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Abstract—Research on quantum computing has recently
gained significant momentum since first physical devices became
available. Many quantum algorithms make use of so-called
oracles that implement Boolean functions and are queried with
highly superposed input states in order to evaluate the imple-
mented Boolean function for many different input patterns in
parallel. To simplify or enable a realization of these oracles in
quantum logic in the first place, the Boolean reversible functions
to be realized usually need to be broken down into several
non-reversible sub-functions. However, since quantum logic is
inherently reversible, these sub-functions have to be realized in
a reversible fashion by adding further qubits in order to make
the output patterns distinguishable (a process that is also known
as embedding). This usually results in a significant increase of
the qubits required in total. In this work, we show how this
overhead can be significantly reduced by utilizing coding. More
precisely, we prove that one additional qubit is always enough to
embed any non-reversible function into a reversible one by using
a variable-length encoding of the output patterns. Moreover, we
characterize those functions that do not require an additional
qubit at all. The made observations show that coding often allows
one to undercut the usually considered minimum of additional
qubits in sub-functions of oracles by far.

I. INTRODUCTION

Quantum algorithms running on quantum computers allow

for significant (exponential in the best case) speed-ups com-

pared to their classical counterparts by exploiting quantum-

mechanical phenomena like superposition, entanglement, and

phase shifts [1]. Recently, devices that have been made pub-

licly available—together with the commitment of companies

like IBM, Google, Microsoft, and Rigetti—brought new mo-

mentum into a domain that has been considered as a “dream

of the future” for a long time [2]–[4]. Even though these

first devices are limited in qubit fidelity and their number

of qubits (i.e., they are classified as NISQ devices [5]), they

provide a first step towards building a fault-tolerant quantum

computer that is capable of conducting hard and useful tasks

in non-exponential time.

Many proposed quantum algorithms contain large Boolean

parts (also called oracles) that are queried with a highly

superposed input to gain quantum speed-up. Examples are

the modular exponentiation in Shor’s algorithm for integer

factorization [6] or a Boolean description of the database

that is queried in Grover’s Algorithm [7]. In order to use

these Boolean components on a quantum computer, they

have to be described as quantum circuits (i.e., a sequence

of quantum operations that are applied to the qubits)—an

inherently reversible description means. Since it is very com-

plex to determine a sequence of quantum operations (also

denoted quantum gates) that realize the desired functionality (a

process termed synthesis [8], [9]), the Boolean function to be

realized is usually decomposed into several (not necessarily

reversible) sub-functions [10]–[12]. Hence, even though the

overall functionality of the oracle is inherently reversible, its

sub-components may not be.

In order to realize non-reversible functions in quantum

logic, further qubits (often called ancillary, ancillae, or work-

ing qubits) have to be added in order to make the output

patterns distinguishable and, hence, obtain a reversible func-

tion (a process called embedding [13], [14]). Moreover, such

additional qubits are often used to store intermediate results

and have to be restored to their initial state (by de-computing

intermediate results) before “leaving” the oracle. All this

obviously increases the number of qubits needed to realize

the oracle. In fact, even if the embedding process guarantees

a minimum of ancillary/ancillae/working qubits, their number

is frequently quite substantial—a severe drawback since qubits

are a highly limited resource.

In order to overcome the issue outlined above, we propose

to utilize coded embeddings where each occurring output

pattern is encoded with another (smaller) unique pattern. This

way, we utilize recently proposed embedding and synthesis

schemes such as one-pass synthesis of reversible logic [15] as

well as synthesis exploiting coding techniques [16], [17] for

the realization of quantum oracles. Encoding outputs allows

us to significantly reduce the number of qubits even below

what is usually considered to be the minimum. Although this

changes the intended functionality, using encoded values is

still acceptable for the realization of oracles since subsequent

sub-components just have to be slightly adjusted to handle the

code, or need to be equipped with a small decoder beforehand

(which often is easier to realize than the original functionality).

Moreover, in this work we show for the first time that

utilizing all that potential indeed allows for the realization

of Boolean non-reversible sub-components with at most one

additional qubit only. In addition to that, we exactly identify

the cases where even this additional qubit is not necessary. By

this, we can provably show that, using coding, one additional

qubit is enough, i.e., that the proposed scheme often allows

one to undercut the usually considered minimum of additional

qubits in oracles by far. This is additionally confirmed by

experimental evaluations. Note that while we only cover the

two-valued case here—since this is the de facto standard in

quantum computation and a large set of benchmarks is avail-

able for evaluation—we expect that our (theoretical) results

can be extended to the multiple-valued case with a radix r > 2
in a straightforward fashion (e.g., using the generalization as

proposed in [18]).
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Fig. 1: Circuit Diagrams

The remainder of this work is structured as follows. In

Section II, we briefly introduce the basics of quantum circuits

as well as how non-reversible functions can be realized by

them. Section III provides a technique for encoding the

function to be realized. Here, we also formally prove that

using a variable-length code indeed allows for realizations

with at most one additional qubit. Section IV compares the

number of required qubits in coded embeddings to those

embeddings (without encoding) that have been considered to

be the minimum thus far. Section V concludes the paper.

II. BACKGROUND

In this section, we briefly recap the basics of quantum cir-

cuits, as well as how to realize Boolean components occurring

in them.

A. Quantum Circuits

Quantum computations are conducted by applying opera-

tions to qubits—entities that cannot only be in one of its

two basis states (denoted |0〉 and |1〉), but also in an (almost)

arbitrary superposition of both. Typical operations acting on

a single qubits are negating the state of a qubit (NOT opera-

tion, denoted by X or ⊕), setting a qubit into superposition

(Hadamard operation, denoted by H), or conducting a phase

shift by i (denoted by S). Moreover, these operations may

be controlled by other qubits. Then, the operation is only

conducted if all controlling qubits are in basis state |1〉. All

these computations may be represented by means of circuit

diagrams, where each qubit is represented by a horizontal

line and quantum gates (i.e., operations that are applied to the

qubits) on these lines determine (from left to right) in which

order the respective operations are applied to the qubits.

Example 1. The quantum circuit shown in Fig. 1a is composed

of two qubits and two gates. First, a Hadamard operation is

applied to qubit q0, setting q0 into a superposition. Afterwards,

a controlled NOT (CNOT) operation is conducted, where q0
serves as control qubit and q1 is the target qubit. Here, the

value of q1 is inverted if q0 is in the basis state |1〉.

Reversible circuits are a subset of quantum circuits that can

be modeled in the classical domain. Hence, these circuits are

used when designing Boolean components for quantum cir-

cuits and are usually composed of multiple-controlled Toffoli

gates. These gates are composed of a (possibly empty) set of

control qubits and a so-called target qubit. The value of the

target qubit is inverted if, and only if, all control qubits are

in basis state |1〉. Hence, the CNOT gate discussed above is a

multiple-controlled Toffoli gate with a single control.

TABLE I: Truth table of the half adder function

(a) Before embedding

x1 x2 y1 y0

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(b) After embedding

a x1 x2 g y1 y0

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Example 2. Consider the reversible circuit shown in Fig. 1b

that is composed of three qubits and four gates. The target

qubit of a Toffoli gate is again denoted by ⊕, whereas control

qubits are denoted by •. Additionally, we have labeled the

intermediate values of the qubits throughout the circuit when

applying |q0q1q2〉 = |000〉 as input. Since a reversible circuit

can be modeled in the classical domain (no quantum effects

are exploited), we use 0 and 1 to indicate the basis states

(rather than |0〉 and |1〉). The first gate has not control qubits

and, thus, inverts the value of q0 from 0 to 1. The second gate

is controlled by q0. Since the value of q0 is 1, the value of

q1 is inverted from 0 to 1. The second gate does not affect

the state of the qubits, since the control qubit q2 is set to 0.

Eventually, the last gate inverts the state of q2 from 0 to 1.

B. Boolean Components in Quantum Circuits

Typically, quantum circuits contain large Boolean compo-

nents (also called oracles) which can be realized by reversible

circuits. Decompositions of the gates occurring in reversible

circuits into elementary quantum operations (e.g., into the

well-known Clifford+T library [19]) can be determined using

approaches such as [20].
Since Boolean components occurring in quantum circuits

commonly describe very complex functionality, they are usu-

ally split into several non-reversible parts (e.g., the modular

exponentiation in Shor’s algorithms can be build up from

several adders)—either manually [10]–[12] or by automated

synthesis tools (using methods as reviewed, e.g., in [8], [9]).

But since quantum computations are inherently reversible, it

has to be ensured that these sub-components are realized in

a reversible fashion, i.e., as a function realizing a unique

mapping from the inputs to the outputs and vice versa.

Example 3. Consider the truth table of a half adder shown in

Table Ia and assume that this functionality shall be realized

as a sub-function of an oracle. Since the output pattern 01

occurs twice, the function is not reversible—the input cannot

be determined uniquely having the output only.

To ensure a unique input-output mapping, the non-reversible

function to be realized is embedded into a reversible one

that typically has a much larger number of variables.1 This

embedding process can either be conducted explicitly [13],

[14] (required when using synthesis approaches such as [21],

[22]) or implicitly (using synthesis schemes following one-

pass synthesis as employed in [15], [16]). However, conducting

1Note that each variable of the function is realized by means of a qubit in
the quantum circuit.



the embedding often yields circuits where the number of

additional variables and, hence, qubits is significant. Since

qubits are a limited resource (especially in NISQ devices [5])

their number shall be kept as small as possible. But even

following the state of the art reviewed above, still a rather

substantial number of qubits results. In fact, the minimal

number of qubits required for embedding thus far is defined

as follows:

Definition 1. Consider a Boolean function f : Bn → B
m with

output patterns p1, p2, . . . , pk ∈ B
m ordered by the number

of corresponding input patterns (in the following denoted as

µ(pi) = |{x ∈ B
n | f(x) = pi}|). Since the embedding

process has to make all output patterns distinguishable, at

least ⌈log2 µ(p1)⌉ additional so-called garbage outputs are

required (where p1 is the most frequently occurring output

pattern). Moreover, since the number of inputs and outputs has

to be equal to realize a reversible function as quantum circuit,

a total of min(n,m + ⌈log2 µ(p1)⌉) qubits are required to

embed a function f : Bn → B
m. If this implies to add further

inputs, the desired output is obtained when setting all ancillary

inputs to a specific value (usually 0).

Example 3 (continued). Since the most frequently occurring

output pattern p1 = 01 occurs twice, ⌈log2 2⌉ = 1 garbage

output is required to make this output pattern distinguishable.

To align the number of inputs with the number of outputs,

one ancillary input is required. Table Ib shows one possible

embedding of the half adder function. The desired function

can be obtained at the primary outputs by setting the ancillary

input a to 0 (highlighted in bold). All garbage variables as well

as the primary outputs when a 6= 0 can be chosen arbitrarily

as long as a reversible function results.

The ancillary qubits of all sub-functions of an oracle have

to be de-computed to their initial state to allow for a correct

execution within the oracle and enable a later reuse.

III. ONE ANCILLARY QUBIT IS ENOUGH

The authors of [16], [17] have shown that it is possible

to undercut the theoretical lower bound on the number of

required qubits (discussed in Section II-B) by using coding

techniques, i.e., by using a 1-to-1 mapping of the output

patterns to others. In this section, we first review the main

idea of this approach and then formally prove that, using a

variable-length encoding, at most one ancillary qubit is enough

to realize any desired non-reversible function—and, by this,

any sub-component of an oracle. Afterwards, in Section IV,

it is experimentally confirmed that this indeed allows one

to significantly reduce the number of overall required qubits

(even below the minimum considered thus far) in many cases.

A. Utilizing Coding

As shown in [16], [17], the number of additionally required

output patterns can be significantly reduced by exploiting

coding techniques. The general idea for using coding is

motivated by the fact that usually not all output patterns occur

equally many times and, thus, do not require the same number

of garbage outputs. Hence, a variable-length encoding can

be utilized, where frequently occurring output patterns are

TABLE II: Encoding a non-reversible function

(a) Orig. function

x3 x2 x1 x′

3
x′

2
x′

1

0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 1 0

(b) Encoding

i pi µ(pi) code(pi)
1 110 4 0 - -
2 000 2 1 0 -
3 100 1 1 1 0
4 111 1 1 1 1

(c) Encoded function

x3 x2 x1 x′

3
x′

2
x′

1

0 0 0 0 - -
0 0 1 1 0 -
0 1 0 0 - -
0 1 1 1 1 0
1 0 0 1 0 -
1 0 1 1 1 1
1 1 0 0 - -
1 1 1 0 - -

represented by a short code word (together with a large number

of garbage outputs) and rarely occurring output patterns are

represented by a longer code word (together with a smaller

number of garbage outputs).

Example 4. Consider the Boolean function with n = 3 inputs

and m = 3 outputs shown in Table IIa. Using an embedding

scheme as discussed in Section II-B yields a reversible function

with five variables (thus, requiring five qubits). However, using

the code as shown in Table IIb allows one to reduce the

number of required qubits to three. For example, the most

frequently occurring output pattern p1 = 110 (which requires

⌈log2 4⌉ = 2 garbage outputs) is encoded as code(p1) = 0,

while the output pattern p3 = 100 is encoded by code(p3) =
110. The number of variables/qubits required for each output

pattern is then determined by the sum of the code length

and the number of required garbage outputs—resulting in the

encoded function shown in Table IIc (dashes indicate garbage

variables).

To generate a code as shown above, a Pseudo-Huffman

encoding is employed. To this end, one starts with terminal

nodes—one for each output pattern with µ(pi) > 0 (no code

has to be assigned to output patterns that do not occur)—and

attaches a weight representing the number of required garbage

outputs (i.e., ⌈log2 µ(pi)⌉). The Pseudo-Huffman tree is then

generated by repeatedly combining the two nodes a and b with

the smallest attached weights w(a) and w(b) to a new node

c with attached weight w(c) = max(w(a), w(b)) + 1 until a

single node results. The weight of such a node w(c) then gives

the number of outputs required to represent all combined out-

put patterns uniquely, i.e., one additional variable is required

(aside from max(w(a), w(b))) to distinguish between a and b.
Hence, the weight of the root node determines the number of

overall required outputs in the encoded function. Building the

Pseudo-Huffman tree inherently gives such a variable-length

encoding of the output patterns by, e.g., assigning 0 (1) to

the left (right) successor of each node. Concatenation of the

values attached to the path from the root node to a terminal

representing an output pattern pi determines code(pi).

Example 5. Figure 2 shows the Pseudo-Huffman tree for the

function shown in Table IIa. Since there exist four output

patterns with µ(pi) > 0, we start with four terminal nodes

(labeled v1, v2, v3, and v4, respectively) and attach the number

of required garbage outputs as weights (drawn as numbers

inside the nodes). First, we combine the nodes v3 and v4 to

a new node v5 with weight w(v5) = max(0, 0) + 1 = 1.

Next, we combine the nodes v2 and v5 to a new node v6
with weight w(v6) = max(1, 1) + 1 = 2. Eventually, the
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Fig. 2: Pseudo-Huffman tree for the function from Table IIa

nodes v1 and v6 are combined to a node v7 with weight

w(v7) = max(2, 2) + 1 = 3—the single root node of the

tree. The code for the individual output patterns is then

determined by the path from the root node to the respective

terminal. For example, output pattern p2 = 000 is encoded by

code(p2) = 10 since the path traverses the right edge of node

v7 and the left edge of node v6. Overall, the code shown in

Table IIb results.

B. Proving an Upper Bound of n+ 1 Qubits

In this section, we prove that encoding the output patterns of

an n-input function as shown above results in a coded function

requiring at most n+1 variables. Moreover, we show precisely

in which cases this additional qubit is required and in which

not. To this end, we first formally define the Pseudo-Huffman

tree utilized to determine the encoding.

Definition 2 (Pseudo-Huffman Tree). Let G = (V,E) be a

connected, arborescence (a directed rooted tree) composed of

a set of nodes V = {v1, v2, . . . , v|V |} and a set of edges

E ⊂ V × V , and let w : V → N0 be a labeling of the

graph nodes in terms of non-negative weights. Moreover, let

T = {t ∈ V | ∀v ∈ V : (t, v) /∈ E} ⊆ V denote the set of

all terminal nodes. Then, PH = (G,w) is called a Pseudo-

Huffman tree, if, and only if,

1) each internal node v ∈ V \ T has exactly two children

a, b ∈ V and w(v) = max(w(a), w(b)) + 1 and

2) for any two different internal nodes v1, v2 ∈ V \ T
with children a1, b1 and a2, b2, respectively, it holds that

w(a1) ≤ w(b1) implies
(

w(a2), w(b2) ≤ w(a1)
)

∨
(

w(a2), w(b2) ≥ w(b1)
)

.

In other words, the tree can be formed from the terminal

nodes by successively combining nodes with the lowest avail-

able weights as described in Section III-A.

The following theorem yields a condition on the terminal

nodes of a Pseudo-Huffman tree that is sufficient to restrict

the weight of the tree’s root node.

Theorem 1. Let PH = ((V,E), w) be a Pseudo-Huffman

tree. If there exists an assignment sv for each terminal node

v ∈ T = {t ∈ V | ∀v ∈ V : (t, v) /∈ E} such that

2w(v) ≥ sv > 2w(v)−1 (where w(v) denotes the weight of

node v) and
∑

v∈T sv = 2n, then the weight w(vr) of the

root node vr of the tree is either n or n+ 1.

2
k+1

2
k

2
k

(a) Joining nodes with equal
weights

2
k+1

2
k

2
k−l

(b) Joining nodes with different
weights

Fig. 3: Joining nodes in the construction of the PH-tree

Proof. Replace all weights using the rule w 7→ 2w. Then the

rule for computing the weight of a new node changes from

max(w(a), w(b))+1 to 2 ·max(w(a), w(b)). Accordingly, all

weights in the tree will be a power of 2.

We perform the proof by arguing about the weights of the

nodes when constructing a Pseudo-Huffman tree. To this end,

consider the set of all nodes V i
r of the tree-under-construction

that are the root nodes of the already connected components

after step i of the algorithm. Let wi
total =

∑

v∈V i
r

w(v) denote

the sum of the weights over all these nodes.

At each step i of the algorithm, two nodes a, b ∈ V i
r with

minimal weight are chosen and joined to a new node c such

that V i+1
r = {c} ∪ V i

r \ {a, b}. There are two cases:

1) both nodes a and b have the same weight 2k. Then,

they are replaced by a node with weight 2k+1 such that

wi+1
total = wi

total (see Fig. 3a), i.e., the sum of the weights

over the root nodes remains constant.

2) one node—assume without loss of generality a—has

weight w(a) = 2k and the other node (b) has weight

w(b) = 2k−l for some k ≥ l > 0. Then, they are

replaced by a node c with weight w(c) = 2k+1 (see

Fig. 3b).

Since we always take the nodes with minimal weight,

there might not be any other node d ∈ V i
r with

w(d) < 2k as this node would have a higher priority

to be joined with b. Thus, all nodes in V i
r aside from

b have a weight that—by construction—is a power of 2

that is greater than or equal to 2k. Consequently, after

joining a and b, wi
total is increased to a number wi+1

total

that is divisible by 2k. More precisely, it is increased by

w(c) − w(a) − w(b) = 2k+1 − 2k − 2k−l

= 2k − 2k−l

< 2k,

such that wi+1
total is the smallest number that is greater

than wi
total and divisible by 2k.

Clearly, this case happens at most once for each k > 0,

since afterwards there is no more node in V i+1
r with a

weight less than 2k and all nodes that will be added to

V j
r (for j > i) have higher weights.



By the assumption of Theorem 1, we initially have

2n =
∑

v∈T sv ≤ w0
total and w0

total < 2n+1. Thus, we will

at some point denoted final reach the case that all nodes

in V final
r have a weight greater than or equal to 2n such

that wfinal
total is divisible by 2n. Since 2n+1 is divisible by

all potencies 2k for k = 0, . . . , n, wfinal
total will never exceed

2n+1, as we are always increasing wi
total to the smallest larger

number divisible by 2k for a k ∈ {1, . . . , n}. Consequently,

we have at least one and at most two nodes in V final
r with a

weight of 2n. Thus, the root node of the resulting tree either is

the single node with weight 2n or the single node with weight

2n+1 constructed from the two nodes with weight 2n. Hence,

the root node of the original Pseudo-Huffman tree has weight

n or n+ 1 as desired.

Now let us interpret this result in the setting of coded

Boolean functions. Consider a Boolean function f : Bn → B
m

to be encoded. We can construct a Pseudo-Huffman tree

with |T | = |{pi ∈ B
m | µ(pi) > 0}| terminal nodes

(which is always possible), where each terminal node v ∈ T
uniquely corresponds to one output pattern pi and has assigned

sv = µ(pi) (thus, having a weight w(v) = ⌈log2 µ(pi)⌉). As

this assignment clearly satisfies the conditions of Theorem 1,

the height of this tree is either n or n+1. Hence, there exists

a coding (which is inherently given by the constructed tree)

that requires at most one additional qubit when realizing f in

quantum logic.

Moreover, we can precisely determine in which cases this

additional qubit is required. In fact, the additional qubit is

required whenever there exists an output pattern pi where

µ(pi) > 0 is not a power of two.

Corollary 1. The root node of a Pseudo-Huffman tree satis-

fying the same assumptions as in Theorem 1 has weight n if,

and only if,
∑

v∈T 2w(v) = 2n.

Proof. Given that
∑

v∈T 2w(v) = 2n we may apply Theorem 1

by using the assignment sv = 2w(v) for all v ∈ T . Following

the argumentation in the proof of Theorem 1, the root node

of the Pseudo-Huffman tree has weight n if wi
total does not

exceed 2n at any time, i.e., if the second case (which increases

wi
total) does not occur at all. This is clearly the case if w0

total =
2n in the beginning. Conversely, if

∑

v∈T 2w(v) 6= 2n, we have

w0
total > 2n in the beginning, such that wfinal

total = 2n+1 in the

end.

IV. COMPARISON TO EMBEDDINGS WITHOUT CODING

In this section, we compare the idea of coded embeddings

to previous approaches and discuss their effect on the design

of quantum oracles.

A. Evaluation

We compare the idea of coded embeddings to approaches

that do not consider coding when realizing a Boolean func-

tion f : Bn → B
m in quantum logic. More precisely, we

compare to exact methods utilizing max(n,m+⌈log2 µ(p1)⌉)
qubits [13], [14] as well as to heuristic ones that always utilize

a Bennett embedding with n+m qubits [23], [24] (e.g., gen-

erated when using an ESoP based synthesis approach [25]).

TABLE III: Number of required qubits

Benchmark Embedding
name n m Bennett [23] Min. [13], [14] Encoded
f51m 159 14 8 22 19 15
tial 214 14 8 22 19 15
cu 141 14 11 25 25 15
misex3 180 14 14 28 28 15
misex3c 181 14 14 28 28 15
table3 209 14 14 28 28 15
s1488 split 14 25 39 38 15
s1494 split 14 25 39 38 15
b12 15 9 24 22 16
in0 162 15 11 26 25 16
parity 188 16 1 17 16 16
ryy6 198 16 1 17 17 17
t481 208 16 1 17 17 17
cmb 134 16 4 20 20 17
pcler8 190 16 5 21 21 17
cm163a 133 16 13 29 25 17
pdc 191 16 40 56 55 17
spla 202 16 46 62 61 17
table5 17 15 32 32 18
s298 split 17 20 37 29 18
s208.1 split 18 9 27 19 19
cm151a 129 19 9 28 27 20
cm150a 128 21 1 22 22 22
mux 185 21 1 22 22 22
duke2 22 29 51 50 23
cordic 138 23 2 25 25 24
cps 140 24 109 133 132 25
vg2 25 8 33 32 26
misex2 25 18 43 42 26
frg1 160 28 3 31 30 29
apex2 101 39 3 42 42 40
seq 201 41 35 76 75 42
apex1 45 45 90 89 46
apex3 54 50 104 103 55
e64 149 65 65 130 129 65

To this end, we have implemented the proposed idea in C++

and utilized the QMDD package [26] as well as the BDD

package CUDD [27] to gain a compact representation of the

considered functions—allowing us to determine the number

of required qubits in negligible runtime. As benchmarks we

use the functions from RevLib [28], as well as from the

ISCAS [29] and IWLS [30] benchmark suites.2

Table III summarizes the obtained results. The first three

columns of the benchmark as well as the number of inputs

n and the number of outputs m. In the next three columns

we list the number of required qubits when using Bennett

embedding (i.e., m + n), when using a minimal encoding

without considering coding (i.e., max(n,m+ ⌈log2 µ(p1)⌉)),
and when using coded embeddings as described in this work

(i.e., n or n+ 1), respectively.

As can be seen in Table III, the number or required

qubits can significantly be reduced when considering coded

embeddings—especially in cases where m > n. Consider for

example benchmarks cps 140 and e64 149, where the number

of required qubits can be reduced by 107 and 65, respectively,

using coding techniques. Overall, a possible reduction of

36.4% can be observed on average.

2Note that we only consider non-reversible functions from these bench-
marks suits since reversible ones do not require embedding.



B. Discussion

Concerning the design of quantum oracles, coded embed-

dings as proposed above can be exploited in two different

ways:

• On the one hand, one can apply the coding technique

locally on each and every sub-component and use de-

coders (after each sub-component) to translate the en-

coded results to the original ones which are then used as

inputs of the subsequent components. This essentially re-

duces the complexity of synthesis for the individual sub-

components (since a smaller number of qubits needs to be

considered). While this offers a significant improvement

of synthesis run-time (as also observed in [16]), the total

number of additional qubits does not change (due to the

decoders).

• On the other hand, one can apply the coding technique

globally such that the encoded outputs of one sub-

component are directly used as input for subsequent com-

ponents and a single decoder at the end translates the final

results to the desired ones. This approach significantly

reduces the number of extra qubits required during the

computation of the oracle’s sub-components such that

the total number of extra qubits is likely to stay close

to the theoretical minimum given by the oracle’s overall

functionality (which is zero). On the downside, a re-

design of the sub-components might be required in order

to work with encoded values.

V. CONCLUSIONS

In this work, we have proven that one additional qubit is

enough to determine a coded embedding of any non-reversible

function for quantum circuits. By this, one can significantly

reduce the overall number of qubits required for realizing

Boolean oracles, since their functionality is usually split

into several non-reversible parts. Our experimental evaluation

shows that the number of required qubits can indeed be

reduced by 36.4% on average, when comparing to embeddings

that do not utilize encoding and that have been considered as

the minimum thus far. Possible applications on the design of

oracles for quantum circuits are discussed.
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[24] R. Wille, O. Keszöcze, and R. Drechsler. Determining the minimal
number of lines for large reversible circuits. In Design, Automation and
Test in Europe, 2011.

[25] K. Fazel, M.A. Thornton, and J.E. Rice. ESOP-based Toffoli gate cas-
cade generation. In Communications, Computers and Signal Processing,
2007. PacRim 2007. IEEE Pacific Rim Conference on, pages 206 –209,
2007.

[26] Philipp Niemann, Robert Wille, D. Michael Miller, Mitchell A. Thorn-
ton, and Rolf Drechsler. QMDDs: Efficient quantum function represen-
tation and manipulation. IEEE Trans. on CAD of Integrated Circuits
and Systems, 35(1):86–99, 2016.

[27] Fabio Somenzi. CUDD: CU decision diagram package release 3.0. 0.
2015.

[28] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
an online resource for reversible functions and reversible circuits. In
Int’l Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is
available at http://www.revlib.org.

[29] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran. In Int’l
Symp. Circuits and Systems (ISCAS 85), pages 677–692. IEEE Press,
Piscataway, N.J., 1985.

[30] K. McElvain. IWLS’93 benchmark set: Version 4.0. In Int’l Workshop
on Logic Synth., 1993.


	I Introduction
	II Background
	II-A Quantum Circuits
	II-B Boolean Components in Quantum Circuits

	III One Ancillary Qubit is Enough
	III-A Utilizing Coding
	III-B Proving an Upper Bound of n+1 Qubits

	IV Comparison to Embeddings without Coding
	IV-A Evaluation
	IV-B Discussion

	V Conclusions
	References

