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Abstract—A Constraint Satisfaction Problem (CSP) is a com-
putational problem where we are given variables and constraints
about them; the question is whether the variables can be assigned
values such that all constraints are satisfied. We give an overview
of the current state of research on CSPs where values for the
variables and constraints are taken from a finitely bounded
homogeneous structure which is fixed beforehand. We explain
the main mathematical ideas so far, the three dilemmas they
brought upon us, and what could be done to overcome them in
order to obtain a satisfactory understanding of the computational
complexity of such CSPs.
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I. INTRODUCTION

In a Constraint Satisfaction Problem (CSP), one is given

a finite set V of variables and a finite set C of constraints

about them and has to decide whether the variables in V can

be assigned values such that all constraints in C are satisfied.

In this article, we only consider fixed-template CSPs, in which

case there is a set A (called the domain) of possible values the

variables may take which is fixed beforehand, and where the

constraints in C are taken from a fixed finite set of relations

on A. The problem is thus determined by a relational structure

A = (A;RA
1
, . . . , RA

m), called a template of the CSP, which

we then denote by CSP(A). As an instance I of the problem,

we are then given a set of variables, say V := {x1, . . . , x6},

and a list of constraints given as atomic formulas over A,

say R1(x1, x1, x2), R1(x2, x3, x5), R2(x2, x5). The question

is whether there is a solution to this instance I , which is a map

s : V → A making all constraints true; in our example, a map

such that RA
1 (s(x1), s(x1), s(x2)), RA

1 (s(x2), s(x3), s(x5)),
RA

2
(s(x2), s(x5)) all hold in A. Research on CSPs generally

aims at relating structural properties of the template A to the

computational complexity of the CSP it defines.

Example 1.1: If A is the template whose domain is the set

Z of integers, and which has the unary relations {0} and {1},

Michael Pinsker has received funding from the Austrian Science Fund
(FWF) through project No P32337. The two yet unpublished examples we
present in Section III are from joint work with A. Mottet and T. Nagy. The
dilemmas are not presented in the order expected.

as well as the ternary relations {(x, y, z) | x + y = z} and

{(x, y, z) | x·y = z}, then CSP(A) essentially amounts to the

problem of deciding whether a given finite set of arithmetic

equations has a solution in Z. This is undecidable [43]. Note

that here we simply encode the ring of the integers as a

relational structure to fit our definition of a CSP; for research

on templates with functions see [2].

Example 1.2: If A is the template whose domain is the

domain of a finite field F = (F ; 0, 1,+, ·), and which has

the unary relations {0} and {1} and the ternary relation

{(x, y, z) | x+y = z}, then CSP(A) is essentially the problem

of deciding whether a given finite set of linear equations has a

solution in F. This problem is in P, i.e., solvable in polynomial

time in the number of variables.

Example 1.3: If A has the Boolean domain {0, 1}, and

a single ternary relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then

CSP(A) is the 1-in-3-SAT problem of deciding whether we

can assign Boolean values to the variables so that specified

triples contain precisely one 1 – an NP-complete problem. If

instead we equip A with all binary relations on the Boolean

domain, we obtain the problem 2-SAT, which is in P.

Example 1.4: If A is the template whose domain is the set Q

of rational numbers, and whose only relation is the usual strict

order <Q on them, then CSP(A) is essentially the problem

of deciding whether a given directed graph is acyclic. This

problem is in P.

Example 1.5: If A has domain {0, 1, 2}, and has as its

only relation the disequality relation 6={0,1,2} on this set, then

CSP(A) is essentially the problem of deciding whether a given

graph is 3-colorable, which is NP-complete.

Note that while every instance I of a CSP, i.e., the variable

set V and the list C of constraints given by atomic formulas,

is necessarily finite for the problem to be of computational

nature, it is in general neither necessary nor natural that the

domain of the template, i.e., the set of possible values the

variables can take, be finite as well. However, for finite-

domain templates, a strong algebraic theory was developed

which not only culminated in the celebrated confirmation of

the Feder-Vardi conjecture from [34] by Bulatov [31] and

Zhuk [53] stating that in this case, the CSP is always either
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in P or NP-complete, but also provided a clear structural

dividing line between those cases (assuming P6=NP, which

we shall henceforth do). Before that, the theory moreover

led to the characterization of those templates whose CSP has

bounded width, i.e., can be correctly solved by checking local

consistency [6]: such algorithms search for contradictions in

an instance by examining the constraints on subsets of the

variables of a fixed bounded size, and by propagating this

information via bounded-size connections with other such

subsets; they accept the instance if they cannot find any

contradiction. For instance, CSP(Q;<Q) from Example 1.4

can be solved this way: the algorithm computes the transitive

closure of the constraints by looking at 3-element subsets of

the variables, and accepts if it does not produce a loop. The

CSP in Example 1.2, on the other hand, cannot: Gaussian

elimination is not local in this sense.

Since every computational problem can be encoded as the

CSP of some template [13], we cannot expect a uniform alge-

braic approach for all templates. However, the fundamentals

of the algebraic approach for finite templates from [32] lift

almost verbatim to countably infinite ones (such as (Q;<Q))
under the assumption that for each instance I of the CSP, there

are only finitely many different solutions up to automorphisms

of the template [25]. To illustrate this property, consider

CSP(Q;<Q), and the instance I with variables x1, x2, x3 and

constraints x1 < x2, x1 < x3. Clearly, I has a solution s set-

ting s(x1) = 0, s(x2) = 1, s(x3) = 1. But I also has infinitely

many other solutions, most of which are however equivalent

in that they belong to the same orbit of the template: an

automorphism of (Q;<Q) sends one solution to another one.

Up to orbit-equivalence, there are only three different solutions

of this particular instance I , which we can describe as follows:

s(x1) <Q s(x2) <Q s(x3), s(x1) <Q s(x3) <Q s(x2), and

s(x1) <Q s(x2) =Q s(x3). Therefore, what we are looking

for in this CSP is actually not rational numbers, but an orbit

for the triple (x1, x2, x3) in the template as specified by the

order relation <Q and the equalities which hold on it, such

that all constraints become true (which is possible if and only

if the constraints do not imply that s(xi) <Q s(xi) for any

variable xi). Countably infinite structures with the property

that for every n ≥ 1, there are only finitely many distinct n-

tuples up to orbit-equivalence are called ω-categorical. Note

that the ring of integers in Example 1.1 above is very much

not ω-categorical: any two elements of Z are non-equivalent

since the template has no automorphisms at all.

While ω-categoricity guarantees the availability of certain

algebraic methods to investigate the mathematical structure of

the template, it turns out that contrary to the finite-domain

case the structure as measured by these methods is, without

further assumptions, largely insufficient to make predictions

about the computational complexity of the CSP [13], [35],

[36]. In particular, even if the “solution space” (i.e., all orbits

of n-tuples) for every given instance I (of length n) is finite, it

might not be possible to algorithmically enumerate all orbits of

arbitrary length. In order to achieve this, it makes sense to first

fix a simple way of describing orbits. Under ω-categoricity,

every orbit can be defined by a single first-order formula

(see [38]); observe, however, that in the example of (Q;<Q),
the orbit of any tuple is already completely determined by the

relations that hold on it, and hence by a conjunction of atomic

and negated atomic formulas. For a simple example where this

is not the case, note that in the structure (Q;<Q, {0}) the pairs

(−2,−1) and (1, 2) are in different orbits, but satisfy the same

relations. Structures where orbits of tuples are determined by

the relations on them alone are called homogeneous.

There is one more ingredient for the class of templates

we will consider: we wish to be able to decide which or-

bits actually occur in the structure (otherwise the CSP can

still be undecidable). For example, imposing the relations

s(x1) <
Q s(x2) <

Q s(x3) <
Q s(x1) to describe the orbit of a

potential solution s to an instance of CSP(Q;<Q) is invalid

since no orbit of triples satisfies them. To provide a simple

and in particular polynomial-time (in fact: locally) verifiable

description of the orbits available as solutions to an instance,

the notion of finite boundedness seems natural: a homogeneous

structure is finitely bounded if it has finitely many relations

and there exists a finite set of “forbidden conditions” given

by conjunctions of atomic and negated atomic formulas such

that the orbits which appear in the structure are described by

precisely those tuples which do not realize any of the forbidden

conditions. For example, in the case of (Q;<Q), such forbid-

den conditions would be ¬(a = b) ∧ ¬(a < b) ∧ ¬(b < a)
(guaranteeing that any two distinct elements of a tuple are

comparable in <Q); the condition a < a (guaranteeing that no

element of a tuple is related to itself in <Q); and the condition

a < b ∧ b < c ∧ ¬(a < c) (guaranteeing that <Q is transitive

on any tuple).

If a template A is homogeneous and finitely bounded,

then CSP(A) is in NP: for any given instance I , there

are only finitely many non-equivalent potential solutions (ω-

categoricity, which readily follows from homogeneity and

the finite language); the elements of the solution space (i.e.,

orbits) can be described by the relations which hold on their

tuples (homogeneity), making it possible to guess one of the

orbits by guessing such relations; whether or not this guess

actually yields an element of the solution space (i.e., a valid

orbit) can be checked by local verification on subtuples of

bounded size (finite boundedness); and finally, in the same

fashion, so can whether the guess satisfies the constraints.

We also see from this argument that each instance I of the

CSP of a finitely bounded homogeneous structure A whose

maximal arity of relations is k can be transformed into an

equivalent instance I ′ of a finite-domain CSP as follows: given

variables V = {x1, . . . , xn} and a list C of constraints, I ′

has as variables all k-tuples of elements of {x1, . . . , xn},

and the task is to assign to each such k-tuple one of the

finitely many orbits in A in such a way that the assignment

is consistent (whenever k-tuples of variables intersect, the

choice for their orbits must agree on the intersection), that

no forbidden condition is realized, and that each k-tuple

satisfies the constraints in C. In the example of (Q;<Q), we

have to pick for every pair (xi, xj) one of the possibilities



s(xi) <
Q s(xj), s(xj) <

Q s(xi), or s(xi) =
Q s(xj), in such

a way that all constraints are met, that equality is transitive,

and that we do not produce any of the forbidden subpatterns

above. We remark that this translation from I to I ′ does not

mean that the problem CSP(A) is equivalent to the CSP of a

finite structure, since all finite-domain instances we produce

as above have non-trivial overlaps between their variables;

in particular, a no-constraint instance is never obtained since

already the transitivity of the equality relation imposes non-

trivial constraints. Put differently, we have here a reduction to

a finite-domain CSP that might be harder than the original.

The finite-domain CSP instance I ′ associated with an in-

stance I of CSP(A) as above is of a very particular form:

basically, the constraints of I ′ specify for each variable a

set of allowed values among the orbits of k-tuples of A,

plus there are compatibility constraints which stem from the

overlap of the variables and the forbidden conditions; but

no other relations on the set of possible values (still the set

of k-orbits) are used. If we wish to allow such relations,

then this amounts to considering CSP(B) for structures B =
(A;RB

1 , . . . , R
B
q ) whose relations are unions of orbits of A; we

call such structures first-order reducts of A. An example for

A = (Q;<Q) would be B = (Q;BQ), where BQ is the ternary

relation containing all (a, b, c) such that a <Q b <Q c or

c <Q b <Q a (hence BQ is the union of two orbits); this yields

the classical NP-complete betweenness problem [48]. In any

instance I of CSP(B), a constraint B(xi, xj , xk) corresponds

to a
(

3

2

)

-ary constraint in the corresponding instance I ′ whose

variables are pairs of variables of I: that constraint states for

the triple ((xi, xj), (xj , xk), (xi, xk)) of pairs that under a

solution s none of the pairs is sent to the equality orbit, that

s(xi) <
Q s(xj) if and only if s(xj) <

Q s(xk), and so forth.

For the same reasons as above CSP(B) is in NP for

every first-order reduct B of a finitely bounded homogeneous

structure A. The following conjecture has been confirmed

for the first-order reducts of various finitely bounded homo-

geneous structures including (Q;<Q) [16], all homogeneous

graphs [18], [24], [29], the random partial order [40], the

random tournament [45], any unary structure [20], and various

others [11], [14], [17], [30].

Conjecture 1.6 (Bodirsky and Pinsker 2011; see [27]): Let

B be a first-order reduct of a finitely bounded homogeneous

structure. Then CSP(B) is in P or NP-complete.

II. THE DILEMMAS

A. The first dilemma of the infinite sheep

The algebraic approach to CSPs with finite or ω-categorical

template A is based on the observation that homomorphisms

from finite powers of A into A, called polymorphisms of A,

preserve solutions: if f(x1, . . . , xℓ) is a polymorphism and

s1, . . . , sℓ are solutions to an instance I of CSP(A), then

f(s1, . . . , sℓ) is a solution to I as well. The set Pol(A)
of all polymorphisms of A can thus be viewed as sym-

metries of any solution set, and in fact Pol(A) determines

the collection of all solution sets: any set of tuples which

is invariant under all polymorphisms is a projection of the

solution set of some instance [21], [32]. It then follows easily

that the computational complexity of CSP(A) is determined

by Pol(A), and that the less polymorphisms A has, the harder

its CSP is since, heuristically speaking, more unstructured

search becomes necessary to solve it.

As it turns out, in the case of a finite template A even the

symmetries of Pol(A) as measured by the non-nested identities

(i.e., universally quantified equations) that are witnessed in it

determine the complexity of CSP(A) [7]. In particular, the

theorems of Bulatov and Zhuk state that CSP(A) is in P if

and only if Pol(A) satisfies any non-trivial set of non-nested

identities (non-trivial meaning the identities are not satisfied

by the polymorphisms of all structures); this is the case if and

only if A has a 6-ary polymorphism s satisfying the Siggers

identity (see [50]) s(x, y, x, z, y, z) = s(y, x, z, x, z, y) (for

all x, y, z ∈ A), and there are various equivalent conditions

including the satisfaction of a cyclic identity [5] or weak

near-unanimity (wnu) identities for some arity [42]. A similar

characterization exists for bounded width via wnu identities

of all arities ≥ 3 [6] and some other identities [41]. For

templates within the range of Conjecture 1.6, it is believed

that membership in P can be described by the local (i.e., on

all finite subsets of the domain) satisfaction of non-trivial non-

nested identities [3], [4], [7], [35], [36], since this condition

obstructs the most obvious reason for NP-hardness, namely the

pp-construction of an NP-hard finite template. The condition

implies the global satisfaction of the (slightly nested) pseudo-

Siggers identity e◦s(x, y, x, z, y, z) = f ◦s(y, x, z, x, z, y) [8],

[9]. This identity is a weaker condition than the various condi-

tions known to characterize polynomial-time tractability for fi-

nite domains. It neither implies a single non-trivial non-nested

identity (as witnessed by (Q; 6=Q, ZQ), where ZQ is 4-ary and

defined by the formula x1 6= x2 ∨ x3 = x4; here all polymor-

phisms are injective up to dummy variables [12]), nor any

pseudo-cyclic identity e◦c(x1, . . . , xℓ) = f ◦c(x2, . . . , xℓ, x1)
of arity ≥ 2 (as witnessed by (Q;<Q, ZQ)); it is also not

known to imply pseudo-wnu identities for some arity. This

is at least in part due to the fact that ω-categoricity of A is

incompatible with idempotency of Pol(A), a central property

for deriving identities in finite (and even infinite [47], [49])

algebras: idempotency means that the only unary polymor-

phism of A is the identity function, and finite-domain CSPs

can always be reduced to idempotent ones; ω-categoricity, on

the other hand, implies that A has many unary polymorphisms,

in fact many automorphisms (since it has few orbits).

“Idempotency: can’t live with it, can’t live without

it.”

An approximation of idempotency in the ω-categorical case is

the notion of a model-complete core [10], which means that

all unary polymorphisms are equal to some automorphism on

every finite subset of the domain, so in that sense there are

as few unary polymorphisms as possible. If B is a first-order

reduct of a finitely bounded homogeneous structure which is

Ramsey (a combinatorial property, see [39]), then there is a

model-complete core B′ with the same CSP as B which is



also a first-order reduct of a finitely bounded homogeneous

Ramsey structure [46]. Hence, Conjecture 1.6 is equivalent to

its restriction to model-complete cores in the case of first-order

reducts of finitely bounded homogeneous Ramsey structures.

It is an open problem whether every first-order reduct of a

finitely bounded homogeneous structure is also a first-order

reduct of a finitely bounded homogeneous Ramsey structure.

See [28], [33], [52] for more on this question and its variants.

B. The third dilemma of the infinite sheep

We now fix a finitely bounded homogeneous structure A

of maximal arity k and a first-order reduct B. If instances of

CSP(B) can be transformed into finite-domain CSP instances

whose variables take values in the orbits of k-tuples of A, and

the polymorphisms of B determine the complexity of CSP(B),

then why does membership in P have a description in terms

of polymorphisms for finite templates, while Conjecture 1.6 is

still open? The reason lies in the fact that the polymorphisms

of B need not act on the orbits of A, and hence do not translate

into polymorphisms of the corresponding finite-domain CSP.

In other words, the transformation of the instance I of CSP(B)
into a finite-domain CSP instance I ′ might destroy the very

symmetries of the solution sets we would like to use in order

to prove membership in P.

“Orbit equivalence: can’t live with it, can’t live

without it.”

Those polymorphisms which do preserve orbit equivalence,

and hence act naturally on the orbits of A, are called canonical

with respect to A [23], [26], [28], and most of the research on

Conjecture 1.6 has been based on this notion. If the canonical

polymorphisms of B satisfy non-trivial non-nested identities

in their action on orbits, then CSP(B) is in P thanks to the

reduction above [19]. Moreover, bounded width is implied by

the identities known from finite-domain CSPs when satisfied

by canonical polymorphisms in their action on orbits, and the

amount of locality needed in that case to solve the CSP is

bounded by certain parameters which only depend on A [44].

Since we only know that the entire polymorphism clone

Pol(B), and not just its canonical part, determines the com-

plexity of CSP(B), the natural question then becomes how

well the smaller set of canonical polymorphisms represents

Pol(B). It has been observed in [28] (see also [22]), and

exploited in all classifications since [24], that if A is not only

finitely bounded and homogeneous, but moreover Ramsey,

then there are many canonical polymorphisms of B with

respect to A in the sense that every polymorphism of B locally

interpolates a canonical one modulo the orbits of A: for every

f(x1, . . . , xℓ) ∈ Pol(B), and for all orbits O1, . . . , Oℓ of A,

there exist tuples t1, . . . , tℓ in these orbits such that f is on

t1, . . . , tℓ the restriction of a canonical function.

While the ubiquity of canonical polymorphisms in the sense

above seems encouraging, it does not guarantee the satisfaction

of non-trivial identities by the canonical polymorphisms if the

other polymorphisms do. Nonetheless, one successful line of

research has been to count on exactly that, leading in particular

to proofs of P/NP-complete dichotomies for the CSPs of the

first-order reducts of any homogeneous graph [18] and various

other classes of CSPs [11], [17], [20], [30], [40], [45]; also

for characterizing bounded width this approach has been fruit-

ful [44], [45]. A systematic approach to comparing the set of

canonical polymorphisms with that of all polymorphisms was

developed in [45], based on so-called smooth approximations,

in many cases deriving a contradiction from the assumption

that the canonical polymorphisms do not witness any non-

trivial identities while the other polymorphisms do.

Observe that in the cases where membership in P is

witnessed by canonical polymorphisms, the only algorithm

employed to show polynomial-time tractability is the one from

finite-domain CSPs, used as a blackbox; in other words, the

CSP is simply reduced to a finite one which is then solved

by the hands of Bulatov and Zhuk. A similar phenomenon

occurs whenever bounded width of CSP(B) is witnessed by

canonical polymorphisms with respect to A: the CSP can then

essentially be solved by locally checking a finite-domain CSP

instance, resulting in a required amount of locality which is

bounded by what is needed for the finite-domain instance and

an overhead from the reduction which depends only on A.

C. The second dilemma of the infinite sheep

Powerful as the approach of a blackbox reduction to finite-

domain CSPs via canonical functions might have turned out in

many cases, the sword of Damocles has been hanging over the

heads of those who master its technicalities ever since the first

grand complexity classification for CSPs of structures within

the range of Conjecture 1.6, namely the first-order reducts of

(Q;<Q) in [16]. For such CSPs, polynomial-time tractability

is actually never witnessed by canonical polymorphisms with

respect to (Q;<Q) (except in trivial cases). A simple example

is the non-canonical polymorphism (x, y) 7→ max(x, y): from

the information x <Q x′ and y >Q y′, we do not know whether

max(x, y) <Q max(x′, y′); hence the function max does not

act on orbits of pairs in (Q;<Q). On the other hand, having

this polymorphism, which is in particular a polymorphism of

the structure (Q;<Q) itself, implies polynomial-time solvabil-

ity of the CSP [16] (see also the reduction to a finite-domain

CSP in [45] which avoids canonical functions).

Unfortunately, the order (Q;<Q) is not an exception, but at

the heart of a dilemma inherent even in the study of CSPs of

first-order reducts B of finitely bounded homogeneous struc-

tures A which have, a priori, no connection with an order. The

reason is that the local interpolation of polymorphisms which

are canonical with respect to A by arbitrary polymorphisms

of B as mentioned above is closely connected to (and in

some sense equivalent to, see [26]) A being Ramsey. The

Ramsey property is equivalent to the automorphism group of A

being extremely amenable [39], which in turn implies that the

automorphisms of A leave some linear order < on the domain

of A invariant. Hence, canonical functions with respect to A

are canonical with respect to the expansion (A, <) of A by

the order <, since canonicity is defined purely in terms of the

automorphisms of A. It follows that those polymorphisms of

B which are canonical with respect to A cannot satisfy any



non-trivial non-nested identities in their action on orbits, at

least if B is a model-complete core, for similar reasons as

is the case with the first-order reducts of (Q;<Q). Whence,

the canonical polymorphisms of B with respect to A cannot

witness polynomial-time tractability of its CSP.

We outline the proof of our claim that in the above situation,

the canonical polymorphisms do not satisfy any non-trivial

non-nested identities in their action on orbits. Otherwise,

their action on orbits would contain, for some l ≥ 2, a

function f satisfying the cyclic identity f(x1, . . . , xℓ) =
f(x2, . . . , xℓ, x1) by [5]. By Ramsey’s theorem, there exists an

infinite S ⊆ A which is order indiscernible, i.e., two tuples

on S belong to the same orbit if and only if the order <

agrees on them. The cyclic identity of f on orbits then implies

f(a1, . . . , aℓ) = f(a2, . . . , aℓ, a1) for all a1, . . . , aℓ ∈ S,

since otherwise < would relate some element to itself. Using

this fact for any a1, . . . , aℓ ∈ S with a1 < · · · < aℓ
yields that on S, f(b1, . . . , bℓ) = f(c1, . . . , cℓ) whenever

b1 < c1, . . . , bℓ−1 < cℓ−1 and cℓ < bℓ. From this it follows

that f is constant on S, contradicting the assumption that B

is a model-complete core.

“Extreme amenability: can’t live with it, can’t live

without it.” (A. Mottet)

Given this argument, how can canonical functions be of use at

all, and how were they used in the mentioned classifications?

Let us consider, for example, the random graph G and a first-

order reduct B: both polynomial-time tractability of CSP(B)
and its solvability by local consistency checking have been

characterized by canonical polymorphisms with respect to

G [24], [45]. Yet, G is not a Ramsey structure; in particular,

the polymorphisms of B do not necessarily locally interpolate

canonical functions with respect to G. Both the original

approach in [24] as well as the more recent and systematic

approach in [45] expand G by a linear order < on its domain

in such a way that the expanded structure (G, <) is a finitely

bounded homogeneous Ramsey structure, and consider B as

a first-order reduct of (G, <). It is an open problem whether

such expansions exist for all finitely bounded homogeneous

structures A (in general, adding a linear order is not sufficient,

but a finite number of relations including a linear order could

be); see the remark at the end of Section II-A. It then follows

that every polymorphism of B locally interpolates a canonical

polymorphism with respect to (G, <); the set of such canonical

polymorphisms does not, however, satisfy any non-trivial non-

nested identities in its action on orbits of (G, <), by the

argument above. To escape this dilemma, in both approaches

canonical polymorphisms with respect to (G, <) are composed

to obtain polymorphisms which are canonical with respect to

G. Finally, both approaches find such polymorphisms which

additionally satisfy non-trivial non-nested identities in their

action on orbits of G whenever B has a pseudo-Siggers

polymorphism (the approach in [24] does not yet use this

algebraic fact but makes an exhaustive case distinction over all

possible canonical functions with respect to (G, <)). Hence,

polynomial-time tractability of CSP(B) follows; the approach

in [45] for bounded width proceeds similarly.

Naturally, one then wonders under what conditions it is

possible to compose polymorphisms which are canonical with

respect to a Ramsey expansion A′ of a finitely bounded

homogeneous structure A to obtain polymorphisms which

are canonical with respect to A, or in other words, whose

action on orbits does not depend on the order < anymore.

It was remarked in [11] that the dividing line between those

structures B where polynomial-time tractability of the CSP

is witnessed by canonical functions, and those where this

is not the case, empirically corresponds to the strict order

property (SOP) (structures with the SOP such as (Q;<Q)
falling into the latter class). The SOP (see [51]) states about a

structure that there is a formula in its theory which defines

a preorder with infinite chains. The mentioned remark is

somewhat vague in that it does not specify whether the SOP

is considered for B or A (the Ramsey expansion A′ always

has the SOP), and whether canonicity is meant with respect to

A or A′, but in any case does not seem accurate: in particular,

the random poset P has the SOP, and membership in P is

described by canonical polymorphisms with respect to P for

its first-order reducts which are model-complete cores. Along

similar lines, in [30, Conjecture 6.2] it is conjectured that if

B does not have the SOP, then the existence of a pseudo-

Siggers polymorphism of B implies the existence of such a

polymorphism which is canonical with respect to A′ (and

where e, f in the pseudo-Siggers identity are from Pol(A′)).
This seems to be contradicted already by the first-order reduct

(Q; 6=Q, ZQ) of (Q;<Q) with ZQ as in Section II-A.

A statement which seemed conceivable to the author until

recently was that whenever A does not have the SOP, then

polynomial-time tractability of CSP(B) is witnessed by canon-

ical polymorphisms with respect to A (but the converse does

not hold). We will give a counterexample below.

III. OPENING THE BLACKBOXES

We now provide two examples exhibiting some limitations

of the blackbox use via canonical functions of the finite-

domain algorithms to solve a CSP in polynomial time or

check its local consistency. The first example, a result of

discussions with Mottet, is a first-order reduct of the random

3-hypergraph H (which does not have the SOP) which is a

model-complete core and has a pseudo-Siggers polymorphism,

and hence its CSP should be in P according to the detailed

version of Conjecture 1.6; it does, however, not have any

canonical polymorphisms with respect to H witnessing this.

This example can either be implemented so that its CSP has,

in spite of this, bounded width, or so that it does not.

The second example, from discussions with Mottet and

Nagy, is a unary structure A with the following property:

every first-order reduct B of A whose CSP has bounded width

can be solved by the blackbox use of the finite-domain local

consistency algorithm via canonical functions, but doing so

results in the use of an unnecessarily large amount of locality;

more precisely, applying a local consistency algorithm directly

one needs less locality.



A. Example 1: Hypergraphs

Let (H, <) = (H ;E,<) be the random 3-hypergraph with

a random order expansion; that is, it is the up to isomorphism

unique homogeneous structure with the following properties:

E is a ternary totally symmetric relation containing only

injective tuples, < is a linear order, and there are no additional

forbidden conditions for the orbits. (H, <) then can be viewed

as an expansion of the structure H = (H ;E), the random 3-

hypergraph, by a random linear order <. Both (H, <) and H

are finitely bounded and homogeneous, and the first is Ramsey

while the latter is not; in fact, H does not have the SOP.

We first define a binary injection f on H which is canonical

with respect to (H, <) by specifying its action on orbits of

triples; f will not be canonical with respect to H. Indepen-

dently of the structure, we say that an orbit is injective if the

tuples in it are; similarly, we call an orbit constant if the tuples

in it are. There are precisely two injective orbits with respect to

H: one is given by the relation E, and the other one, consisting

of the injective triples not in E, we call N . Each of the orbits

E and N splits into 3! orbits of (H, <) by the specification

of a linear order. We first define the action of f on orbits of

pairs, of which there are three, given by the possibilities x < y,

x > y, x = y. If O1, O2 are such orbits, then: if both O1, O2

are injective, then f returns O1; if both are constant, then so

is their value under f (since f is a function); if precisely one

of them is constant, then f returns the other one. We next

specify the action of f on orbits O1, O2 of triples; here we

need to be consistent with the specification on pairs. Note that

the order and the equalities on the orbit f(O1, O2) are already

determined by the above, so we only have to specify whether

f(O1, O2) belongs to E or to N in case it is injective; this is

the case if and only if O1 and O2 have no equality holding at

the same position. If O1, O2 are both injective, then f(O1, O2)
belongs to the same H-orbit as O1. If precisely one of O1, O2

is injective, then f(O1, O2) belongs to the same H-orbit as that

injective orbit. The only remaining case is when O1, O2 are

neither injective nor constant, and have their unique equality at

different positions; we then define f(O1, O2) to be a suborbit

of E if and only if O1, O2 agree on whether the element

which appears twice in their triples is smaller or larger than

the third element with respect to <. Note that this makes f

non-canonical with respect to H. A function f on H with this

action on orbits exists since our definition does not force any

forbidden subpatterns to be realized in (H, <).

Let m be a ternary function on H which acts like a

majority operation on the orbits E,N of H, i.e., it satisfies

m(E,E,N) = m(E,N,E) = m(N,E,E) = m(E,E,E) =
E, and the dual equations where E and N are flipped.

We moreover require m(O1, O2, O3) = O1 for all injective

orbits O1, O2, O3 of pairs in (H, <). This is not a complete

specification of an action on orbits of (H, <), but we will not

require more information in what follows. Set h(x, y, z) =
f(x, f(y, z)) and

g(x, y, z) = m(h(x, y, z), h(y, z, x), h(z, x, y)) .

Then g is canonical with respect to (H, <) but not H. If

s is any binary injective function obtained by composing g

and automorphisms of H which are canonical with respect to

(H, <), then s is still not canonical with respect to H: the

canonical automorphisms are either increasing or decreasing

with respect to <, and an easy induction shows that flipping

the order in one argument of s when acting on (H, <) can

change its value from a suborbit of E to a suborbit of N (this

is inherited from f ). If we allow arbitrary automorphisms of H

in the composition, then s is still not canonical with respect to

H: roughly, the argument is that such automorphisms locally

interpolate automorphisms which are canonical with respect

to (H, <).
The set of all relations on H which are invariant under all

automorphisms of H as well as under g then gives rise to

a first-order reduct B of H, since all such relations are, by

definition, unions of orbits of H. The polymorphisms of B

contain g by definition, and all polymorphisms f(x1, . . . , xℓ)
with ℓ ≥ 2 which depend on all of their variables are not

canonical with respect to H: by the general basic theory of

polymorphisms on infinite sets (see e.g. [37]) any such f is

injective, and f(x, y, . . . , y) has the property of s above. By

the same argument, we see that B is a model-complete core.

The structure B has an infinite number of relations, but in order

to obtain a well-defined CSP we can replace B by a suitable

finite subset of its relations while maintaining the mentioned

properties: there are only finitely many actions of canonical

functions on orbits of triples of H, so all these possibilities

can be excluded that way.

Clearly, for all tuples t1, t2, t3 of elements in H , the tuples

g(t1, t2, t3), g(t2, t3, t1) belong to the same orbit with respect

to H. A standard compactness argument then yields that g wit-

nesses the ternary pseudo-cyclic identity [27]; consequently, B

also has a pseudo-Siggers polymorphism [8], [9].

The problem CSP(B) is in P since it has bounded width:

yet unpublished arguments by Mottet, Nagy, and the author

use the existence of an absorbing subuniverse on the set of

triples, namely the injective triples as witnessed by injectivity

of g, and solvability of instances where all triples are constraint

by this subuniverse by local consistency checking; the latter is

implied by the action of g as a majority operation on the orbits

E,N of this subuniverse, and reduction to the corresponding

finite-domain instance.

The function g can, however, easily be modified to obstruct

the applicability of local consistency algorithms by choosing

m to act like a minority rather than a majority operation on

{E,N}. In that case, CSP(B) should still be in P since B

still has a pseudo-Siggers polymorphism. One approach for

proving membership in P could be to lift Zhuk’s reduction

to absorbing subuniverses for finite-domain CSPs into this

context.

B. Example 2: Unary structures

A unary structure is a relational structure which has only

unary relations. The study of the CSPs of first-order reducts

of such structures reduces to that of CSPs of structures of the



form B = (A;AA
1
, . . . , AA

m, RB
1
, . . . , RB

q ), where AA
1
, . . . , AA

m

are subsets which form a partition of A, and RB
1
, . . . , RB

q

are unions of orbits of the structure A = (A;AA
1
, . . . , AA

m);
in other words, we are looking at first-order expansions of

A. Let us focus here on the case where all parts AA
r of the

partition are infinite. In a solution s to an instance I of CSP(B)
with variables {x1, . . . , xn}, in order to choose an orbit for

(s(x1), . . . , s(xn)) in A we have to pick for every variable xi

one part AA
r of the partition into which s maps that variable,

and whenever two variables are mapped into the same part, we

have to choose whether to give these two variables equal value

or not; these two decisions together completely determine the

orbit of s in A. By the infinity of the parts, there is enough

space to give different values to variables xi, xj whenever we

wish to even if they are mapped to the same part, so any

assignment as above actually defines an orbit provided the

distributed equalities satisfy transitivity. The constraints of the

instance I are statements of the form Ar(xi) and xi = xj and

certain Boolean combinations of such statements as defined by

constraints from R1, . . . , Rq . Hence, this is essentially a finite-

domain CSP (with possible values a1, . . . , am corresponding

to the parts AA
1 , . . . , A

A
m of the partition) with a twist involving

the equality relation. We remark that this twist is non-trivial

since even constraints from the equality relation alone can

result in an NP-hard CSP: for example, if m = 1 and

the partition has only one class, the CSP of the structure

(A;AA
1
, 6=A, RB), where RB is the 4-ary relation defined by

the formula (x1 = x2) ∨ (x3 = x4) is NP-complete. CSPs

where the partition is trivial in this sense and which therefore

only concern the equality relation on an infinite set are called

equality CSPs, and their complexity classification is simple:

either the template has a polymorphism which is a binary

injection or a constant function, and the CSP has bounded

width, or all polymorphisms depend injectively on precisely

one variable, and the CSP is NP-complete [15].

Both membership in P [20] and bounded width [44] are

characterized by canonical functions for the CSP of structures

B = (A;AA
1
, . . . , AA

m, RB
1
, . . . , RB

q ) as above. We now con-

sider the latter situation: this is the case if and only if there

are polymorphisms of all arities ≥ 3 which are canonical with

respect to A and which satisfy the wnu identities in their action

on orbits of A.

How much locality is needed to solve a given CSP instance

I in this case? If we translate I into a finite-domain instance

I ′, then I ′ can be solved correctly by the (2, 3)-minimality

algorithm which, roughly speaking, propagates the constraints

of I ′ on the pairs of its variables via triples. As a guiding

example for the meaning of the parameters (2, 3), note in order

to compute the transitive closure of a binary relation, we look

on which pairs the relation holds (hence the parameter 2),

and then consider triples (hence the parameter 3) in order to

conclude on which other pairs it needs to hold in order to be

transitive; we then repeat. That the (2,3)-minimality algorithm

is sufficient to correctly solve any instance of a finite-domain

CSP that can be solved by local consistency checking, or more

precisely the (a, b)-minimality algorithm for some a, b ≥ 1, is

the statement of the collapse of the bounded width hierarchy

for finite-domain CSPs [1]. A general argument examining the

reduction sending I to I ′ then shows that since the variables

of I ′ are pairs of variables of I , it is sufficient to run (4, 6)-
minimality in order to solve CSP(B) (2 · (2, 3) = (4, 6)) [44].

Is this optimal? Considering that CSPs of structures B as

above are really finite-domain CSPs combined with equality

CSPs, that (2, 3)-minimality solves every finite-domain CSP

with bounded width, and that likewise any equality CSP

which is not NP-complete can be solved by (2, 3)-minimality

(basically, any such CSP is solved by computing the transitive

closure of equality), it seems reasonable to conjecture that

(2, 3)-minimality is sufficient also in the case of CSP(B).
Arguments by Mottet and Nagy confirm this for partitions

with two parts (m = 2).

IV. CONCLUSION

CSPs of first-order reducts of finitely bounded homogeneous

structures constitute a vast extension of finite-domain CSPs

and can model additional natural computational problems such

as acyclicity of graphs. They share many properties with finite-

domain CSPs; in particular, every instance I to such a CSP can

naturally be reduced to a finite-domain instance I ′. Powerful

and elegant methods to obtain complexity classifications via

this reduction have been developed around the notion of

canonical polymorphism, which is a certain symmetry of

the solution sets of the CSP which survives the translation

of the instance I to I ′. On the other hand, our examples

show that this reduction will not be sufficient for proving a

general P/NP-complete dichotomy as in Conjecture 1.6 even

under the failure of the SOP; it also does not, in general,

faithfully reflect the power of local consistency algorithms.

Opening the blackboxes of the algorithms for finite-domain

CSPs and applying suitable adaptations directly seems to be

required now in order to advance our understanding of the

complexity of such CSPs, and promises an escape from the

current dilemmas for all infinite sheep.
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conditions. Bulletin of the London Mathematical Society, 51(5):917–
936, 2019.

[50] Mark H. Siggers. A strong Mal’cev condition for varieties omitting the
unary type. Algebra Universalis, 64(1):15–20, 2010.

[51] Pierre Simon. A Guide to NIP Theories. Lecture Notes in Logic.
Cambridge University Press, 2015.
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