 1, 0) = xk

where the last equality is obtained by (6). We conclude that
pnk ∈ ΛΠ.

2) =⇒ 3): Trivial.

3) =⇒ 1): If ΛΠ contains the unary projection p1
1, then

for every x ∈ A we have

x = p1
1(x) = Π(x, 1, 0).

Thus Π satisfies equation (6), and the proof of the lemma is
now complete.

By combining Lemmas 2, 5, and 6, we obtain the following
result.

Proposition 7. Suppose that Π is a pivotal operation that
satisfies equation (7). Then ΛΠ is a clone if and only if Π
satisfies equation (6). In the latter case, ΛΠ is a clone that
contains all constant operations.

In addition, if ΛΠ is a clone containing the pivotal operation
Π, then we have that the pivotal operation together with
constant maps suffice to construct expressions representing
each member of ΛΠ.

Proposition 8. Let Π be a pivotal operation such that ΛΠ is
a clone that contains Π. Then ΛΠ is the clone generated by
Π and the constant maps. In particular, ΛΠ = NΠ.

Proof: Let C be the clone generated by Π and the constant
operations. We have to prove that ΛΠ = C. The right to left
inclusion is trivial since ΛΠ is a clone and contains each of the
mentioned generators of C by assumption and Lemma 2. We
derive the converse inclusion and the last part of the statement
from the following sequence of inclusions,

ΛΠ ⊆ NΠ ⊆ C ⊆ ΛΠ,

where the first inclusion is obtained by Proposition 4, the
second inclusion follows from the definitions of NΠ and C,
and the third inclusion is a consequence of the first part of this
proof.

In the example below, we analyse the particular case
of Boolean operations, and we determine those operations
that can be used as pivotal operations Π and identify the
corresponding Boolean clones, i.e., those of the form ΛΠ.

Example 9. Let Π be a Boolean pivotal operation that satisfies
(6). Then the unary sections Π(x, 0, 0) and Π(x, 1, 1) are
determined by (4) while the value of the section Π(x, 1, 0)
is determined by (6):

Π(x, 0, 0) = 0, Π(x, 1, 1) = 1, Π(x, 1, 0) = x. (9)

Moreover, it is not difficult to check that the four possibilities
for the unary section Π(x, 0, 1) give rise to operations Π that
satisfy equation (7). Hence, there are four Boolean operations
Π0, . . . ,Π3 that verify the conditions of Proposition 7. Each
of these operations satisfies the equations given in (9) and are
determined by

Π0(x, 0, 1) = x,

Π1(x, 0, 1) = x,

Π2(x, 0, 1) = 0,

Π3(x, 0, 1) = 1.



Simple computations then show that we must have

Π0(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z),

Π1(x, y, z) = (x ∧ y) ∨ (x ∧ z),

Π2(x, y, z) = y ∧ (x ∨ z),

Π3(x, y, z) = z ∨ (x ∧ y).

Note that each Πi, i ∈ {0, 1, 2, 3}, is Πi-decomposable,
and hence each verifies Πi ∈ ΛΠi

. By Proposition 8, for each
i ∈ {0, 1, 2, 3}, ΛΠi is generated by Π and constants. Thus:

• ΛΠ0
is the clone M of all monotone Boolean opera-

tions, since Π0 = med,

• ΛΠ1
is the clone O{0,1} of all Boolean operations,

since Π1 is the pivotal operation used in Shannon
decomposition,

• ΛΠ2 is the clone M of all monotone Boolean oper-
ations, since Π2(x, y, 0) = y ∧ x and Π2(x, 1, z) =
x ∨ z, and every composition of Π2 with projections
or constants is monotone, and

• ΛΠ3 is the clone M of all monotone Boolean opera-
tions (by a similar argument to that used for ΛΠ2 ).

Furthermore, it follows from Lemma 6 that if Λ is a
Boolean clone for which there exits a pivotal operation Π
such that Λ = ΛΠ, then Π has to satsify equation (6). We
thus conclude that Λ is either M or O{0,1}.

V. CONCLUDING REMARKS AND FURTHER RESEARCH
DIRECTIONS

In this paper we explored decomposition schemes for oper-
ations of several variables based on ternary operations, called
pivotal operations, that subsume classical decompositions of
Boolean functions and lattice polynomial functions.

As observed, different pivotal operations give rise to dif-
ferent classes of pivotally decomposable operations. Among
the latter, some constitute clones while others do not, and
we showed that those that are clones and contain the pivotal
operation share the feature that their members have normal
form representations by expressions that use a single nontrivial
connective, namely, the corresponding pivotal operation.

In this preliminary study we presented sufficient conditions
on pivotal operations which ensure that the resulting class of
pivotally decomposable operations is a clone. Moreover, such
clones were shown to contain all constant operations. Fur-
thermore, if a clone contains the pivotal operations, then this
operation together with the constant ones suffice to generate
the given clone.

However, the question of determining necessary conditions
still elludes us. Going even further, we would like to describe
the natural Galois connection between pivotal operations and
clones of operations, and establish a unified theory of corre-
sponding normal form representations.

To achieve this goal, the following three questions should
be answered that we must, for the time being, leave as open
problems:

(I) Give necessary conditions to complete the description
of the Galois correspondence between pivotal opera-
tions and clones.

(II) Determine canonical expressions for the normal form
representations induced by pivotal operations, and
provide procedures to build them.

(III) Present a comparative study of such normal forms
based on complexity of such representations (e.g., in
terms length of produced expressions or efficiency of
methods to treat them).
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