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Abstract—Manifold learning is used for dimensionality reduc-
tion, with the goal of finding a projection subspace to increase and
decrease the inter- and intraclass variances, respectively. How-
ever, a bottleneck for subspace learning methods often arises from
the high dimensionality of datasets. In this paper, a hierarchical
approach is proposed to scale subspace learning methods, with
the goal of improving classification in large datasets by a range
of 3% to 10%. Different combinations of methods are studied.
We assess the proposed method on five publicly available large
datasets, for different eigen-value based subspace learning meth-
ods such as linear discriminant analysis, principal component
analysis, generalized discriminant analysis, and reconstruction
independent component analysis. To further examine the effect
of the proposed method on various classification methods, we fed
the generated result to linear discriminant analysis, quadratic
linear analysis, k-nearest neighbor, and random forest classifiers.
The resulting classification accuracies are compared to show the
effectiveness of the hierarchical approach, reporting results of an
average of 5% increase in classification accuracy.

I. INTRODUCTION

Data sets used in today’s machine learning algorithms are

becoming more and more complex, often incorporating a large

number of features. However, having too many features in

a data set can hinder intuition about a problem and over-

complicate information processing. Indeed, having a high

number of features compared to the number of samples in

a dataset is sometimes called the “curse of dimensionality”.

To help with visualization and exploration in such scenar-

ios, dimensionality-reduction techniques can be used to pre-

process large data sets, as illustrated in a prior ISMVL paper

[1].

Dimensionality reduction is a method that removes redun-

dant and irrelevant features. There are two main approaches

for reducing the size of a dataset: feature selection [2] and

feature extraction [3]. Feature selection chooses a subset of

features with respect to their correlation with labels. It does

not change the feature space and it is most effective when

intrinsic complexity of data is lower than the complexity of

its feature space. Some of the well-known approaches are chi-

square [4], correlation based [4], and sparse clustering based

feature selection [5]. Feature extraction however, can reduce

the dimensionality of data by changing the data space and

creating an entirely new feature set that best represents the

data, albeit in a lower-dimension data space. Some of the well-

known approaches are principal component analysis (PCA)

[6], linear discriminant analysis (LDA) [7], and LDA/MMC

(maximum margin criterion) [8].

Dimensionality reduction often produces a more inter-

pretable representation of data. However, it does not neces-

sarily result in higher accuracy due to potentially losing some

informative features during the reduction. However, it offers

a trade-off to gain better explorability and visualization of

data. In this paper, inspired by a hierarchical approach for

large-margin metric learning using stratified sampling [9], we

propose a hierarchical approach for manifold learning dimen-

sionality reduction. This approach includes iterative selection

of features by hierarchical sampling, feature selection, and

feature extraction.

The remainder of this paper is organized as follows. In

section II, we review feature selection and feature extraction

methods used in the hierarchical approach. We discuss the

classifiers that were used to compare the accuracies of the

methods under study. The proposed hierarchical method is

discussed in more detail in section III. Section IV outlines

the different combinations and experiments of the hierarchical

approach. It also compares the results of this proposed ap-

proach with the original manifold learning method and raw

data. Finally, section V concludes the paper and discusses

possible future directions.

II. BACKGROUND

A. Feature Selection

Feature selection [2], [10], [11] is a pre-processing

dimensionality-reduction method to select a subset of features

that represents the data while preserving its classification. The

goal is to map a complex raw dataset denoted by X ∈ Rn×d

to a lower dimension of X ∈ Rz×d where z ≤ n, where n

and z refer to numbers of features, and d is the number of

instances or cases in the data set.
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In this paper, correlation-based feature selection with re-

spect to classes is used, which calculates the correlation of

each feature based on its relevance to the label vector. A

feature with a higher correlation value is more relevant to class

determination, and therefore is ranked higher in the hierarchy

of selected features [12].

B. Feature Extraction and Dimensionality Reduction

Feature extraction is a pre-processing dimensionality-

reduction method that creates an entire set of new features

based on, but different from, the original dataset [3]. Feature

extraction considers the correlation between all features when

mapping from X ∈ Rn×d to a lower dimension of Y ∈ Rz×d

where z < n [13]. This mapping also changes the space

of the dataset, allowing for a better representation or better

visualization of the dataset, hence the term subspace learning

methods. This newly created smaller set of features is called

an embedded feature space. In this paper, a variety of super-

vised and unsupervised feature-extraction methods are used as

described below.

1) Principal Component Analysis (PCA): is a linear un-

supervised method for feature extraction that reduces the

dimensionality of data by mapping it to a subspace with

a lower dimension [14]–[16]. The goal of PCA is to find

orthogonal directions in the space of data that best capture its

variations. The maximum variation of data is called the first

principal component and is denoted by u. PCA then projects

the data such that the main coordinate is in the direction of u

by u
T
X . The variance of the points after projection will then

be u
T
Su where S is the covariance matrix of data. PCA

tries to maximise this variance, which leads to finding the

leading eigenvectors of the covariance matrix called principal

components denoted by U with dimension of 1× d. The first

p terms of U are chosen for dimensionality reduction.

2) Independent Component Analysis (ICA): is an extension

of PCA that helps with non-Gaussian data.

3) Fisher Discriminant Analysis (FDA): also known as

Linear Discriminant Analysis (LDA), is a supervised feature-

extraction method that projects data on a new space with lower

dimension based on an eigenvalue resolution [7] [17]–[19].

Similar to PCA, FDA uses the projection of data along the

data direction, but it also incorporates the label information to

find the optimum variation of data that increases and decreases

the intra- and inter-class scatter, respectively [12]. If we denote

the intra-class scatter as Sb, inter-class scatter as Sw and the

projection direction by u, we can formulate the FDA as [20]:

J(u) :=
uTSbu

uTSwu
(1)

FDA maximizes J(u) to find the projection directions which

are eigen vectors of S−1

w Sb sorted in descending order.

4) Generalized Discriminant Analysis (GDA): deals with

non-linear discriminant analysis problems using kernel func-

tions [21], [22]. The concept of GDA is the same as LDA, i.e.,

to maximize the ratio of between-class scatter to within-class

scatter while mapping the data into a low-dimensional space.

C. Classification Methods

Classification is a task of assigning a class yj where 1 <

j < K to an input test data xi where i ∈ Rn based on its

attributes and the learning model that is achieved from the

training set. The training data are used to create a model to

calculate the probability of a point belonging to a class with

respect to its features. In overall, the decision is based upon

the calculated probability of a test sample belonging to a class.

Variety of methods exist to create that classification model

such as decision trees or neural networks. In this section we

go through the methods we used for determining the accuracy

of our proposed approach.

1) k - Nearest Neighbor Classification (k-NN): uses the

known labels of the closest points in a training set to predict

the class of each data point. In this paper, we use Euclidean

distance metric which does not consider any weights for the

points and values all the of them equally.

If we denote a sample in testing set as xi, to predict its

label yi, we determine the k nearest neighbours of xi in the

training set T . Then a majority vote of the known labels of T

gives us the predicted yi.

2) Linear Discriminant Analysis Classification (LDA):

calculates the probability of a point belonging to a class based

on Bayes classification [23]–[25]. LDA assumes that class

conditional distributions are Gaussian and all classes share

the same co-variance matrices. LDA calculates the Euclidean

distance of the testing set with respect to eigen vectors learned

from the training set to predict the appropriate class. The

closest eigen vector to the test point determines its predicted

label. Assuming the class conditional distribution is Gaussian,

then the mean and the covariance matrix of each class can be

calculated. It results in a linear decision boundary to distinct

classes.

3) Quadratic Discriminant Analysis Classification (QDA):

is the quadratic form of LDA [23], [24]. Similar to LDA, it is

based on Bayes classification with Gaussian class distributions,

but unlike LDA, it does not assume the co-variance matrices

of classes are the same. This assumption results in quadratic

decision boundaries.

4) Random Forest Classification (RF): is an ensemble

learning method that creates a forest of decision trees, each

independently created by randomly sampling a subset of data

points in terms of both instances and features from training

set [26], [27]. Test data are passed through all trees, and the

final decision is based on a majority vote among predictions.

D. Hierarchical Large Margin Metric Learning with Stratified

Sampling

A hierarchical approach with stratified sampling was pro-

posed for accelerating large margin metric learning that sug-

gested using portions of training data in a hierarchical manner

to solve semi-definite programming optimization at every iter-

ation [9]. As the title suggests, this approach is iterative. The

general idea was to consider points within some hypersphere

in the data space and to sample from those points utilizing

stratified sampling in an iterative manner.



In stratified sampling, the data to be sampled is divided to

homogeneous sub-groups called strata. Random sampling is

applied on each strata [28].

Using the sample points from every hypersphere, semidefi-

nite programming optimization is done and therefore the pace

of optimization significantly improves.

Initially, many small hyperspheres are considered on the

data space to make small changes to the groups of data points.

Triplets are sampled in hyperspheres using stratified sampling,

considering classes as strata.Then, SDP optimization is solved

over the sample points rather than the whole data.

By solving the optimization in every hypersphere, a projec-

tion matrix is found to project all data points into the new

metric subspace that is learned from sampled triplets. In later

iterations, the number of hyperspheres is reduced, but their

radius is increased in order to explore more of the data space.

Moreover, at every iteration, the sampling portion is decreased

because more data points fit into large hyperspheres, which can

slow down the optimization.

III. PROPOSED HIERARCHICAL SUBSPACE LEARNING

METHOD

The main problem with non-linear dimensionality reduction

in manifold learning is the high number of features found

in complex datasets. Visualization, representation and explo-

ration of high-dimension data is often non-intuitive to people

interpreting the data. Hence, we can try to reduce the dimen-

sionality of data while trying to preserve its structure. Inspired

by the hierarchical large margin metric learning method with

stratified sampling described above, we propose a hierarchical

subspace learning method for better discrimination of classes.

The general idea of this approach is to iteratively train the

algorithm with portions of data to improve performance. The

procedure is shown in Algorithm 1.

At every iteration, several hyperspheres are applied on the

data space. In every hypersphere, the feature space is either be

untouched, which results in the original feature space of 1×d,

reduced to a subset by random sampling, which results in a

random subset of feature space 1×p where p < d, or reduced

to a subset using feature selection, which results in a subset

of feature space 1 × p, where p < d and features are sorted

in descending order based on their correlation with labels (see

line 11 in Algorithm 1).

We refer to the number of instances as the data space and

to the dimensions of the data as the feature space. As the

algorithm suggests, instances can be sampled from within hy-

perspheres using stratified sampling (see line 12 in Algorithm

1) [28]. Collecting all the sampled points and selected features

from hyperspheres, we then apply a feature extraction method

explained in section II. The weights resulting from the feature

extraction method of our choice are stored for transforming

the test dataset later, and are used to project the whole data

into the concluded subspace at the end of iteration (see lines

15 and 16 in Algorithm 1).

Note that in the Fisher Discriminant Analysis (FDA)

method, we slightly strengthen the diagonal of the coefficients

1 Procedure: Hierarchical Subspace Learning(X)

2 Input: X: dataset

3 Initialize r, ns, and pτ
4 for τ from 1 to T do

5 r := increasing function of τ

6 ns := decreasing function of τ

7 pτ := decreasing function of τ

8 nf := decreasing function of τ

9 for s from 1 to ns do

10 cs ∼ range(X)
11 Feature selection : Correlation based feature

selection with portion size nf within the

s-th hypersphere

12 Instance Sampling: Draw a stratified sample

with sampling portion pτ within the s-th

hypersphere

13 Apply desired subspace learning method

14 Store the weight matrix

15 Project X onto Col(W ): X ←XW

Algorithm 1: Hierarchical Subspace Learning

matrix denoted by W in order to avoid data collapsing into

subspace due to low ranks. Bear in mind that it does not have

any effect on the projection directions that we desire.

At every iteration, the number of hyperspheres, denoted by

ns, decreases with respect to iteration index while the radius of

the hyperspheres, denoted by r, increases. This is because as

the algorithm progresses, we want to explore more of the data

space and see all data points at least once, without having

much overlap among the sampling area. If feature selection

is also applied, the subset portion of features denoted by

nf is altered with respect to the iteration index because as

we move into a new space, new features are being created

during feature extraction. The instance’s stratified sampling

portion also decreases at each iteration because as the radius

of hyperspheres increases, more data can fit in while we only

want to sample a portion of each available class.

We coded the algorithm in MATLAB. The initial value of

radius, number of hyperspheres, instance sampling portion,

feature selection subset portion, and feature extraction subset

portion are r = 0.1σ, ns = ⌊0.01×n⌋ (clipped to 10 ≤ ns ≤
20), and pτ = 1, nf = 90%, and FE = 90%. These values

will be updated by r = r+∆r, ns = max(ns−⌈0.2×ns⌉, 1),
pτ = max(pτ − 0.05, 0.2), where ∆r = 0.3σ and σ is the

average standard deviation along features, ns = max(nf −
⌈0.95× nf⌉, 50), and FE = max(FE − ⌈0.95× FE⌉, 50).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Setup

We used five publicly available datasets in this paper with

their specifications presented in Table II. The first dataset is

Fisher Iris [29], with 150 samples in three classes with four

features. The second dataset used is ORL faces [30], which



TABLE I
COMPARING ACCURACIES OF THE PROPOSED MANIFOLD LEARNING METHODS

IN RAW, NON-HIERARCHICAL AND HIERARCHICAL SUBSPACE LEARNING FOR CLASSIFICATION.

Classifiers
Datasets Feature Extraction No Feature Selection Random Feature Selection Feature Selection

LDA KNN RF QDA LDA KNN RF QDA LDA KNN RF QDA

Iris

Raw 81.80 72.70 81.80 76.30 81.80 72.70 81.80 76.30 81.80 72.70 81.80 76.30

Original

LDA 81.81 72.70 81.80 77.70 81.81 72.70 81.80 77.70 81.81 72.70 81.80 77.70
PCA 72.27 71.00 81.81 72.72 77.27 72.71 81.81 77.80 77.27 72.70 82.30 76.20
GDA 81.80 76.00 86.36 77.65 81.80 80.80 86.30 86.30 81.80 78.18 91.90 86.30
RICA 81.81 69.09 65.45 76.30 81.81 69.09 65.45 68.81 81.81 69.09 65.45 76.30

Hierarchical

LDA 81.81 77.27 81.80 77.00 81.81 77.27 86.36 86.36 81.81 77.27 86.36 86.36
PCA 81.81 86.18 82.34 77.00 81.81 72.45 82.34 77.00 81.81 81.18 82.34 77.27
GDA 81.80 87.27 86.36 77.65 81.80 80.80 86.30 86.30 81.80 83.50 91.90 86.30
RICA 81.81 72.72 65.45 76.30 81.81 72.72 65.45 61.81 81.81 72.72 65.45 76.30

Breast Cancer

Raw 97.14 97.14 98.09 99.04 97.14 97.14 98.09 99.04 97.14 97.14 98.09 99.04

Original

LDA 97.14 96.19 96.19 96.19 94.28 93.33 94.28 98.95 96.19 96.19 94.28 94.28
PCA 95.23 97.14 94.28 95.23 96.19 93.33 92.38 93.33 95.23 96.19 96.19 98.09
GDA 96.19 96.19 96.19 97.14 97.14 96.19 96.19 100 93.33 94.28 92.38 94.28
RICA 96.19 95.23 94.28 95.23 98.09 98.09 99.04 99.04 94.28 93.33 94.28 96.19

Hierarchical

LDA 97.14 98.09 97.14 97.14 94.28 95.23 96.19 93.33 96.19 96.19 97.14 97.14
PCA 95.23 98.09 96.19 95.28 95.23 96.19 93.33 94.28 98.09 97.14 99.04 96.19
GDA 96.19 98.09 96.19 97.14 99.04 98.09 97.14 98.09 93.33 94.28 92.38 94.28
RICA 96.19 96.19 96.19 95.23 98.09 98.09 99.04 99.04 94.28 96.19 96.19 96.19

Isolet

Raw 99.87 92.05 93.58 95.71 99.87 92.05 93.58 95.71 99.87 92.05 93.58 95.71

Original

LDA 84.35 82.30 82.05 81.53 81.70 81.53 78.97 79.23 83.58 82.82 78.46 81.02
PCA 91.02 83.83 75.20 81.02 81.02 74.10 81.02 81.02 81.53 81.79 79.74 91.79
GDA 79.23 77.14 77.14 85.89 76.41 73.84 71.79 73.58 76.12 72.84 71.02 73.30
RICA 77.94 71.28 84.35 80.00 71.53 73.07 77.69 81.53 93.33 74.35 83.35 72.30

Hierarchical

LDA 91.28 88.46 88.46 81.53 80.00 74.35 76.92 75.89 89.48 88.17 89.48 88.17
PCA 93.07 83.05 89.74 94.87 78.00 70.60 75.21 75.00 86.64 88.36 83.33 84.61
GDA 85.41 86.41 82.30 92.10 63.07 67.17 57.69 63.39 81.53 80.51 80.25 84.10
RICA 77.43 71.28 79.74 80.51 80.00 77.69 79.48 80.00 93.33 79.23 78.97 73.58

MNIST

Raw 75.00 80.00 88.00 61.00 75.00 80.00 88.00 61.00 75.00 80.00 88.00 61.00

Original

LDA 71.00 72.00 62.00 69.00 74.00 72.00 63.00 69.00 71.00 73.00 65.00 67.00
PCA 75.00 81.00 84.00 68.00 75.00 80.00 82.00 68.00 75.00 81.00 84.00 68.00
GDA 70.00 79.90 65.00 58.90 70.00 79.90 65.00 58.90 70.00 79.90 65.00 58.90
RICA 71.00 70.00 73.00 64.00 71.00 67.00 68.00 57.00 71.00 62.00 66.00 64.00

Hierarchical

LDA 74.00 74.00 70.00 69.00 74.00 72.50 65.00 68.00 73.00 74.00 69.00 73.00
PCA 80.00 87.00 82.00 67.00 79.00 80.00 84.00 69.00 80.00 84.00 86.00 70.00
GDA 74.00 79.00 68.00 60.00 58.00 45.00 58.00 47.00 80.00 79.00 70.00 76.00
RICA 71.00 74.00 75.00 75.00 68.00 60.00 62.00 72.00 71.00 74.00 64.00 64.00

ORL Faces

Raw 92.50 87.50 92.50 89.90 92.50 87.50 92.50 89.90 92.50 87.50 92.50 89.90

Original

LDA 85.00 88.75 67.50 82.20 85.00 88.75 70.00 75.00 85.00 88.70 71.20 80.20
PCA 92.50 83.75 83.75 87.50 92.50 83.40 83.75 86.00 92.50 84.00 81.25 88.67
GDA 74.00 72.13 63.00 52.22 73.50 66.32 63.00 52.22 73.70 68.23 63.00 52.22
RICA 73.75 75.00 83.75 81.25 73.75 75.00 82.50 81.25 73.00 75.00 85.00 81.25

Hierarchical

LDA 85.60 88.75 70.86 84.00 83.50 85.00 65.30 69.00 88.00 89.70 81.45 82.43
PCA 92.50 84.50 84.50 90.12 58.50 76.45 73.50 67.90 82.50 85.30 85.42 89.00
GDA 78.54 72.13 66.60 60.00 67.50 66.25 56.73 57.00 80.00 76.25 67.50 60.50
RICA 73.75 75.00 83.75 81.25 70.86 70.86 80.00 79.40 76.07 79.92 85.00 83.12

includes a set of images of 40 distinct individuals, each having

10 images with the size of 112 × 92 pixels. Third, we used

the Isolet dataset [31], which is a voice dataset for alphabet

classification. It includes 150 participants repeating each letter

twice to make a total of 7, 797 instances with 617 attributes.

A subset of MNIST [32] was used with 3, 000 images, each

28 × 28 pixels of handwritten digits between zero and nine.

Another dataset used in this paper is the Wisconsin breast

cancer diagnostic dataset [31], with 569 instances and 32
features. This paper tries to test a variety type of datasets with

a range of features to show the credibility of the proposed

method.

All datasets are divided to 75%-15%-15% train, validation

and test sub-data. The ORL dataset was further projected to

38 leading eigenfaces.

B. Comparison of Manifold Learning Methods in the Non-

Hierarchical and Hierarchical Approaches

Each dataset is tested in three categories: no feature se-

lection, random feature selection, and chi-squared feature

selection. For each of these methods, the algorithm goes

through manifold learning methods including PCA, LDA,

ICA and GDA. Four different classifiers are used to compare

the accuracy of these methods. Eventually, these results are



TABLE II
DATASETS SPECIFICATIONS

Datasets Size No Classes Type Task

Iris 150 × 4 3 Digit Pattern Recognition
Breast Cancer 569 × 32 2 Digitized Image Diognostic
Isolet 7797 × 617 26 Digitized Voice Voice Recognition
MNIST 3000 × 784 10 Image, Pixel Digit recognition
ORL 400 × 1178 10 Image, Pixel Face Recognition

compared to raw data going through a classifier without any

dimensionality reduction and the original feature extraction

method applied once. Note that Euclidean distance is the

metric used for the kNN classifier. Table I represents all the

classification accuracies for Iris, Breast Cancer, Isolet, MNIST

and ORL faces datasets.

In almost all datasets, the hierarchical approach results in

higher accuracy. Exceptions occur in the Iris and the Breast

Cancer datasets with many compatible accuracies due to the

simplicity of the datasets and their low number of features.

These cases can easily be handled in a non-hierarchical

approach. As the number of attributes increases, the increase

between original method accuracy to the hierarchical approach

is clearer. The hierarchical approach accuracy exceeds the raw

data accuracy in some cases such as Breast cancer - LDA

for kNN classifier, or MNIST - PCA for the LDA classifier.

This is due to the curse of lower dimensionality in which

higher dimensions do not always mean higher accuracy. This

can happen in cases where the number of features sampled is

greater than the number of instances sampled.

Random subset selection, however, does not guarantee

better results since it considers neither the between-feature

correlation nor the feature-label correlation. But, as can be

seen in Table I, the iterative nature of the method makes

up for this random feature selection resulting in comparable

accuracies with the original method. Omitting feature selection

and having only feature extraction as the dimensionality reduc-

tion, results in higher accuracies that outperform both random

feature selection and correlation based feature selection, as

expected. This is because while the goal of dimensionality

reduction is achieved by the feature extraction, we still keep

more of our feature space by not utilizing feature selection.

This approach, however, takes more run-time than others

because the projection direction matrix, which depends on the

number of features, is bigger.

Looking closely at Table I, it can be seen that LDA

feature extraction outperforms other dimensionality reduction

approaches, but it is closer to PCA than the rest. This is due

to LDA being a supervised method using the training labels

while PCA is unsupervised and does not require any labels.

The comparability is because the datasets are more linear. PCA

and LDA are both linear methods that match well with linear

datasets. GDA is an extension of LDA and hence is expected

to have comparable results.

Moreover, the Random Forest classifier achieves higher

accuracies on average because of creating a forest of trees and

taking a majority vote. In this way, the probability of error is

minimized. Besides the RF classifier, the LDA classifier also

presents high accuracies, especially in cases of LDA feature

extraction. This is again because the data is linear and hence

LDA classifier pairs well with LDA dimensionality reduction.

The main tradeoff in the hierarchical approach is between

accuracy and run time. The run time in smaller datasets

such as Iris and Wisconsin Breast Cancer is not significantly

different. However, as the dimensionality of the dataset

increases, especially with a greater number of features,

the run time increases to an average of 297.12, 154.56,

and 145.31 seconds for the Isolet, MNIST and ORL faces

datasets, versus 46.42, 20.60, 20.22 seconds respectively

for the baseline. This increase is predictable due to the

hierarchical nature of the algorithm and the dependence of a

classifier’s time and space complexity on the input matrix at

every iteration.

V. CONCLUSION AND FUTURE DIRECTION

Dimensionality reduction is often used to create lower-

dimensional spaces that represent data in a more visual manner

to make exploration easier. It is commonly used as a pre-

processing method in machine learning and statistics. How-

ever, these methods do not always guarantee higher classifica-

tion accuracies. Inspired by the hierarchical approach for large

margin metric learning using stratified sampling [9], we in-

troduce a hierarchically iterative approach as a pre-processing

method to increase the accuracy of classification. Five publicly

available datasets are tested through three different types of

the algorithms: without feature selection, with random feature

selection and with correlation-based feature selection. For each

method, four different feature extraction methods are used.

Finally, three types of results are gathered: classifying raw

data, classifying the original feature extracting method, and the

classifying data pre-processed using the proposed hierarchical

approach.

An accuracy comparison summary table between the orig-

inal approach and the proposed hierarchical approach is pre-

sented in Table III using No Feature Selection and Feature

Selection methods. The table shows up to an average of

3% increase in accuracy for the hierarchical approach at the

expense of run time. An approach for possible future work can

be testing non-linear manifold learning methods such as kernel

PCA or kernel LDA using this method since such methods

initially expand the feature space using a kernel to achieve a

non-linear mapping to maximize the variance while applying

dimensionality reduction.



TABLE III
SUMMARY OF TABLE I AVERAGE ACCURACY

Feature Extraction
Classifiers

LDA KNN RF QDA

LDA
Original 83.68 82.53 78.02 80.68
Hierarchical 85.83 85.19 83.16 83.57

PCA
Original 84.75 83.24 84.25 82.72
Hierarchical 87.16 87.48 87.09 84.13

GDA
Original 79.61 79.29 77.09 73.68
Hierarchical 83.26 83.64 80.14 78.80

RICA
Original 81.41 75.43 79.49 78.68
Hierarchical 81.66 79.12 78.97 80.14
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