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Abstract. This paper is a contribution to the study of the universal Horn fragment

of predicate fuzzy logics, focusing on the proof of the existence of free models of

theories of Horn clauses over Rational Pavelka predicate logic. We define the notion

of a term structure associated to every consistent theory T over Rational Pavelka

predicate logic and we prove that the term models of T are free on the class of all

models of T. Finally, it is shown that if T is a set of Horn clauses, the term structure

associated to T is a model of T.
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1. Introduction

Free models and Horn clauses have a relevant role in classical logic and logic program-

ming. On the one hand, free models, which appeared first in category theory (see for

instance [1, Def. 4.7.17]), are crucial in universal algebra and, thereby, in model the-

ory. In the context of logic programming, free structures, introduced in [16] and also

named initial (as for instance in [19, Def. 2.1 (i)]), are important in logic programming,

since they allow a procedural interpretation of the programs and admitting free structures

makes reasonable the negation as failure (see for instance [19]). In the context of abstract

data types, Tarlecki [20] characterizes abstract algebraic institutions which admit free

constructions. On the other hand, the significant importance of Horn clauses in classical

logic was detailed in [18], while it is well-known that Horn clauses are used both as a

specification and as a programming language in Prolog, the most common language in

logic programming.

In the context of fuzzy logics, several definitions of Horn clause have been proposed

in the literature, but there is not a canonical one yet. An extensive and important work in

predicate fuzzy logics has been done by Bělohlávek and Vychodil (see [6,5,4,2,3,22]).

Even if the work of these authors also adopts Pavelka-style, it differs from our approach:
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we do not restrict Horn clauses to fuzzy equalities and we work in the general semantics

of [17]. Another approach is shown in [13], where Dubois and Prade discuss different

possibilities of defining fuzzy rules and they show how these different semantics can be

captured in the framework of fuzzy set theory and possibility theory. We find also that,

in the context of fuzzy logic programming, there is a rich battery of proposals of Horn

clauses which differ depending on the programming approach chosen. Some reference

here are [21,15].

With the goal of developing a systematic study of the universal Horn fragment of

predicate fuzzy logics from a model-theoretic point of view, we took in [10] the syntacti-

cal definition of Horn clause of classical logic. Starting by this general and basic defini-

tion we studied the existence of free models of theories of Horn clauses in MTL∀. As a

generalisation of a group-theoretic construction, Mal’tsev showed in classical logic that

any theory of Horn clauses has a free model. In the present paper, a definition of Horn

clause in RPL∀ using evaluated formulas is introduced. Consequently, we prove the exis-

tence of free models of theories of RPL∀- Horn clauses showing in RPL∀ an analogous

result to Mal’tsev’s one. The advantage of using these RPL∀-Horn clauses instead of the

ones of [10] lies in the fact that the former can be better settled in the context of fuzzy

logic programming. For instance, from a syntactical point of view, basic RPL∀-Horn

clauses are a particular case of the clauses used in [7]

The paper is organized as follows. Section 2 contains the preliminaries on RPL∀. In

Section 3 we introduce the definition of a term structure associated to a consistent theory

and prove that when this structure is a model of the associated theory, the term structure

is free on the class of all models of the theory. In Section 4 we define the notion of RPL∀-

Horn clause and it is shown that whenever the associated theory is a set of RPL∀-Horn

clauses, the term structure is a model of this theory.

2. Preliminaries

In this section we introduce the basic notions and results of RPL∀, the first-order exten-

sion of Rational Pavelka Logic. For an extensive presentation of RPL∀ see [17, Ch.3.3

and Ch.5.4] and [8, Ch.VIII].

Definition 1 Rational Pavelka Predicate Logic [8, Ch.VIII] Rational Pavelka Predicate

Logic RPL∀ is the expansion of Ł∀ by adding a truth constant for each rational number r
in [0, 1] and by adding the axioms RPL1 and RPL2. The following is an axiomatic sytem

for RPL∀:

(Ł1) ϕ→ (ψ → ϕ)

(Ł2) (ϕ→ ψ) → ((ψ → ξ) → (ϕ→ ξ))

(Ł3) (¬ψ → ¬ϕ) → (ψ → ϕ)

(Ł4) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)

(RPL1) (r → s) ↔ r → s

(RPL2) (r&s) ↔ r&s

(∀1) (∀x)ϕ(x) → ϕ(t), where the term t is substitutable for x in ϕ.

(∀2) (∀x)(ξ → ϕ) → (ξ → (∀x)ϕ(x)), where x is not free in ξ.



The rules are Modus Ponens and Generalization, that is, from ϕ infer (∀x)ϕ.

A theory Φ is a set of sentences. We denote by Φ ⊢RPL∀ ϕ the fact that ϕ is provable in

RPL∀ from the set of formulas Φ. From now on, when it is clear from the context, we

will write ⊢ to refer to ⊢RPL∀. We say that a theory Φ is consistent if Φ 6⊢ 0.

Definition 2 An evaluated formula (ϕ, r) in a language of RPL∀ is a formula of the form

r → ϕ, where r ∈ [0, 1] is a rational number and ϕ is a formula without truth constants

apart from 0 and 1. We say that an evaluated formula (ϕ, r) is atomic whenever ϕ is

atomic.

Now we introduce the semantics of the predicate languages. Let [0, 1]RPL be the

standard RPL-algebra [8, Def.2.2.5, Ch.II], a structure for a predicate language P of the

logic RPL∀ has the form 〈[0, 1]RPL,M〉, where M = 〈M, (PM )P∈Pred, (FM )F∈Func〉,
M is a non-empty domain; for each n-ary predicate symbol P ∈ Pred, PM is an n-ary

fuzzy relationM , i.e., a functionMn → [0, 1]RPL (identified with an element of [0, 1]RPL

if n = 0); for each n-ary function symbol F ∈ Func, FM is a function Mn → M
(identified with an element of M if n = 0).

An M-evaluation of the object variables is a mapping v which assigns an element

fromM to each object variable. Let v be an M-evaluation, x a variable, and a ∈M . Then

by v[x 7→ a] we denote the M-evaluation such that v[x 7→ a](x) = a and v[x 7→ a](y) =
v(y) for each object variable y different from x. We define the values of terms and the

truth values of formulas in the structure 〈[0, 1]RPL,M〉 for an evaluation v recursively as

follows: given F ∈ Func, P ∈ Pred and c a connective of RPL:

• ||x||
[0,1]RPL

M,v = v(x)

• ||F (t1, . . . , tn)||
[0,1]RPL

M,v = FM(||t1||
[0,1]RPL

M,v , . . . , ||tn||
[0,1]RPL

M,v )

• ||P (t1, . . . , tn)||
[0,1]RPL

M,v = PM(||t1||
[0,1]RPL

M,v , . . . , ||tn||
[0,1]RPL

M,v )

• ||c(ϕ1, . . . , ϕn)||
[0,1]RPL

M,v = c[0,1]RPL
(||ϕ1||

[0,1]RPL

M,v , . . . , ||ϕn||
[0,1]RPL

M,v )

• ||(∀x)ϕ||
[0,1]RPL

M,v = inf{||ϕ||
[0,1]RPL

M,v[x→a] | a ∈M}

• ||(∃x)ϕ||
[0,1]RPL

M,v = sup{||ϕ||
[0,1]RPL

M,v[x→a] | a ∈M}.

Observe that, since the universe of the standard RPL-algebra is the interval of real

numbers [0, 1], which is complete, all the infima and suprema in the definition of the

semantics of the quantifiers exist.

For every formula ϕ, possibly with variables, we write ||ϕ||
[0,1]RPL

M =

inf{||ϕ||
[0,1]RPL

M,v | for every M -evaluation v},

we say that 〈[0, 1]RPL,M〉 is a model of a sentence ϕ if ||ϕ||
[0,1]RPL

M = 1; and that

〈[0, 1]RPL,M〉 is a model of a theory Φ if ||ϕ||
[0,1]RPL

M = 1 for every ϕ ∈ Φ.

In particular, given a structure 〈[0, 1]RPL,M〉 and two formulas ϕ and ψ:



||ϕ&ψ||
[0,1]RPL

M = max{||ϕ||
[0,1]RPL

M + ||ψ||
[0,1]RPL

M − 1, 0}

||ϕ→ ψ||
[0,1]RPL

M = min{1− ||ϕ||
[0,1]RPL

M + ||ψ||
[0,1]RPL

M , 1}.

Definition 3 Let 〈[0, 1]RPL,M〉 and 〈[0, 1]RPL,N〉 be structures, and g be a mapping

from M to N . We say that g is a homomorphism from 〈[0, 1]RPL,M〉 to 〈[0, 1]RPL,N〉 if

for every n-ary function symbol F , any n-ary predicate symbol P and d1, . . . , dn ∈M ,

(1) g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)), and

(2) PM(d1, . . . , dn) = 1 ⇒ PN(g(d1), . . . , g(dn)) = 1.

Throughout the paper we assume that all our languages have a binary predicate

symbol≈ and we extend the axiomatic system of RPL∀ in [8, Ch.VIII] with the following

axioms of similarity and congruence.

Definition 4 [17, Definitions 5.6.1, 5.6.5]

S1. (∀x)x ≈ x
S2. (∀x)(∀y)(x ≈ y → y ≈ x)

S3. (∀x)(∀y)(∀z)(x ≈ y&y ≈ z → x ≈ z)

C1. For each n-ary function symbol F ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn → F (x1, . . . , xn) ≈
F (y1, . . . , yn))

C2. For each n-ary predicate symbol P ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn → (P (x1, . . . , xn) ↔
P (y1, . . . , yn))

Definition 5 Let Φ be a theory over RPL∀, ϕ a formula in a language of RPL∀ and

r ∈ [0, 1] a rational number.

(i) The truth degree of ϕ over Φ is ||ϕ||Φ =

inf{||ϕ||
[0,1]RPL

M | 〈[0, 1]RPL,M〉 is a model of Φ}.

(ii) The provability degree of ϕ over Φ is

|ϕ|Φ = sup{r | Φ ⊢ r → ϕ}.

Theorem 1 Pavelka-style completeness [17, Th.5.4.10] Let Φ be a theory over RPL∀
and ϕ a formula in a language of RPL∀. Then, |ϕ|Φ = ||ϕ||Φ.



3. Term structures

In this section we introduce the notion of term structure associated to a consistent theory

Φ over RPL∀, and prove that whenever the term structure is a model of Φ, the structure is

free on the class of models of Φ. Term structures have been used extensively in classical

logic, for instance, to prove the satisfiability of a set of consistent sentences (see for

example [14, Ch.V]).

Definition 6 Let Φ be a consistent theory, we define a binary relation on the set of terms,

denoted by ∼, in the following way: For every terms t1, t2,

t1 ∼ t2 if and only if |t1 ≈ t2|Φ = 1.

Using Axioms ∀1, S1, S2 and S3, it can be proven that ∼ is an equivalence relation.

Next lemma, which states that the equivalence relation ∼ is compatible with the symbols

of the language, is proved using Axioms ∀1, C1, C2 and [17, Remark 3.18].

Lemma 1 For any consistent theory Φ, the following holds: If ti ∼ t′i for every 1 ≤ i ≤
n, then

(i) For any n-ary function symbol F , F (t1, . . . , tn) ∼ F (t′1, . . . , t
′
n).

(ii) For any n-ary predicate symbol P and rational number r ∈ [0, 1],

|(r → P (t1, ..., tn)) ↔ (r → P (t′1, ..., t
′
n))|Φ = 1

From now on, for any term t we denote by t the ∼-class of t.

Definition 7 Term Structure Let Φ be a consistent theory. We define the following struc-

ture 〈[0, 1]RPL,T
Φ〉, where TΦ is the set of all equivalence classes of the relation ∼ and

• For any n-ary function symbol F and terms t1, . . . , tn,

FTΦ(t1, . . . , tn) = F (t1, . . . , tn)

• For any n-ary predicate symbol P and terms t1, . . . , tn,

PTΦ(t1, . . . , tn) = |P (t1, . . . , tn)|Φ

We call 〈[0, 1]RPL,T
Φ〉 the term structure associated to Φ.

Notice that for 0-ary functions, that is, for individual constants, cTΦ = c. Given a

consistent theoryΦ, let eΦ be the following T
Φ-evaluation: eΦ(x) = x for every variable

x. We call eΦ the canonical evaluation of 〈[0, 1]RPL,T
Φ〉.

Lemma 2 Let Φ be a consistent theory, the following holds:

(i) For any term t, ||t||
[0,1]RPL

TΦ,eΦ
= t.

(ii) For any atomic formula ϕ, ||ϕ||
[0,1]RPL

TΦ,eΦ
= 1 if and only if |ϕ|Φ = 1.

(iii) For any evaluated atomic formula (ϕ, s), ||(ϕ, s)||
[0,1]RPL

TΦ,eΦ
= 1 if and only if

|(ϕ, s)|Φ = 1.



Proof: The proofs of (i) and (ii) are straightforward. Regarding (iii), let (ϕ, s) =
(P (t1 . . . , tn), s), we have:

||(P (t1 . . . , tn), s)||
[0,1]RPL

TΦ,eΦ
= 1 iff

s ≤ ||P (t1 . . . , tn)||
[0,1]RPL

TΦ,eΦ
iff

s ≤ PTΦ(t1 . . . , tn) iff

s ≤ |P (t1 . . . , tn)|Φ iff |s→ P (t1, . . . , tn)|Φ = 1.

The last equivalence is proved from [17, Remark 3.18]. ✷

Since the simplest well-formed formulas are atomic formulas, Lemma 2 (ii) can

be read as saying that term structures are minimal with respect to atomic formulas. By

Theorem 1, |ϕ|Φ = ||ϕ||Φ and, by Lemma 2 (ii), the term structure 〈[0, 1]RPL,T
Φ〉 only

assigns the truth value 1 to those atomic formulas that have 1 as their truth value in every

model 〈[0, 1]RPL,M〉 of Φ. By a similar argument, Lemma 2 (iii) states that the term

structure 〈[0, 1]RPL,T
Φ〉 is minimal with respect to evaluated atomic formulas.

From an algebraic point of view, the minimality of the term structure is revealed by

the fact that the structure is free. The following theorem proves that in case that the term

structure associated to a theory is a model of that theory, the term structure is free.

Working in predicate fuzzy logics (and, in particular, in RPL∀) allows to define the

term structure associated to a theory using similarities instead of crisp identities. This

leads us to a notion of free structure restricted to the class of reduced models of that

theory. Remember that reduced structures are those whose Leibniz congruence is the

identity. By [12, Lemma 20], a structure 〈[0, 1]RPL,M〉 is reduced iff it has the equality

property (EQP) (that is, for any d, e ∈ M , ||d ≈ e||
[0,1]RPL

M
= 1 iff d = e). Observe

that, by using Definitions 6 and 7 and the fact that ∼ is an equivalence relation, it can be

proven that 〈[0, 1]RPL,T
Φ〉 is a reduced structure.

Theorem 2 Let Φ be a consistent theory such that 〈[0, 1]RPL,T
Φ〉 is a model of Φ. Then

〈[0, 1]RPL,T
Φ〉 is free on the class of all the reduced models 〈[0, 1]RPL,N〉 of Φ. That is,

for every reduced model of Φ 〈[0, 1]RPL,N〉 and every N-evaluation v, there is a unique

homomorphism g from 〈[0, 1]RPL,T
Φ〉 to 〈[0, 1]RPL,N〉 such that for every variable x,

g(x) = v(x).

Proof: Let 〈[0, 1]RPL,N〉 be a reduced model of Φ and v an N-evaluation. We define g

by: g(t) = ||t||
[0,1]RPL

N,v for every term t. We show that g is the claimed homomorphism.

Let us first check that g is well-defined. Let t1, t2 be terms with t1 = t2, i.e., t1 ∼ t2,

that is, |t1 ≈ t2|Φ = 1. From Theorem 1 we have ||t1 ≈ t2||Φ = 1. Since ||Φ||
[0,1]RPL

N
=

1, it follows that ||t1 ≈ t2||
[0,1]RPL

N
= 1 and, in particular, ||t1 ≈ t2||

[0,1]RPL

N,v = 1. From

this and the fact that 〈[0, 1]RPL,N〉 is reduced, we deduce, by [12, Lemma 20], that

||t1||
[0,1]RPL

N,v = ||t2||
[0,1]RPL

N,v , i.e., g(t1) = g(t2).

The task is now to see that g satisfies the conditions (1) and (2) of Definiton 3. For

any 0-function symbol c, cTΦ = c = cN by Definition 7. Let t1, . . . , tn ∈ TΦ and F be



an n-ary function symbol, FTΦ(t1, . . . , tn) = F (t1, . . . , tn) by Definition 7. Then, by

the definition of g,

g(FTΦ(t1, . . . , tn)) = g(F (t1, . . . , tn)) =

FN(||t1||
[0,1]RPL

N,v , . . . , ||tn||
[0,1]RPL

N,v ) = FN(g(t1), . . . , g(tn)).

Let P be an n-ary predicate symbol such that PTΦ(t1, . . . , tn) = 1. By Definition 7

and Theorem 1, 1 = PTΦ(t1, . . . , tn) = |P (t1, . . . , tn)|Φ = ||P (t1, . . . , tn)||Φ.

Consequently, ||P (t1, . . . , tn)||
[0,1]RPL

N
= 1, because ||Φ||

[0,1]RPL

N
= 1. Thus

||P (t1, . . . , tn)||
[0,1]RPL

N,v = 1. Therefore PN(||t1||
[0,1]RPL

N,v , . . . , ||tn||
[0,1]RPL

N,v ) = 1, that is,

PN(g(t1), . . . , g(tn)) = 1.

Finally, since the set {x | x is a variable} generates the universe TΦ of the term

structure associated to Φ, g is the unique homomorphism such that for every variable x,

g(x) = v(x). ✷

Observe that in languages in which the similarity symbol is interpreted by the crisp

identity, by using an analogous argument to the one in Theorem 2, we obtain that the

term structure is free in the class of all the models 〈[0, 1]RPL,M〉 of the theory and not

only in the class of the reduced ones.

4. RPL∀-Horn Clauses

In the previous section we have seen that if the term structure associated to a theory Φ is

a model of Φ, then the structure is free in the class of all models of Φ. In this section, we

show in Theorem 3 that whenever Φ is a theory of RPL∀-Horn clauses, 〈[0, 1]RPL,T
Φ〉

is a model of Φ. Theorem 3 gains in interest if we realize that it proves (using Theorem

2) the existence of free models of theories of RPL∀-Horn clauses. Let us first define the

notion of RPL∀-Horn clauses.

In predicate classical logic, a basic Horn formula is a formula of the form α1∧· · ·∧
αn → β, where n is a natural number and α1, . . . , αn, β are atomic formulas. Notice

that there is not a unique way to extend this definition in fuzzy logics, where we have

different conjunctions and implications. In this section we present one way to define

Horn clauses over RPL∀ extending the classical definition.

Definition 8 Basic RPL∀-Horn Formula A basic RPL∀-Horn formula is a formula of

the form

(α1, r1)& · · ·&(αn, rn) → (β, s)

where (α1, r1) . . . , (αn, rn), (β, s) are evaluated atomic formulas and n is a natu-

ral number. Observe that n can be 0. In that case the basic RPL∀-Horn formula is an

evaluated atomic formula.



Definition 9 Quantifier-free RPL∀-Horn Formula A quantifier-free RPL∀-Horn for-

mula is a formula of the form φ1& · · ·&φm, where m is a natural number and φi is a

basic RPL∀-Horn formula for every 1 ≤ i ≤ m.

Definition 10 RPL∀-Horn Clause A RPL∀-Horn clause is a formula of the form Qγ,

where Q is a (possibly empty) string of universal quantifiers (∀x) and γ is a quantifier-

free RPL∀-Horn formula.

Example 1 Let P be a predicate language with a unary predicate symbol P , a binary

predicate symbol R and a an individual constant. The following formulas are examples

of RPL∀-Horn clauses:

(1) (P (a), 0.5),
(2) (P (a), 0.6)&(R(a, x), 0.3),
(3) (P (a), 0.5) → (R(a, a), 0.1),
(4) (P (a), 0.6)&(R(a, x), 0.3) → (P (x), 0.8),
(5) (∀x)((P (x), 0.6)&(R(a, x), 0.3)),
(6) (∀x)((P (x), 0.6)&(R(a, x), 0.3) → (P (a), 0.9)).

Observe that, in general, RPL∀-Horn clauses are not evaluated, only the atomic

RPL∀-Horn clauses are evaluated formulas.

A weak version of RPL∀-Horn clauses can be introduced by substituting each strong

conjunction & appearing in the formula by the weak conjunction ∧. Although in this

paper we do not present this weak version, all the results we prove are also true for

weak RPL∀-Horn clauses. In classical logic, the set of all Horn clauses is recursively

defined, because the formula (∀x)(ϕ ∧ ψ) is logically equivalent to (∀x)ϕ ∧ (∀x)ψ.

In RPL∀ these two formulas are also logically equivalent, so the set of the weak ver-

sion of fuzzy RPL∀-Horn clauses is recursively definable. However, this is not the case

for fuzzy RPL∀-Horn clauses. Indeed, let P and R be unary predicate symbols, con-

sider the structure 〈[0, 1]RPL,M〉 such that M = {a, b}, PM(a) = RM(b) = 0.4

and PM(b) = RM(a) = 0.7. Then, ||(∀x)((P (x), 1)&(R(x), 1))||
[0,1]RPL

M = 0.1, but

||(∀x)((P (x), 1))&(∀x)((R(x), 1))||
[0,1]RPL

M = 0.

We now see that for any consistent theory of RPL∀-Horn clauses Φ, the term struc-

ture associated to Φ is a model of Φ. To show that, we need the following lemmas and the

notion of rank of a formula. Our definition of rank is a variant of the notion of syntactic

degree of a formula of [17, Def. 5.6.7]). Let ϕ be a formula, the rank of ϕ, denoted by

rk(ϕ) is defined by:

• rk(ϕ) = 0 if ϕ is atomic;

• rk(¬ϕ) = rk((∃x)ϕ) = rk((∀x)ϕ) = rk(ϕ) + 1;

• rk(ϕ ◦ ψ) = rk(ϕ) + rk(ψ) for every binary propositional connective ◦.

Note that since the set of RPL∀-Horn clauses is not recursively definable, induction on

the complexity of the clause cannot be applied. Hence it is applied on the rank of the

clauses. Such induction can be used to prove next lemma.

Lemma 3 Let ϕ be an RPL∀-Horn clause where x1, . . . , xm are pairwise distinct free

variables. Then, for every terms t1, . . . , tm, the substitution

ϕ(t1, . . . , tm/x1, . . . , xm)



is an RPL∀-Horn clause.

Lemma 4 For any consistent theory Φ and any evaluated atomic formula (ϕ, s),

||(ϕ, s)||
[0,1]RPL

TΦ = ||(ϕ, s)||Φ.

Proof: It is enough to show that for any rational number t ∈ [0, 1], ||(ϕ, s)||
[0,1]RPL

TΦ ≥
t iff ||(ϕ, s)||Φ ≥ t. Let t ∈ [0, 1] be a rational number, we have:

||(ϕ, s)||
[0,1]RPL

TΦ ≥ t iff ||t→ (s→ ϕ)||
[0,1]RPL

TΦ = 1 iff

||t&s→ ϕ||
[0,1]RPL

TΦ = 1 iff ||ϕ||
[0,1]RPL

TΦ ≥ t ∗Ł s iff

||ϕ||
[0,1]RPL

M ≥ t ∗Ł s for every model 〈[0, 1]RPL,M〉 of Φ iff

for any model 〈[0, 1]RPL,M〉 of Φ,

||t→ (s→ ϕ)||
[0,1]RPL

M = 1.

The second and latter equivalence are proved by using [17, Def.2.2.4 (Axioms 5a

and 5b)]. The latter expression is equivalent to ||(ϕ, s)||
[0,1]RPL

M ≥ t for every model

〈[0, 1]RPL,M〉 of Φ, i.e., ||(ϕ, s)||Φ ≥ t. ✷

Lemma 5 For any consistent theory Φ and any evaluated atomic sentences
(ϕ1, s1), . . . , (ϕn, sn),

||(ϕ1, s1)& · · ·&(ϕn, sn)||
[0,1]RPL

TΦ
≤ ||(ϕ1, s1)& · · ·&(ϕn, sn)||Φ.

Proof: By Lemma 4, it is clear for n = 1. For the sake of clarity, we present the proof

for the case n = 2, but the argument is analogous for the cases with n > 2. First, by

Lemma 4 we have:

||(ϕ1, s1)&(ϕ2, s2)||
[0,1]RPL

TΦ
= ||(ϕ1, s1)||

[0,1]RPL

TΦ
∗Ł ||(ϕ2, s2)||

[0,1]RPL

TΦ
= ||(ϕ1, s1)||Φ ∗Ł ||(ϕ2, s2)||Φ.

Since for any model 〈[0, 1]RPL,M〉 of Φ, ||(ϕ1, s1)||Φ ≤ ||(ϕ1, s1)||
[0,1]RPL

M
and ||(ϕ2, s2)||Φ ≤

||(ϕ2, s2)||
[0,1]RPL

M
, we have that for any model 〈[0, 1]RPL,M〉 of Φ,

||(ϕ1, s1)||Φ ∗Ł ||(ϕ2, s2)||Φ ≤ ||(ϕ1, s1)||
[0,1]RPL

M
∗Ł ||(ϕ2, s2)||

[0,1]RPL

M
=

||(ϕ1, s1)&(ϕ2, s2)||
[0,1]RPL

M
.



Therefore, since ||(ϕ1, s1)&(ϕ2, s2)||Φ is the infimum, we have

||(ϕ1, s1)||Φ ∗ ||(ϕ2, s2)||Φ ≤ ||(ϕ1, s1)&(ϕ2, s2)||Φ.

Consequently,

||(ϕ1, s1)&(ϕ2, s2)||
[0,1]RPL

TΦ
≤ ||(ϕ1, s1)&(ϕ2, s2)||Φ. ✷

Theorem 3 Let Φ be a consistent theory. For every RPL∀-Horn clause ϕ without free

variables,

If |ϕ|Φ = 1, then ||ϕ||
[0,1]RPL

TΦ = 1.

Proof: Let ϕ be an RPL∀-Horn clause without free variables. We proceed by induction

on rk(ϕ).

rk(ϕ) = 0. We can distinguish three subcases:

1) If ϕ = (ψ, s) is an evaluated atomic formula, the statement holds by Lemma 4

(iii).

2) Let ϕ = (ψ1, s1)& · · ·&(ψn, sn) → (ψ, s) be a basic RPL∀-Horn formula,

where (ψ1, s1), . . . , (ψn, sn), (ψ, s) are evaluated atomic formulas. By hypothesis and

Theorem 1 we have:

1 = |(ψ1, s1)& · · ·&(ψn, sn) → (ψ, s)|Φ = ||(ψ1, s1)& · · ·&(ψn, sn) → (ψ, s)||Φ.

Therefore, ||(ψ1, s1)& · · ·&(ψn, sn)||Φ ≤ ||(ψ, s)||Φ.

By Lemmas 4 and 5, ||(ψ, s)||
[0,1]RPL

TΦ = ||(ψ, s)||Φ and

||(ψ1, s1)& · · ·&(ψn, sn)||
[0,1]RPL

TΦ ≤ ||(ψ1, s1)& · · ·&(ψn, sn)||Φ.

Therefore ||(ψ1, s1)& · · ·&(ψn, sn)||
[0,1]RPL

TΦ ≤ ||(ψ, s)||
[0,1]RPL

TΦ . That is,

||(ψ1, s1)& · · ·&(ψn, sn) → (ψ, s)||
[0,1]RPL

TΦ = 1.

3) If ϕ = φ1& · · ·&φm is a conjunction of basic RPL∀-Horn formulas,

||φ1& · · ·&φm||
[0,1]RPL

TΦ = 1 iff

||φi||
[0,1]RPL

TΦ = 1 for every 1 ≤ i ≤ m.

From 1) and 2), |φi|Φ = 1 for every 1 ≤ i ≤ m and thus |φ1& · · ·&φm|Φ = 1.

rk(ϕ) = n+ 1. Let ϕ = (∀x)ψ be such that ψ is an RPL∀-Horn clause of rank n.

Assume inductively that for any RPL∀-Horn clause without free variables ξ of rank less

or equal than n and such that |ξ|Φ = 1, ||ξ||
[0,1]RPL

TΦ = 1. By assumption and Axiom ∀1,



Φ ⊢ (∀x)ψ → ψ(t/x) for every term t.

From Axiom Ł2, sup{r | Φ ⊢ r → ϕ} = 1 implies that sup{r | Φ ⊢ r →
ψ(t/x)} = 1 for any term t. That is, |ψ(t/x)|Φ = 1 for every term t.

Since ψ has rank n and is an RPL∀-Horn clause by Lemma 3, we can apply the

inductive hypothesis and conclude that ||ψ(t/x)||
[0,1]RPL

TΦ = 1 for any term t. So, by

Lemma 2 (i), ||ψ(x)||
[0,1]RPL

TΦ,v[x 7→t]
= 1 for every element t of the domain, and thus we get

||(∀x)ψ||
[0,1]RPL

TΦ = 1. ✷

5. Conclusions and Future Work

The present paper is another step towards a systematic study of theories of Horn clauses

over predicate fuzzy logics from a model-theoretic point of view, a study that we started

in [10] and which is still in progress. In particular, here we have proved the existence of

free models of theories of Horn clauses in RPL∀.

Future work will be devoted to study the broad approach taken in [8, Ch.8] to fuzzy

logics with enriched languages. We shall see if RPL∀-Horn clauses introduced here can

be generalized to that logics with enriched languages. Later, since one of our next goals

is to solve the open problem (formulated by Cintula and Hájek in [9]) about the charac-

terization of theories of fuzzy Horn clauses in terms of quasivarieties, we will analyze

quasivarieties and try to define them in the context of fuzzy logics using recent results on

products over fuzzy logics like [12].

Herbrand structures have been important in model theory and in the foundations of

logic programming. Therefore, as a continuation of the present work, we would like to

characterize the free Herbrand model in the class of the Herbrand models of theories

of RPL∀-Horn clauses without equality. Finally, we will focus on a generalization of

Herbrand structure, fully named models, in order to show that two types of minimality

for these models (specifically free models and A-generic models) are equivalent.
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