
ar
X

iv
:2

30
3.

00
32

2v
1

 [
cs

.L
O

]
 1

 M
ar

 2
02

3

Kleene Algebra With Tests for Weighted Programs

Igor Sedlár

The Czech Academy of Sciences, Institute of Computer Science

Prague, The Czech Republic

sedlar@cs.cas.cz

Abstract—Weighted programs generalize probabilistic pro-
grams and offer a framework for specifying and encoding mathe-
matical models by means of an algorithmic representation. Kleene
algebra with tests is an algebraic formalism based on regular
expressions with applications in proving program equivalence.
We extend the language of Kleene algebra with tests so that
it is sufficient to formalize reasoning about a simplified version
weighted programs. We introduce relational semantics for the
extended language, and we generalize the relational semantics
to an appropriate extension of Kleene algebra with tests, called
Kleene algebra with weights and tests. We demonstrate by means
of an example that Kleene algebra with weights and tests offers
a simple algebraic framework for reasoning about equivalence
and optimal runs of weighted programs.

Index Terms—Kleene algebra with tests, program equivalence,
program semantics, regular programs, weighted programs

I. INTRODUCTION

Weighted programs [3] add two features to standard while

programs [1]: (i) nondeterministic branching, and (ii) the

ability to weight the current execution trace. As such, they

generalize probabilistic programs [2], in which execution can

branch based on the outcome of a random coin flip.

Batz et al. [3] argue that, in addition to being an interesting

generalization, weighted programs offer a useful programming

paradigm for specifying and encoding mathematical models,

such as optimization problems or probability distributions,

by means of an algorithmic representation. They introduce

structural operational semantics and a Dijkstra-style weakest

precondition calculus for weighted programs, and they use this

calculus to determine competitive ratios of weighted programs.

Kleene algebra with tests [10], KAT, is an extension of

the algebraic theory of regular languages that provides a

simple algebraic formalism for equational specification and

verification of while programs, and for proving equivalence

of programs. In this note we extend the language of KAT so

that it is sufficient to formalize reasoning about a propositional

abstraction of weighted programs where assignments are re-

placed by unstructured atomic actions. We introduce relational

semantics for the extended language, and we generalize the

relational semantics to an appropriate extension of Kleene

algebra with tests, called Kleene algebra with weights and

tests, or KAWT. We demonstrate by means of an example

that KAWT offers a simple algebraic framework for reasoning

about equivalence and optimal runs of weighted programs.

This work was supported by the grant GA22-16111S of the Czech Science
Foundation. The author is grateful to the reviewers for useful comments.

The note is structured as follows. Section II introduces

weighted regular programs, an expansion of regular programs

with weights, and shows that weighted regular programs

can express a propositional abstraction of weighted programs

where assignments are replaced by unstructured atomic ac-

tions. Section III introduces a relational semantics for weighted

regular programs using weighted transition systems where

weights are elements of an arbitrary semiring. Section IV

recalls the basics of Kleene algebra and Section V introduces

an expansion of Kleene algebra with tests that generalizes

the relational semantics of weighted regular programs. The

expansion is called Kleene algebra with weights and tests, and

it adds a semiring subalgebra (representing weights) to Kleene

algebra with tests. Section VI demonstrates by means of an

example how Kleene algebra with weights and tests can be

used to reason about equivalence and optimal runs of regular

while programs.

II. WEIGHTED PROGRAMS

It is well-known that while programs can be represented

using the syntax of regular programs [5], [13]. The latter

contains nondeterministic branching (or choice) as one of the

basic operations, so it is natural to extend regular programs

with weights to capture weighted programs. For the sake of

simplicity, we will work with a propositional abstraction of

weighted programs where assignments x := E are replaced

by unstructured “atomic programs” in the style of [5], [10].

We will see that even in this simpler setting we are able to

carry out a significant amount of reasoning about weighted

programs.

Definition 1. A signature is Σ = (P,B,F), a triple of disjoint

sets of variables, intuitively representing atomic programs,

Boolean tests, and weighted tests, respectively. The set of

weighted regular programs over Σ, WRPΣ, consists of ex-

pressions of the following sorts:

Boolean expressions b, c := b | 0 | 1 | b · c | b+ c | ¬b
Weightings f, g := f | 0 | 1 | f · g | f + g
Programs p, q := p | b | f | p+ q | p · q | p∗

(It is assumed that b ∈ B, f ∈ F, and p ∈ P.) We will

sometimes write b̄ instead of ¬b and pq instead of p · q.

The language of weighted regular programs extends the

language of Kleene algebra with tests [10] corresponding to

regular programs by adding the sort of “weightings”, that

is, semiring terms representing assignments of weights to

http://arxiv.org/abs/2303.00322v1

computation paths. Weights are represented by elements of an

abstract semiring [4], [12]. Recall how the language of KAT

expresses standard control flow commands of while programs:

• skip := 1 and abort := 0

• sequential composition p ; q := pq
• if b then p else q := (bp) + (¬bq)
• while b do p := (bp)∗¬b

Note that nondeterministic branching (choice) is represented

in the language of regular programs by the + operator.

Example 1. Recall the “ski rental program”, the main moti-

vating example of a weighted program in [3]:1

1: while n > 0 do

2: n := n− 1 ;
3:

{
⊙1

4: ⊕
5: ⊙y ; n := 0

}

6: end while

The operator ⊕ in line 4 expresses nondeterministic branch-

ing between computation sequences, one of which executes the

“weighting” ⊙1, or “add one unit of weight” and returns to

the beginning of the while loop, and the other executes ⊙y,

or “add y units of weight”, then assigns n := 0, and then

returns to the beginning of the loop, after which the Boolean

test n > 0 is evaluated as False and the computation halts.

The structure of the ski rental program can be represented

by the following weighted regular program (for the sake of

readability, we use descriptive variable names, bold font for

weighting variables, and we enclose Boolean expressions in

curly brackets):

(

{neq0}
(
sub1(one+ skisend)

))∗

{¬neq0} . (1)

In this program, neq0 ∈ B represents the test n > 0, sub1 ∈
P represents the instruction n := n− 1 to subtract 1 from the

value of n, end ∈ P represents the assignment n := 0 that

ends the loop, and one,skis ∈ F represent the weightings

⊙1 (adding one unit of weight) and ⊙y (adding the price of

the skis), respectively.

III. RELATIONAL SEMANTICS

In this section we introduce relational semantics for

weighted regular programs, based on semiring-valued transi-

tion systems.

Definition 2. A semiring is S = (S,+, ·, 1, 0) where

• (S,+, 0) is a commutative monoid;

• (S, ·, 1) is a monoid;

• x·(y+z) = (x·y)+(x·z) and (x+y)·z = (x·z)+(y ·z);
• 0 · x = 0 = x · 0.

1The ski rental problem is an optimization problem regarding a situation
where one goes for a skying trip for n days and has the choice of renting a
pair of skis for 1 Euro per day vs. buying a pair of skis for y Euros.

A semiring is idempotent iff x + x = x for all x ∈ S. A

semiring is complete iff (S,+, 0) is a complete monoid and

the following distributivity laws hold:

∑

i∈I

(x · xi) = x ·

(
∑

i∈I

xi

)
∑

i∈I

(xi · x) =

(
∑

i∈I

xi

)

· x

(Complete idempotent semirings are also known as quan-

tales.) We define the natural order � on a semiring as follows:

x � y ⇐⇒ ∃z(x+ z = y) .

We note that in idempotent semirings the natural order coin-

cides with the semilattice order ≤ defined by x ≤ y ⇐⇒
x+ y = y.

Example 2. (1) An example of a complete idempotent semir-

ing that is well known especially from shortest path algorithms

is the tropical semiring over extended natural numbers

T = (N∞,min,+, 0N,∞)

where

• N
∞ = N ∪ {∞}, where ∞ /∈ N;

• min is the minimum operation extended to N
∞ by defin-

ing min(n,∞) = min(∞, n) = n for all n; min is seen

as semiring addition (hence, ∞ is the minimal element

in the ordering ≤ defined by x ≤ y iff min(x, y) = y);

• +, representing semiring multiplication, is addition on N

and n + ∞ = ∞ = ∞ + n for all n (hence, ∞ is the

annihilator element);

• 0N, the natural number zero, is the neutral element with

respect to +.

(2) Another example well-known from the theory of fuzzy

logic is the Łukasiewicz semiring Ł = ([0, 1],max,⊗, 1, 0)
where [0, 1] is the real unit interval and ⊗ is the Łukasiewicz

t-norm x⊗ y = max{0, x+ y − 1}.

Intuitively, semirings can be seen as representing a set

of weights together with an operation of weight addition

(semiring multiplication ·), a weight comparison relation �
induced by semiring addition +, and two designated weights,

namely, “no weight” 1 and the “absolute” weight 0.

Definition 3. Let S be a semiring. An SΣ-transition system is

(X,L) where X 6= ∅ and L is a function such that

L(p) ⊆ X ×X L(b) ⊆ X L(f) ∈ S .

Intuitively, (s, t) ∈ L(p) means that the atomic program p

may terminate in state t when executed in state s; s ∈ L(b)
means that the atomic Boolean expression b is evaluated to

True in s; and L(f) ∈ S is the weight assigned to the atomic

weighting expression f.

Equivalently, L in an SΣ-transition system can be seen as

a function from
⋃
Σ to SX×X such that

• L(p), L(b) ∈ {0, 1}X×X;

• L(b)(s, t) = 0 and L(f)(s, t) = 0 if s 6= t;
• L(f)(s, t) = L(f)(s′, t′) for all s, s′, t, t′ ∈ X .

(In effect, L(b) and L(f) are functions from the identity

relation on S which in turn represents S.)

In a given SΣ-semiring, L can be extended to a func-

tion WRPΣ → 2X×X specifying the interpretation of each

weighted regular program by lifting the weighted regular

program operations to the set of functions X ×X → S :

Definition 4. Let λ, λ′ ∈ SX×X and let θ ∈ {0, 1}X×X

• 1 = idX (the identity relation on X);

• 0(s, t) = 0;

• (λ+ λ′)(s, t) = λ(s, t) + λ′(s, t);
• (λ · λ′)(s, t) =

∑
{λ(s, u) · λ′(u, t) | u ∈ X};

• (¬θ)(s, t) =

{

1 if s = t and θ(s, t) = 0

0 otherwise;

• λ0 = 1 and λn+1 = λn · λ.

If S is a complete semiring, then we define:

• λ∗ =
∑

n≥0
λn.

It is easily checked that (SX×X , ·,+,1,0) is a semiring;

see Lemma 1 below. We denote {0, 1}X×X as 2X×X .

IV. KLEENE ALGEBRA

Kleene algebras [8], [9] are structures that arise naturally

in the study of regular languages, finite automata and shortest

path algorithms, for instance. Kleene algebra offers an elegant

framework for equational reasoning about regular programs

[10]. In this section we recall the basic preliminaries on Kleene

algebra.

Definition 5. A Kleene algebra is an idempotent semir-

ing with a unary operation ∗ that satisfies the following

(quasi)equations:

1 + xx∗ ≤ x∗ 1 + x∗x ≤ x∗

y + xz ≤ z → x∗y ≤ z y + zx ≤ y → yx∗ ≤ z

A Kleene algebra is ∗-continuous iff it satisfies

xy∗z =
∑

n≥0

xynz .

Example 3. (1) The Kleene algebra of binary relations on a

non-empty set X is

RelX = (2X×X ,∪, ◦, ∗, idX , ∅) ,

where 2X×X is the set of all binary relations on X , ∪ is union,

◦ is relational composition, ∗ is reflexive transitive closure,

and idX is the identity relation on X .

(2) Take a finite set of symbols ∆ and let ∆∗ be the set

of finite sequences over ∆, including the empty sequence ǫ.
Let Reg∆ be the smallest subset of 2∆

∗

(i.e. the set of all

languages over ∆) that contains the empty set ∅, the set {ǫ},

and {x} for all x ∈ ∆ that is closed under finite unions and

the following operations:

• X · Y = {xy | x ∈ X & y ∈ Y }, i.e. the set of

concatenations of strings from X with strings from Y ;

• X∗ =
⋃

n≥0
Xn, where X0 = {ǫ} and Xn+1 = Xn ·X ,

i.e. the set of all strings that can be parsed as concatena-

tions of a finite number of strings in X (Kleene iteration).

The set Reg∆ is called the set of regular languages over ∆.

The Kleene algebra of regular languages over ∆ is

Reg∆ = (Reg∆,∪, ·,
∗, {ǫ}, ∅) .

Definition 6. A Kleene algebra with tests [10] is a structure

of the form

K = (K,B, ·,+, ∗, −, 1, 0)

where

• (K, ·,+, ∗, 1, 0) is a Kleene algebra;

• B ⊆ K , and (B, ·,+, −, 1, 0) is a Boolean algebra.

A Kleene algebra with tests is ∗-continuous iff its underlying

Kleene algebra is ∗-continuous.

In a Kleene algebra with tests, elements of B are seen as

“tests” of statements formulated in a Boolean language, while

elements of K in general represent “structured actions”.

Example 4. (1) Every Kleene algebra is a Kleene algebra

with tests. Take B = {1, 0} and define − as Boolean

complementation on B.

(2) A relational Kleene algebra with tests over some set

X is the expansion of RelX with the set of subsets of idX
(seen as B), and the complementation operation on the set of

subsets of idX (seen as −).

(3) Take two finite sets A and T of program and Boolean

variables, respectively. We assume that A = {b1, . . . , bn} is

ordered in some fixed but arbitrary way. An atom over A is a

sequence b±1 . . .b±n , where b
±
i ∈ {bi, b̄i}. Let 1A be the set of

all atoms over A. A guarded string over A,T is any sequence

of the form (for k ≥ 0)

A0p1A1p2A2 . . . pkAk

where each Ai is an atom over A and each pi ∈ T. Guarded

strings can be seen as representations of execution traces of

programs (abstract states are replaced by atoms). Let 2GSA,T

be the set of all sets of guarded strings over A,T. Obviously

1A ⊆ 2GSA,T . The coalesced product operation ⋄ is a partial

binary function on GSA,T defined as follows:

xA ⋄A′y =

{

xAy if A = A′

undefined otherwise.

The coalesced product operation is lifted to sets of guarded

strings in an obvious way. Note that the coalesced product

operation on sets of guarded strings is a total function. The

algebra of guarded languages over A,T [11],

GA,T = (2GSA,T , 21A ,∪, ⋄, ∗, −, 1A, ∅) ,

is a ∗-continuous Kleene algebra with tests (X∗ =
⋃

n≥0
Xn,

where exponentiation is defined using ⋄).

Lemma 1. Let X be a non-empty set and S a semiring. Then

1) S(X) = (SX×X , ·,+,1,0) is a semiring;

2) if S is idempotent (complete), then S(X) is idempotent

(complete);

3) if S is idempotent and complete, then S∗(X) =
(S(X), ∗) is a ∗-continuous Kleene algebra;

4) if S is idempotent and complete, then S∗
2
(X) =

(S∗(X),2idX ,¬) is a ∗-continuous Kleene algebra with

tests.

(We note that S∗
2
(X) provides a natural example of a Kleene

algebra with tests where the set of tests, that is 2idX , is not

identical to the set of elements under 1 = idX , where λ ≤ λ′

iff λ(s, t) ≤ λ′(s, t) for all s, t ∈ X ×X .)

Lemma 2. The subalgebra of S(X) consisting of all constant

functions is isomorphic to S.

V. KLEENE ALGEBRA WITH WEIGHTS AND TESTS

Given the applications of Kleene algebra in reasoning about

regular and while programs, it is natural to consider a Kleene-

algebraic perspective on weighted programs. Gomes et al. [6]

formulate a generalization of KAT called graded KAT (or

GKAT) where the Boolean algebra of tests is replaced by

a more general algebraic structure. Batz et al. [3] point out

that a deeper study of the applicability of GKAT to reasoning

about weighted programs is an interesting problem to look at.

Weighted programs in the sense of [3] combine Boolean tests

and weightings (weighted tests), and so it seems natural to

consider a generalization of the GKAT approach.

Definition 7. A Kleene algebra with weights and tests is a

structure

K = (K,B, S, ·,+, ∗, −, 1, 0)

where

• (K, ·,+, ∗, 1, 0) is a Kleene algebra;

• B ⊆ K and S ⊆ K;

• (B, ·,+, −, 1, 0) is a Boolean algebra;

• (S, ·,+, 1, 0) is a semiring.

A valuation in K is any homomorphism v from WRPΣ to K

such that v(b) ∈ B and v(f) ∈ S. Two programs p, q ∈
WRPΣ are equivalent in a class K of Kleene algebras with

weights and tests iff v(p) = v(q) for all valuations v in all

K ∈ K .

Clearly each KAT is a KAWT; just take any subuniverse S
of K . However, there are more interesting examples.

Example 5. (1) Our first example combines a Kleene algebra

of guarded languages with the tropical semiring. Take the set

of guarded strings over some fixed A and T, and denote it

as GS. A function λ : GS → N
∞, assigning a weight to

each guarded string, can be seen as specifying the weights of

execution traces of a program (if λ(s) = ∞, then either s is not

a trace that can be generated by the program corresponding to

λ or the trace carries an “absolute weight”). Note that functions

λ : GS → N
∞ generalize sets of guarded strings (GS →

{0N,∞}), i.e. elements of the Kleene algebra G. Take

TG = ((N∞)GS , B, S, ·,+, ∗, −, 1, 0)

where (N∞)GS is the set of all functions from GS to N
∞ and

• 1(s) =

{

0N if s ∈ 1A

∞ otherwise;

• 0(s) = ∞ for all s;

• λ ∈ B iff λ(s) ∈ {0N,∞} for all s ∈ GT and λ(s) = 0N

only if s ∈ 1A;

• S = {λ | λ(s) = ∞ if s 6∈ 1A and λ(Ai) = λ(Aj) for

all Ai, Aj ∈ 1A};

• (λ · λ′)(s) = min{λ(t) +N
∞

λ′(u) | s = t ⋄ u};

• (λ+ λ′)(s) = min{λ(s), λ′(s)};

• (λ∗)(s) = minn≥0

(
λn(s)

)
where λn is defined using · ;

•
− : B → B such that (λ̄)(s) = ∞ iff λ(s) 6= ∞.

It can be shown that TG is a (∗-continuous) Kleene algebra

with weights and tests where (S, ·,+, 1, 0) ∼= T. TG also

contains a (proper) subalgebra isomorphic to G, namely,

({0N,∞}G, B, ·,+, ∗, −, 1, 0).
(2) A similar construction can be carried out using T and

RelX . We leave the details to the reader, noting just that the

coalesced product operation ⋄ can be defined on X × X by

stipulating that (s, t)⋄(u, v) is (s, v) if t = u and is undefined

otherwise.

The construction encountered in the previous example can

obviously be carried out in a more general setting. In fact,

we can use a slight generalization of the well known notion

of formal power series coming up for instance in the study of

weighted automata [4], [12]. Formal power series are functions

from a monoid to a semiring; we will build on functions from

certain partial semigroups.

Definition 8. A partial semigroup with identity is (G,D, ⋄, I)
where G 6= ∅, D is a binary relation on G, ⋄ : D → G, and

I ⊆ G such that

• D(x, y) & D(x ⋄ y, z) iff D(y, z) & D(x, y ⋄ z);
• D(x, y) & D(x ⋄ y, z) only if (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z);
• for all x there is y: I(y) and D(x, y);
• for all x there is y: I(y) and D(y, x);
• D(x, y) and I(y) only if x = x ⋄ y;

• D(y, x) and I(y) only if x = y ⋄ x.

We note that the first two conditions above are stronger than

the standard definition of a partial semigroup [7]. We’ll often

write xy instead of x ⋄ y.

Example 6. (1) An example of a partial semigroup with iden-

tity is CartX = (X×X,D, ⋄, idX) where X×X is the Carte-

sian product on a non-empty set X , ((x1, y1), (x2, y2)) ∈ D iff

y1 = x2, (x, y) ⋄ (y, z) = (x, z), and idX = {(x, x) | x ∈ X}
is the identity relation on X .

(2) GuA,T = (GS,D, ⋄, 1A) where GS is the set of

guarded strings over some A and T, ⋄ is the coalesced product

operation, D is the set of pairs (s, t) such that s⋄ t is defined,

and 1A is the set of atoms over A.

(3) Str∆ = (∆∗, D, ⌢, ǫ) where ∆∗ is the set of finite

sequences (strings) over a finite alphabet ∆ (including the

empty string ǫ), D is the universal relation on ∆∗ and ⌢ is the

concatenation operation (which is actually a total operation on

∆∗).

Many well-known examples of Kleene algebras (with tests)

are in fact algebras of functions from specific (regular) partial

semigroups to the two-element Boolean semiring Bo =
({1, 0},∧,∨, 1, 0); the reader can easily verify this by con-

sidering some of the previous examples.

Definition 9. Let P = (G,D, ⋄, I) be a partial semigroup

with identity, and let S = (S, ·S,+S, 1S, 0S) be a complete

idempotent semiring. We define

SP = (SG, B,W, ·,+, ∗, −, 1, 0)

where SG is the set of all functions form G to S and

• 1(x) =

{

1S if x ∈ I

0S otherwise;

• 0(x) = 0S for all s;

• λ ∈ B iff λ(x) ∈ {1S, 0S} for all x ∈ G and λ(x) = 1S

only if x ∈ I;

• W = {λ | λ(x) = 0S if x 6∈ I and λ(y) = λ(z) for all

y, z ∈ I};

• (λ ·λ′)(x) =
∑

{λ(y) ·Sλ′(z) | (y, z) ∈ D & y⋄z = x}
(the sum uses +S);

• (λ+ λ′)(x) = λ(x) +S λ′(x);
• (λ∗)(x) =

∑

n≥0

(
λn(x)

)
where λn is defined using · ;

•
− : B → B such that (λ̄)(x) = 1S iff λ(x) 6= 1S.

Theorem 1. If P is a partial semigroup with identity and S

is a complete idempotent semiring, then SP is a ∗-continuous

Kleene algebra with weights and tests where

(W, ·,+, 1, 0) ∼= S .

Given the relation of Kleene algebra to the algebra of regular

languages [9], and the relation of Kleene algebra with tests to

the algebra of regular guarded languages [11], it is natural

to ask if, for any given class of semirings S (closed under

isomorphisms) there is a Kleene algebra with weights and

tests whose elements are sets of strings over some alphabet (a

“language-theoretic” algebra, to use the terminology of [11])

which is free in the class of Kleene algebras with weights and

tests whose semiring of weights belongs to S. (That is, if the

equational theory of the given class of Kleene algebras with

weights and tests is complete with respect to a class language-

theoretic algebras.)

We will not answer this question here, but we will note

that TG over any A,T (the algebra of functions from guarded

strings over A,T to extended natural numbers) is isomorphic

to a language-theoretic algebra.

Let Φ = (A,T) where A ⊆ B is a finite set of Boolean

variables and T ⊆ P is a finite set of program variables. We

assume that A = {b1, . . . , bn} is ordered in some fixed but

arbitrary way. Let � be a new symbol (i.e. � /∈
⋃
Σ). A

weighted guarded string over Φ is a string of the form

A0p1A1 . . . pnAn�
m ,

where all Ai are atoms over A and all pi ∈ T. That is, weighted

guarded strings over Φ are a guarded strings over Φ followed

by a string of m copies of �. We’ll write just s(m), where

s ∈ GS and m ∈ N. A weighted atom is s(m) where s ∈ 1A.

Intuitively, a guarded string represents an execution trace

of a program and the weight �m represents the weight of the

trace. Hence, (some) sets of weighted guarded strings can be

seen as representing the possible execution traces of weighted

regular programs. If a set X represents a program and s(m) /∈
X for all m, then s is not a possible execution trace of the

program, i.e. it has “infinite weight”.

A set X of weighted guarded strings is unambiguous iff

s(n) ∈ X and s(m) ∈ X only if n = m; moreover, X is

crisp iff s(m) ∈ X only if m = 0, and X is uniform only if

s(n), t(m) ∈ X only if n = m. A set X of weighted atoms

is universal iff for all A there is n such that A(n) ∈ X . Note

that a crisp set of weighted guarded strings is just a set of

guarded strings, and that uniform sets are unambiguous.

The unambiguous union of two sets of weighted guarded

strings X,Y is

X ⋒ Y := {s(min(U)) | U = {n | s(n) ∈ X ∪ Y }} .

Note that ⋒ is not necessarily idempotent, but it is a semilattice

join operation on the set of all unambiguous sets of weighted

guarded strings. We denote X ⋒X as X⋒.

Coalesced product of weighted guarded strings is defined

as follows:

xA(n) ⋄A′y(m) =

{

xAy(n+m) if A = A′

undefined otherwise.

Definition 10. Fix a Φ. Let

GT = (K,B, S, ·,⋒, ∗, −, 1A, ∅)

be an algebra such that:

• K is the set of all unambiguous sets of weighted guarded

strings over Φ;

• B is the set of crisp sets of weighted atoms (i.e. the set

of all sets of atoms);

• S is the set of uniform universal sets of weighted atoms;

• X · Y = (X ⋄ Y)⋒;

• X∗ = ⋒n≥0X
n (where Xn is defined using ·);

•
− is complementation on 1A.

(The ordinary lifting of ⋄ to sets of weighted guarded strings

is not necessarily an unambiguous set.)

Theorem 2. TG ∼= GT.

Definition 11. A valuation in GT is called canonical iff

• if p ∈ T, then v(p) = {A pB | A,B ∈ 1A};

• if b ∈ A, then v(b) = {A | ¬b does not occur in A}.

VI. USING KLEENE ALGEBRA TO REASON ABOUT

WEIGHTED PROGRAMS

Using the (quasi)equational theory of Kleene algebra with

weights and tests, we can reason about equivalence of

weighted programs in a simple algebraic setting.

Example 7. Recall the ski rental program and Example 1.

Using Kleene algebra (see [9], Proposition 2.7), we can show

that (1) is equivalent to

({neq0}sub1one)∗
(
{neq0}sub1skisend ({neq0}sub1one)∗

)∗

{¬neq0}

(2)

Now consider the following equations:

sub1
n {neq0} = 0 (3)

end {neq0} = 0 (4)

Both correspond to reasonable assumptions in the version of

the ski rental scenario where the length of the trip in n days,

given the intended interpretation of the variables occurring in

the equations: if you do subtract 1 from n n-times, then the

test n > 0 evaluates to False (3); and if you assign n := 0,

then then the test n > 0 evaluates to False (4).

Let us define γ+n := 1 + γ + γ2 + . . .+ γn. It is possible

to show that, in each ∗-continuous KAWT where (3) and (4)

hold, and where 1 is the top element of S (such as algebras

where S is isomorphic to the tropical semiring, for example),

the program (2) is equivalent to

({neq0}sub1one)+n

(
1+ {neq0}sub1skisend

)
{¬neq0}

(5)

Hence, it is possible to show using Kleene algebra with

weights and tests that, on each input n, the program (2) is

equivalent to a simpler program (5) that does not involve ∗.

Hence, in a sense, (5) is finite.

Example 8. Take GT over Φ = (A,T) where A =
{{neq0}, {¬neq0}} and T = {sub1,end}. Take any

canonical valuation where v(one) = {A(1) | A ∈ 1A} =
{{neq0}�, {¬neq0}�} and v(skis) = {A(y) | A ∈
1A} = {{neq0}�y, {¬neq0}�y}}. Then v maps the pro-

gram (5) to the set X of weighted guarded strings containing:

{¬neq0}
(
0
)
, {neq0}sub1{neq0}end{¬neq0}

(
y
)
,

{neq0}sub1{¬neq0}end{¬neq0}
(
y
)
,

{neq0}sub1{¬neq0}
(
1
)
,

{neq0}sub1{neq0}sub1{neq0}end{¬neq0}
(
1 + y

)
,

{neq0}sub1{neq0}sub1{¬neq0}end{¬neq0}
(
1 + y

)
,

.

..
(

{neq0}sub1
)n

{¬neq0}
(
n
)
,

(

{neq0}sub1
)n

{neq0}sub1{neq0}end{¬neq0}
(
n+ y

)
,

(

{neq0}sub1
)n

{neq0}sub1{¬neq0}end{¬neq0}
(
n+ y

)

Every set G of weighted guarded strings in GT gives a

function ϑG from 1A to the set of sets of weighted atoms

defined by

ϑG(Y) = {A(n) | ∃x(xA(n) ∈ Y ⋄G)}⋒ .

Hence, ϑG(Y) is the set weighted atoms representing the

optimal execution traces from G starting in an atom in Y .

If G is finite, then ϑG is obviously computable.

For example, ϑX({¬neq0}) = {{¬neq0}} (if the ski

rental program is run in a state where n = 0, then it halts

immediately without accumulating any weight), and

ϑX({neq0}) = {{¬neq0}
(
min(n, y)

)
} .

That is, an optimal run of (5) from a state where n 6= 0 will

have weight min(n, y). This result agrees with intuition and

the calculation in [3] using the weakest preweighting operator.

VII. CONCLUSION

We introduced Kleene algebra with weights and tests, an

expansion of Kleene algebra with tests suitable for formalizing

reasoning about a simplified version of weighted programs

discussed in [3]. We described constructions of some “con-

crete” KAWT, and we demonstrated by means of an example

that KAWT can be used for reasoning about equivalence and

optimal runs of weighted programs.

Many interesting topics need to be left to future research,

including a study of free Kleene algebras with weights and

tests, questions of decidability and computational complexity,

and a systematic accommodation of the weakest preweighting

operator of [3] into our framework.

REFERENCES

[1] K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential
and Concurrent Programs. Texts in Computer Science. Springer, 3rd
edition, 2009.

[2] G. Barthe, J.-P. Katoen, and A. Silva. Foundations of Probabilistic

Programming. Cambridge University Press, 2020.

[3] K. Batz, A. Gallus, B. L. Kaminski, J.-P. Katoen, and T. Winkler.
Weighted programming: A programming paradigm for specifying math-
ematical models. Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022.

[4] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted

Automata. Springer, 2009.

[5] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18:194–211, 1979.

[6] L. Gomes, A. Madeira, and L. S. Barbosa. Generalising KAT to verify
weighted computations. Sci. Annals Comput. Sci., 29(2):141–184, 2019.

[7] S. P. Gudder and R. H. Schelp. Coordinatization of orthocomplemented
and orthomodular posets. Proc. Am. Math. Soc., 25(2):229–237, 1970.

[8] D. Kozen. On Kleene algebras and closed semirings. In B. Rovan,
editor, Int. Symp. on Mathematical Foundations of Comp. Sci., pages
26–47. Springer, 1990.

[9] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Inf. Comput., 110(2):366 – 390, 1994.

[10] D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst.,
19(3):427–443, May 1997.

[11] D. Kozen and F. Smith. Kleene algebra with tests: Completeness
and decidability. In D. van Dalen and M. Bezem, editors, Computer

Science Logic, pages 244–259, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[12] W. Kuich and A. Salomaa. Semirings, Automata, Languages. EATCS
Monographs on Theoretical Computer Science 5. Springer, 1986.

[13] V. Pratt. Semantical considerations on Floyd-Hoare logic. In 7th Annual

Symp. on Foundations of Comp. Sci., pages 109–121. IEEE Computing
Society, 1976.

APPENDIX

This appendix contains proofs of some of the technical

results stated in the main text, and a lemma that will be used

in the proof of Theorem 1.

Lemma 3. The following hold in each partial semigroup with

identity:

1) I(x) only if D(x, x) and x = xx;

2) I(x), I(y) and D(x, y) only if I(xy).

Proof. 1) For all x there is y such that D(x, y) and I(y). Then

x = xy. But if also I(x), then y = xy. Hence, x = y and so

D(x, x) and x = xx.

2) If D(x, y) and I(y), then x = xy. If also I(x), then

I(xy).

Theorem 1. If P is a partial semigroup with identity and S

is a complete idempotent semiring, then SP is a ∗-continuous

Kleene algebra with weights and tests where

(W, ·,+, 1, 0) ∼= S .

Proof. (SG,+, 0) is clearly a commutative monoid. (SG, ·, 1)
is a monoid:

(i) (λ0 ·(λ1 ·λ2))(x) =
∑

y,u

{

λ0(y)·S
∑

z,w

{
λ1(z)·λ2(w) |

u = zw & D(z, w)
} ∣
∣ x = yu & D(y, u)

}

=

=
∑

y,z,w

{
λ0(y) ·S

(
λ1(z) ·S λ2(w)

)
| D(y, zw) &

D(z, w) & x = y(zw)
}

=
∑

y,z,w

{(
λ0(y) ·S λ1(z)

)
·S λ2(w) | D(y, zw) &

D(z, w) & x = y(zw)
}

=
∑

y,z,w

{(
λ0(y) ·

S λ1(z)
)
·S λ2(w) | D(y, z) &

D(yz, w) & x = (yz)w
}

=
∑

y,z,v,w

{
∑{

λ0(y) ·Sλ1(z)
∣
∣v = yz & D(y, z)

}
·S

λ2(w)
∣
∣D(v, w) & x = vw

}

= ((λ0 · λ1) · λ2)(x).
(ii) (λ · 1)(x) =

∑

y,z{λ(y) ·
S 1(z) | D(y, z) & x = yz}

=
∑

y,z{λ(y) | D(y, z) & x = yz & I(z)}
=
∑

y{λ(y) | x = y} = λ(x).
((1 · λ)(x) = λ(x) is established similarly.)

The fourth equality in (i) follows from the definition of a

partial semigroup with identity (the first two conditions).2The

third equality in (ii) is established using the definition of a

partial semigroup with identity as follows. Left to right: If

D(y, z) and I(z), then yz = y; so if also x = yz, then x = y.

Right to left: for all y there is z such that D(y, z) and I(z),
which means that there is z such that D(y, z) and I(z) and

yz = y. Hence, if x = y, then there is z such that D(y, z),
I(z) and x = yz.

Next we show that · distributes over +:

(iii)
(
λ0 · (λ1 + λ2)

)
(x)

=
∑

y,z

{
λ0(y) ·S (λ1 + λ2)(z)

∣
∣D(y, z) & x = yz

}

=
∑

y,z

{
λ0(y)·S (λ1(z)+

Sλ2(z))
∣
∣D(y, z) & x = yz

}

2We note that the equality cannot be established using the weaker definition
of a partial semigroup of [7]; hence our strengthening.

=
∑

y,z

{(
λ0(y)·Sλ1(z)

)
+S
(
λ0(y)·Sλ2(z)

)∣
∣D(y, z) &

x = yz
}

=
∑

y,z{λ0(y) ·S λ1(z) | D(y, z) & x = yz}+S

∑

y,z{λ0(y) ·
S λ2(z) | D(y, z) & x = yz}

= (λ0 · λ1)(x) +
S (λ0 · λ2)(x)

=
(
(λ0 · λ1) + (λ0 · λ2)

)
(x)

(
(
(λ0 + λ1) · λ2

)
(x) =

(
(λ0 · λ2) + (λ1 · λ2)

)
(x) is

established similarly.)

To prove that 0 is the annihilator element it is sufficient to

show that (λ · 0)(x) = 0S = (0 · λ)(x) for all x ∈ G:

(iv) (λ · 0)(x) =
∑

y,z{λ(y) ·
S 0(z) | D(y, z) & x = yz}

= 0S =
∑

y,z{0(y) ·
S λ(z) | D(y, z) & x = yz} = (0 · λ)(x).

This proves that SP is an idempotent semiring. To prove

that it is also a ∗-continuous Kleene algebra, it is sufficient to

show that it satisfies the ∗-continuity condition:

δλ∗θ =
∑

n≥0

δλnθ (6)

for all δ, λ, θ ∈ SG. It is an easy exercise to show that

the Kleene star (quasi)equations follow from ∗-continuity. We

reason as follows:

(δλ∗θ)(x) =
∑

y,z

{

δ(y) ·S (λ∗θ)(z)
∣
∣D(y, z) & yz = x

}

=
∑

y,z,u,v

{

δ(y) ·S
(
λ∗(u) ·S θ(v)

) ∣
∣

D(y, z) & yz = x & D(u, v) & uv = z
}

=
∑

y,z,u,v

{

δ(y) ·S
((∑

n≥0

λn(u)
)
·S θ(v)

) ∣
∣

D(y, z) & yz = x & D(u, v) & uv = z
}

=
∑

n≥0

∑

y,z,u,v

{

δ(y) ·S
(

λn(u) ·S θ(v)
) ∣
∣

D(y, z) & yz = x & D(u, v) & uv = z
}

=
∑

n≥0

∑

y,z,u,v

{(

δ(y) ·S λn(u)
)

·S θ(v)
∣
∣

D(y, u) & yu = w & D(w, v) & wv = x
}

=
∑

n≥0

∑

w,v

{(
δλn

)
(w) ·S θ(v)

∣
∣D(w, v) & wv = x

}

=
∑

n≥0

{(
δλnθ

)
(x)
}

=
(∑

n≥0

δλnθ
)

(x)

The fourth equality holds since S is a complete semiring.

The fifth equality holds thanks to the definition of a partial

semigroup with identity (first two conditions).

Hence, SP is a ∗-continuous Kleene algebra. To show that

it is a ∗-continuous Kleene algebra with tests, we have to show

that B is a Boolean algebra and − is complementation on B.

But this follows easily from the definition: B can be equiv-

alently seen as the power set of I (hence clearly a Boolean

algebra), and − is obviously defined as complementation on

B.

In order to show that SP is a Kleene algebra with weights

and tests, we have to show that W is closed under the semiring

operations · and +, and that 0, 1 ∈ W . W is the set of

functions that assign 0S to elements outside I , and that are

constant on I . Let us denote the set of such functions as C.

Both 1 and 0 are in C, and C is clearly closed under +. To

show that C is are closed under · as well, we reason as follows.

Assume that λ, λ′ ∈ C. First we prove that if x ∈ I , then

(λ · λ′)(x) = λ(x) ·S λ′(x) (7)

Indeed,
∑

y,z

{
λ(y) ·S λ′(z) | D(y, z) & x = yz

}

= λ(x) ·S λ′(x)

since
∑

y,z

{
λ(y) ·S λ′(z) | D(y, z) & x = yz

}

=
∑

y,z

{
λ(y) ·S λ′(z) | D(y, z) & x = yz & I(y) & I(z)

}

(we may forget about y, z 6∈ I since λ, λ′ map them to 0S)

and
∑

y,z

{
λ(y) ·S λ′(z) | D(y, z) & x = yz & I(y) & I(z)

}

= λ(x) ·S λ′(x) .

The latter holds since the set over which the sum is formed

contains at least λ(x)·Sλ′(x) (Lemma 3, part 1) and it contains

at most λ(x) ·S λ′(x) since λ, λ′ are constant on I . It follows

from (7) that λ · λ′ is constant on I since both λ and λ′ are

constant on I .

Second, we show that (λ·λ′)(x) = 0S if x /∈ I . This follows

from Lemma 3, part 2: if x 6∈ I , then x = yz and D(y, z) only

if y /∈ I or z /∈ I . Hence, if x /∈ I , then (λ ·S λ′)(x) = 0S.

Hence, (λ · λ′) ∈ C if λ, λ′ ∈ C.

It remains to establish that (W, ·,+, 1, 0) is isomorphic to

S. Fix and arbitrary i ∈ I (note that I 6= ∅ in all partial

semigroups with identity) and define φ : W → S:

φ(λ) = λ(i)

The mapping φ is a bijective homomorphism. Homomorphism:

φ(1) = 1(i) = 1S; φ(0) = 0(i) = 0S; φ(λ + λ′) = (λ +
λ′)(i) = λ(i) +S λ′(i) = φ(λ) +S φ(λ′); φ(λ · λ′) = (λ ·
λ′)(i) = λ(i) ·S λ′(i) by (7) = φ(λ) ·S φ(λ′). Surjective: W is

the set of all functions that are constant on I and assign 0S to

elements x /∈ I . Injective: if φ(λ) = φ(λ′), then λ(i) = λ′(i),
and then λ = λ′ since λ and λ′ are assumed constant on I .

Theorem 2. TG ∼= GT.

Proof. Define τ : (N∞)GS → KGT such that

τ(λ) = {s(n) | λ(s) = n & n 6= ∞} .

The function τ is clearly a bijection between (N∞)GS and

KGT. Moreover,

(i) BGT = {τ(λ) | λ ∈ B} since λ ∈ B iff λ : GT →
{0N,∞} and λ(s) = 0N only if s ∈ 1A iff τ(λ) is a crisp

set of weighted atoms;

(ii) SGT = {τ(λ) | λ ∈ S} since λ ∈ S iff λ(s) = ∞ for

s /∈ 1A and λ is constant on 1A iff τ(λ) is an uniform

set of weighted atoms.

Next we need to show that τ is a homomorphism:

(iii) τ(1) = {s(0) | s ∈ 1A} = 1GT;

(iv) τ(0) = ∅ = 0GT;

(v) s(n) ∈ τ(λ · λ′) ⇐⇒ (λ · λ′)(s) = n 6= ∞
⇐⇒ n 6= ∞ and n = min{λ(t) +N

∞

λ′(u)} for t, u ∈
GS such that t ⋄ u = s
⇐⇒ ∃t, u ∈ GS : s = t ⋄ u and n = λ(t) +N

∞

λ′(u)
and λ(t) 6= ∞ and λ′(u) 6= ∞ and

∀t′, u′ ∈ GS(s = t′ ⋄ u′ → n ≤N
∞

λ(t′) + λ′(u′))
⇐⇒ s(n) ∈ τ(λ) ⋄ τ(λ′) and

∀t′, u′ ∈ GS(s = t′ ⋄ u′ → n ≤N
∞

λ(t′) + λ′(u′))
⇐⇒ s(n) ∈ τ(λ) ·GT τ(λ′);

(vi) s(n) ∈ τ(λ + λ′) ⇐⇒ (λ+ λ′)(s) = n 6= ∞
⇐⇒ n = min{λ(s), λ′(s)} and n 6= ∞
⇐⇒ s(n) ∈ τ(λ) ∪ τ(λ′) and

∀m ∈ N(s(m) ∈ τ(λ) ∪ τ(λ′) → n ≤N
∞

m)
⇐⇒ s(n) ∈ τ(λ) ⋒ τ(λ′)

(vii) s(n) ∈ τ(λ∗) ⇐⇒ n = minm∈N{λm(s)}
⇐⇒ ∃m ∈ N : n = (λ · . . . · λ)

︸ ︷︷ ︸

m-times

(s) and

∀k
(
n ≤N (λ · . . . · λ)

︸ ︷︷ ︸

k-times

(s)
)

⇐⇒ s(n) ∈
⋃

m∈N
τ(λ)m and

n = min
{
n′
∣
∣ s(n′) ∈

⋃

k∈N
τ(λ)k

}

⇐⇒ s(n) ∈
(
⋃

m∈N
τ(λ)m

)⋒

= ⋒m∈Nτ(λ)
m

⇐⇒ s(n) ∈
(
τ(λ)

)∗GT

;

(viii) for λ ∈ B: s(0N) ∈ τ(λ)
⇐⇒ λ(s) = 0N ⇐⇒ λ(s) = ∞
⇐⇒ s(0N) /∈ τ(λ) ⇐⇒ s(0N) ∈ τ(λ).

Note that we didn’t need to assume in the proof that GT ∈
KAWT, but this follows from Theorem 2.

Example 7. If K ∈ KAWT such that (3) and (4) holds in

K, and 1 is the top element of SK, then (2) is equivalent to

(5).

Proof. By ∗-continuity and (4),

{neq0}sub1skisend ({neq0}sub1one)∗

is equivalent to

{neq0}sub1skisend

and so the second line of (2) is equivalent to

1+ {neq0}sub1skisend .

By ∗-continuity,

({neq0}sub1one)∗

is equivalent to
∑

n≥0

(
{neq0}sub1one

)n
(8)

However, since {neq0},one ≤ 1,

(
{neq0}sub1one

)n+1

is less or equal to

sub1
n
(
{neq0}sub1one

)
,

which equals 0 by (3). Hence, (8) is equivalent to
(
{neq0}sub1one

)+n
.

	I Introduction
	II Weighted programs
	III Relational semantics
	IV Kleene algebra
	V Kleene algebra with weights and tests
	VI Using Kleene algebra to reason about weighted programs
	VII Conclusion
	References
	Appendix

