

Newcastle University ePrints - eprint.ncl.ac.uk

Chadza TA, Aparicio-Navarro FJ, Kyriakopoulos KG, Chambers JA.

A look into the information your smartphone leaks.

In: 2017 International Symposium on Networks, Computers and

Communications (ISNCC).

16-18 May 2017, Marrakech, Morocco: IEEE.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/ISNCC.2017.8072022

Date deposited:

27/11/2017

http://eprint.ncl.ac.uk/
javascript:ViewPublication(243302);
https://doi.org/10.1109/ISNCC.2017.8072022

A Look Into the Information Your Smartphone Leaks
Timothy A. Chadza§, Francisco J. Aparicio-Navarro*, Konstantinos G. Kyriakopoulos†, Jonathon A. Chambers*

§Electrical Engineering Department, University of Malawi-The Polytechnic, Blantyre, P/Bag 303, Malawi
*School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

†School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
e-mails: tchadza@poly.ac.mw, {francisco.aparicio-navarro, jonathon.chambers}@ncl.ac.uk, k.kyriakopoulos@lboro.ac.uk

Abstract—Some smartphone applications (APPs) pose a risk to
users’ personal information. Events of APPs leaking information
stored in smartphones illustrate the danger that they present. In
this paper, we investigate the amount of personal information
leaked during the installation and use of APPs when accessing the
Internet. We have opted for the implementation of a Man-in-the-
Middle proxy to intercept the network traffic generated by 20
popular free APPs installed on different smartphones of distinctive
vendors. This work describes the technical considerations and
requirements for the deployment of the monitoring WiFi network
employed during the conducted experiments. The presented
results show that numerous mobile and personal unique
identifiers, along with personal information are leaked by several
of the evaluated APPs, commonly during the installation process.

Keywords—Information Leaking; Mallory Proxy; Man-in-the-
Middle Attack; mitmproxy; Mobile APPs; Smartphone Security;
WiFi Networks

I. INTRODUCTION
Smartphone applications (APPs) have been developed at a

tremendous pace over recent years. In May 2016, market
analysts indicated that there were more than 3 million APPs
available on the market [1]. Many businesses and private users
benefit from the services that they provide, and make daily use
of these APPs. Nonetheless, some APPs also pose a risk to users’
personal information, as they have access to an increasing
amount of information about their users and their cyber activities
[2]. Some studies have suggested that the main business model
for some APP developers is based on the commercialisation of
personal information by leaking it to third parties, such as
advertising companies [3]. Incidents of APPs leaking personal
information stored in the smartphones illustrate the danger that
the use of these applications pose [4].

In this paper we focus on investigating the amount and type
of personal information that benign APPs might be leaking, and
the potential privacy-related threats that these applications
present. In some cases, the developers are responsible for the
insecurity of the APPs. Smartphone APPs commonly do not use
secure communication protocols, as many APPs often use the
Hypertext Transfer Protocol (HTTP) for communication [5].
Even when HTTP Secure (HTTPS) is used, if certificates are not
properly validated, smartphone APPs can cause serious security
and privacy issues. In fact, the authors of [6] identified a large
number of APPs that contain Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) protocols that either accept all
certificates or all hostnames as trusted certificates. However, on
other occasions, the human factor is responsible for the
insecurity of the APPS, due to the access permission that is

granted. When an APP is installed and launched for the first
time, the user is usually prompted with an access permission
request to personal information stored in the device. Most users
do not understand the implications of granting permission to this
information to the APPs, nor consider what mobile unique
identifiers and personal unique identifiers might be shared due
to this permission.

When an APP makes a system call to the smartphone
Operating System (OS), it can seek access to a broad list of the
user’s personal information, such as the list of contacts, location,
device name, unique identifiers (e.g. device ID), calendar,
reminders, photos and videos, notes, accounts, call information,
and WiFi connection information. Accessing this information is
not necessarily a breach of a user’s privacy, as long as the
information is utilised locally to provide appropriate service [3].
However, when this information is transmitted remotely to third
parties, then allowing access to this information becomes a
privacy concern. Although most smartphones have provision for
disabling tracking settings, this does not guarantee that some
confidential information is not leaked by the APPs. Therefore, it
is essential to consider carefully the security and trustworthiness
of the smartphone APPs being installed and used.

In this paper, the main aim is to evaluate the amount of
personal information leaked during the installation and use of
APPs when accessing the Internet. We consider that an APP
leaks personal information when such data are transmitted to a
third party without the user’s consent. We have opted for the
implementation of a Man-in-the-Middle (MitM) proxy to
intercept the network traffic generated by the smartphone APPs.
To achieve this, it is necessary to design an active WiFi
monitoring platform for the interception, decryption and
analysis of a user’s private information derived from popular
APPs installed on different smartphones of distinctive vendors.

The remainder of the paper is organised as follows. In
Section II the most relevant related work is reviewed. The
experimental methodology followed in this paper is explained in
Section III. This includes the description of the network testbed
and the APPs selection, as well as the monitoring system
configuration. Section IV describes the experimental results.
Finally, conclusions and future work are given in Section V.

II. RELATED WORK
Smartphone APPs have access to a broad list of a user’s

personal information. Therefore, it is essential to have a
complete understanding of what information can be accessed by
these APPs, and to assess the permission that they have to handle
this information. Also, it is essential to evaluate the amount of
information that is leaked by smartphone APPs to third parties.

Generally, Apple iOS devices do not require permission
from the user. iOS gives limited access to many of the device’s
sensitive information. Only in certain cases are permission
requests presented to the user. In contrast, during the installation
of every Android APP, a list of all the permissions that the APP
requires is presented to the user. The user has to decide whether
the APP needs access to the requested information or not.

Other researchers have also focused on investigating the
security of mobile APPs and the amount of information that they
leak. In [7], the authors present a comparative analysis of the
present state of mobile device security. The authors focus their
study on Android and Apple iOS devices. The presented
research analyses the smartphone security from different angles,
such as the provenance, permissions, and encryption techniques
of the APPs used by the two evaluated OSs. However, the
authors do not practically evaluate the information that might be
leaked to third parties by the smartphone APPs.

The authors of [4] describe a framework, which is an
extension of the Android OS, that tracks in real-time how
different APPs access and manipulate a user’s personal
information. The main objective of this work is to analyse the
flow of privacy sensitive information through APPs, and to
detect when personal data are leaked via untrustworthy APPs.
The presented framework leveraged the Android’s virtualised
architecture to integrate four granularities of trace propagation.

In [8], the authors present a dynamic analysis platform that
detects private information being leaked by APPs in Android
and iOS devices. The platform makes analysis directly at the OS
level of the devices. This work presents thorough comparison
analysis of the data leaked by both smartphone OSs.

The authors of [2] present an automated tool to identify
possible privacy breaches in iOS APPs, and analyse the threat
they present to a user’s personal information. The presented tool
constructs control flow graphs to perform data flow analysis,
which would allow the identification of flows that might leak
personal information to third parties without a user’s permission.
This work focuses only on iOS APPs. Since no source code is
available from the APPs, the tool that the authors present has to
perform its analysis directly on the binaries.

In [6], the authors introduce a tool to detect potential
vulnerabilities against MitM attacks posed by benign Android
APPs that use SSL/TLS protocols. This tool implements a static
code analysis of different aspects of the APPs, such as the
validity of URLs found in APPs and examines inadequate
SSL/TLS validation made by the APPs. Additionally, the
authors conduct a real MitM attack against different APPs
installed in a real phone, and audit the information leaked via
potentially broken SSL communication channels.

III. EXPERIMENTAL METHODOLOGY

A. Testbed
One feasible method to evaluate if there is information

leaked is by the interception of the generated network traffic
communication by a smartphone using a MitM proxy. An
experimental WiFi network testbed has been deployed to
conduct our experiments. We have set up a MitM proxy using
the software tools Mallory [9] and mitmproxy [10], which
intercept and decrypt the communication in a transparent
manner to the network users. The experimental WiFi, depicted
in Fig. 1, includes one Access Point (AP) connected to the

Internet through the University’s network, one Laptop acting as
the MitM monitoring machine running the MitM proxy and a
rogue AP tool, and various smartphones acting as clients.

The MitM monitoring machine runs on Linux Ubuntu
16.04.1. It is connected wirelessly to the AP, and in turn provides
access to the Internet to all associated smartphones through a
rogue AP service. This laptop has a built-in wireless Network
Interface Controller (NIC) that does not support packet injection.
Therefore, an external ALFA Atheros wireless adapter with the
Atheros 9271 chip was used during the experiments. The
smartphones used as clients were one iPhone 4s running iOS 8,
one iPhone 5 and one iPhone 5s running iOS 9, one Samsung
Galaxy J5 running Android 4.1.2 OS, and one Samsung Galaxy
S7262 running Android 5.1.1 OS.

Fig. 1. Schematic design of the IEEE 802.11 network used for monitoring and
interception of the data generated by the smartphones.

B. Shortlisting Mobile Applications
According to the market statistics published in May 2016,

there were 3 million Android and iOS APPs available on the
market and, by 2015, iOS APPs alone were downloaded more
than 100 billion times [1]. Hence, it was essential to shortlist the
number of APPs used in this work.

During May 2016, we used the rankings shown in iTunes and
Google play in order to select the top 20 APPs on iOS and
Android, respectively. It was initially observed that the ranking
for the most relevant APPs was different for the two smartphone
OSs. On the other hand, there are APPs exclusively to one OS,
not available on the other OS. Hence, the adopted solution was
to arbitrarily select 60 top APPs from both Android and iOS, and
then identify those available for both OSs. The 20 smartphone
APPs selected are shown in Table I.

TABLE II. LIST OF SELECTED MOBILE APPS ON ANDROID AND IOS

Smartphone APPs
Whatsapp Pinterest Skype Slither.io
Facebook Soundcloud eBay Snapchat

Tripadvisor Microsoft Outlook Stack Messenger
Tinder Amazon BuyVIP Color Switch Instagram
Uber Twitter Musical.ly Spotify

C. Monitoring System Configuration
1) Selecting the Rogue Access Point Attacking Tool
One of the crucial steps during our experiments was to

provide access to the Internet to the client smartphones, through
the MitM monitoring machine, in a transparent manner to the
clients. The smartphones would access the Internet through the
ALFA Atheros wireless adapter and the communication had to
be intercepted by the MitM proxy tool. The monitoring machine
can create its own rogue AP by using several publicly available
software, such as HostAPd [11] and Airbase-ng [12].

Airbase-ng and HostAPd are tools for turning a Linux
wireless NIC into an AP. For the purposes of our work, they
have been used for launching rogue AP services, i.e. lure the
clients to associate with it, instead of connecting to the legitimate
AP. The rogue AP masquerades as the legitimate AP, using the
same MAC address. In case the wireless device of a client is
already authenticated and associated with the legal AP, each of
the tools can spoof the identity of the legal AP and send
disassociation frames to the wireless device. After the client has
been disassociated, rogue AP tools advertise themselves as the
legal AP by sending beacon frames.

Throughout the course of our experiments using an Atheros
based chipset wireless NIC, we found that the performance,
particularly in terms of client-rogue AP connectivity, is better
with the HostAPd tool. In addition, we have found that the
HostAPd tool, in contrast to Airbase-ng, flags the MAC layer
frame retransmissions appropriately. This is an advantageous
feature because HostAPd achieves a performance that closely
resembles the expected behaviour from a legitimate AP. After
assessing both tools, it was concluded that that HostAPd was the
most appropriate to be used in the experiments.

2) Man-in-the-Middle Proxy Selection and Configuration
Another essential step was to consider the selection of the

MitM proxy. There exist numerous options that can be used to
implement the MitM proxy, including Mallory, mitmproxy,
Burp Suite, Ettercap, and Charles web debugging proxy. A brief
description of well-known HTTP proxies written in Java and
Python can be found in [13]. A list of considerations that help
with the selection of the MitM proxy is provided in [14].

Mallory was initially chosen for our experiments among all
the available proxies since it meets all the required parameters.
Mallory allows the implementation of an extensible TCP/UDP
MitM proxy that is designed to run as a communication gateway,
and can listen to SSL/TLS encrypted network traffic from/to the
smartphones. According to [9], there are three different
installation setups for Mallory. These are WiFi hotspot, Point-
to-Point Tunnelling Protocol (PPTP), and virtual machine. The
Mallory installation setup WiFi hotspot allows the installation of
a wireless card acting as an AP through which a victim can
connect, and the rogue AP can forward the traffic through
Mallory. Unfortunately, Mallory was discarded at a later stage
because it was unable to unencrypt correctly the SSL/TLS
intercepted network traffic in our bespoke setup. Therefore,
several other proxies were evaluated and Mimtproxy, an
alternative to Mallory was consequently adopted.

Similarly to Mallory, mitmproxy has various modes of
operation. Regular is the default mode where mitmproxy needs
to be assigned in the client’s proxy configuration settings. In
cases where we do not have control over the client, mitmproxy
should work in transparent mode. In this case, the mitmproxy
can be configured as the client’s next hop node through the
Dynamic Host Configuration Protocol (DHCP) settings. Finally,
there is a reverse mode of operation, which is only used to proxy
traffic from a server to a client.

The mitmproxy Certificate Authority (CA) should install a
certificate in the mobile devices, otherwise, the client can refuse
the SSL/TLS handshake and cancel the communication. For
each SSL/TLS encrypted destination server, the mitmproxy CA
will generate a dummy certificate on-the-fly to impersonate the
visited website. The CA is created the first time mitmproxy is

initiated [10]. It is worth noting that some APPs employ HTTP
Public Key Pinning (HPKP) to prevent possible MitM attacks.
Warning messages will be triggered if the client receives an
untrusted certificate that it is not configured to accept. Hence, to
circumvent this problem, social engineering methods are usually
employed to lure clients to accept unauthorised certificates.

The documentation in [10] provides two possible options for
installing the CA certificate in the mobile devices: quick setup
or manual setup. In the former, there is provision for a built-in
certificate installation application which can be accessed, using
what is called magic domain mitm.it, through a web browser. A
three-step example of the quick installation of the mitmproxy
CA is displayed in Fig. 2. The client should select the icon that
corresponds to its smartphone. The selection of the appropriate
icon leads to the installation of the CA. On the other hand, the
manual setup is used when the quick setup is not available.
mitmproxy has provided a list of pointers to manual certificate
installation documentation for some common platforms in [10].

Fig. 2. Overview of the three-step mitmproxy CA installation process. a) The
client selects the appropriate platform icon; b) The mitmproxy CA is installed;
c) The smartphone confirms the correct CA installation.

There is still a need for running the DHCP server and then
assigning firewall rules using the iptables tool. There was also
the need for port redirection and port masquerading while
running mitmproxy. By default, mitmproxy listens on TCP port
8080, and, in order to permit interception of HTTP and HTTPS,
ports 80 and 443 had to be forwarded to port 8080. The enabling
of Network Address Translation (NAT) is also required. Both
the NAT functionality and the port forwarding were done using
the iptables tool. Further details about all the commands and
steps undertaken to install, configure and customise the system
can be found in [15]. After completing the configuration, a
smartphone connected to the rogue AP could access the Internet.
The Ubuntu variant for assigning DHCP is the isc-dhcp-sever.
This is a necessary step to assign IP addresses to clients
connecting to the rogue AP tool HostAPd.

IV. EVALUATION ANALYSIS AND RESULTS
This section describes the findings from running the two

MitM proxies. It is worth noting that Mallory proxy was unable
to successfully decrypt the communication traffic. Hence, most
of the results provided in this section are from mitmproxy.

The intercepted network traffic was stored in an SQLite
database when Mallory was utilised, whereas it was stored as
binary files when the MitM proxy used was mitmproxy. In the
case of the Mallory proxy, the tool DB Browser for SQLite [16]
was chosen to extract and analyse the information due to the data

manipulation flexibility that this tool provides. In the case of
mitmproxy, the MitM proxy itself provides a mechanism to read
binary files and this method was used when applicable.

Mitmproxy was able to intercept many personal and private
parameters. We have focused our analysis on the unique
identifiers International Mobile Equipment Identity (IMEI),
International Mobile Subscriber Identity (IMSI), Unique Device
Identifier (UDID), Universally Unique Identifier (UUID),
Mobile Country Code (MCC), Mobile Network Code (MNC),
MAC address of the smartphones, address book contacts, email,
usernames, passwords, and location.

A. Analysis of Intercepted Data by Mallory Proxy
The clients could access the Internet through the rogue AP,

and Mallory proxy was able to capture the communication
streams, as well as the source and destination IP addresses. Upon
running different APPs, the data intercepted were saved and
extracted using DB browser for SQLite. In total, five tables were
created: connections, dgram, flows, fuzztcp and fuzzudp. All the
tables were critically analysed to identify whether a user’s
personal information is actually leaked by the evaluated APPs.

We found that, apart from a number of GET and POST
requests, the rest of the intercepted information was still
encrypted despite the use of Mallory. Despite multiple technical
configuration changes, Mallory was unable to decrypt the
communication. Both Airbase-ng and HostAPd were tested to
determine if the use of an alternative rogue AP would produce
different results, but this was not the case as similar behaviour
was observed. The lack of readable decrypted information
proved that the use of Mallory proxy was ineffective, and this is
the reason why we decided to discard the use of Mallory. As part
of the experiments, it was also observed that when a connection
was established to a client, the connection was extremely slow
and the communication link was disconnected in most cases.

B. Analysis and Results of Intercepted Data by mitmproxy
During the experiments conducted with mitmproxy, the

APPs were downloaded and installed in the smartphones while
connected to the rogue AP in the monitoring machine running
the MitM proxy. The reason for doing this was to observe if any
personal information was leaked during this required process
towards the use of the APP. Then, we accessed and clicked on
all the available links within the APP for at least 10 minutes.
During the installation process or when the APPs were launched
for the first time, a list of all the resources that the APP required
permission to access was presented to the user. However, it is
not a simple process to verify what specific information each
APP actually accesses. It is expected that this information is
utilised by the APPs locally to the device to provide appropriate
service [3]. Additionally, there were some cases in which the
APP did not request access permission.

Focusing first on the results extracted from the smartphones
running Android OS, mitmproxy shows that several unique
identifiers were leaked by different APPs. Mitmproxy GUI
presents three tabs that can be accessed and different pieces of
personal information are presented in each of the tabs. These are
Request, Response, and Details. For instance, Fig. 3 shows the
mitmproxy output when the APP Twitter was installed and
launched. In this example, the UDID of the smartphone was
leaked, along with other device ID parameters, such as the IP
address. An assessment on the APP Whatsapp also shows that

the MAC address, UUID, UDID and IMEI were all leaked
during an update. This is shown in Fig. 4. However, after
completing the update installation process, not all information
observed was leaked. This implies that there are APPs that leak
information mainly during the installation process. Furthermore,
the APP Whatsapp requested access permission to email
addresses, contact names, phone numbers, and images. Another
example is the assessment of the APP Spotify. Mitmproxy was
able to intercept, among others, the IMEI and IMSI from the
overall information leaked by this application.

Fig. 3. Mitmproxy GUI: Overview of the leaked information intercepted when
the APP Twitter was installed and launched in an Android OS device.

Fig. 4. Mitmproxy GUI: Overview of the leaked information intercepted when
the APP Whatsapp was installed and launched in an Android OS device.

In order to verify that our mitmproxy implementation was
correctly configured, we used multiple mobile web applications
(e.g. access Facebook through a web browser rather than a
dedicated APP) to securely authenticate with the web server.
Mitmproxy was successful in intercepting the username and
password in these situations. These results indicate that all
keystrokes entered in the mobile web applications were being
captured and decrypted by mitmproxy.

Table II presents an overall description of all the information
leaked that we have identified after analysing all the chosen
APPs. In summary, the device model, OS version, codename, IP
address, device ID and country name were leaked by all the
APPs. The results also indicate that 5 out of the 20 APPs leaked
the IMEI and IMSI. Only 3 APPs leaked information regarding
the location. Furthermore, almost all the APPs leaked the MNC
and MCC. The MAC address was leaked only by the APPs
Whatsapp and Pinterest. Also, neither Uber or Stack leaked any
email address, username and password. Only 6 out of the 20

examined APPs leaked email addresses, whereas the rest of the
APPs leaked email addresses, username and password.

It is also worth noting that some of the APPs could not be
installed in Android 4.1.2 due to incompatibility problems. In
such cases, the APPs were installed only on the available
Android 5.1.1. Furthermore, despite the two Android phones
accepting the mitmproxy certificate, there were cases in which a
warning message of client certificate error was shown. However,
the user could ignore these messages and the connection would,
therefore, be accepted. Finally, mostly in the case of Android
5.1.1, a warning message was shown indicating that that the
communication might be compromised. These messages were
ignored for experimental purposes.

Once we finished with the analysis of the phones running
Android OS, we focused our experiments on the iOS devices. In
contrast to the previous experiments, it was not possible to install
any APP in any iPhone while connected to the rogue AP. This
applies to all the iPhones that were tested. Hence, we decided to
install the APPs using a legitimate AP and then, once the APPs
were correctly installed in the iPhones, proceed with the analysis
using the rogue AP. Although this approach would let us to
proceed with the experiments, the results obtained from the

devices running Android could not be used for comparison,
since we are missing the possible information being leaked
during the installation process. Therefore, a set of comparison
experiments was conducted in both Android OS and iOS during
the usage process of the APPs, not considering the installation
process. During this new analysis, ten APPs were evaluated. The
results for these experiments are presented in Table III.

As we can see from the results, none of the APPs leaked the
MAC address, contacts, IMEI and IMSI. These results indicate
that multiple APPs leak information solely during installation
process. This is clear specially in the case of the IMEI and IMSI.
Also, information regarding the location is leaked by almost the
same number of APPs both in Android and iOS (i.e. 3 and 2 out
of 10, respectively). Furthermore, there is an evident difference
between the amount of information leaked by the APPs in
Android and iOS, when observing the rest of the evaluated
unique identifiers and personal information. For instance, the
logging details were leaked by 8 APPs on Android while none
of the APPs on iOS leaked this information. Similarly, the MNC
and MCC, and the UDID and UUID were leaked by 7 and 5
APPs, respectively, in Android. In contrast, this information was
only leaked by 1 APP in iOS. Additionally, there were two

TABLE II. PERSONAL INFORMATION LEAKED DURING THE INSTALLATION AND USE OF APPS RUNNING IN ANDROID OS

APP
Confidential Parameters of Interest

IMEI / IMSI Location Email / Username / Password Contacts MAC Address UDID / UUID MCC / MNC
Whatsapp Yes No Email only Yes Yes Yes Yes
Facebook No No All No No Yes Yes

Tripadvisor Yes No All No No Yes Yes
Tinder No No All No No Yes Yes
Uber No No No No No Yes Yes

Pinterest Yes No All No Yes Yes Yes
Soundcloud No No All Yes No Yes Yes

Microsoft Outlook No No All No No Yes Yes
Amazon BuyVIP No No Email only No No Yes Yes

Twitter No No Email only Yes No Yes Yes
Skype No No Email only Yes No Yes Yes
eBay No Yes All No No Yes Yes
Stack No Yes No No No Yes Yes

Color Switch No No Email only No No Yes Yes
Musical.ly No No All No No Yes Yes
Slither.io Yes No All No No Yes Yes
Snapchat No No All No No Yes Yes

Messenger No No Email only No No No Yes
Instagram No Yes All Yes No Yes No

Spotify Yes No All No No Yes Yes

TABLE III. PERSONAL INFORMATION LEAKED DURING THE USE OF APPS RUNNING IN ANDROID OS AND APPLE IOS

APP

Confidential Parameters of Interest

IMEI / IMSI Location Email / Username /
Password Contacts MAC Address UDID / UUID MCC / MNC

Android iOS Android iOS Android iOS Android iOS Android iOS Android iOS Android iOS

Accuweather No No Yes Yes No No No No No No No No Yes Yes
Slither.io No No No No Yes No No No No No No Yes No No

Musical.ly No No No No Yes No No No No No No No No No
eBay No No No No Yes No No No No No No No No No

Messenger No No No No No No No No No No Yes No Yes No
Spotify No No No No Yes No No No No No Yes No Yes No

Pinterest No No No No Yes No No No No No Yes No Yes No
ISS Tracker No No Yes Yes Yes No No No No No No No Yes No
Tripadvisor No No Yes No Yes No No No No No Yes No Yes No
Soundcloud No No No No Yes No No No No No Yes No Yes No

instances in which information relating to the location, and the
UDID and UUID was not leaked during the initial experiments
shown in Table II, but was leaked during the second set of
experiments. Overall, these results evidence that, although the
APPs in iOS leak less information than in Android OS, several
pieces of personal information may still be leaked in iOS APPs.

Fig. 5. Android OS and iOS comparison; Percentage of evaluated APPs that
leak unique identifiers and personal information during the usage process.

V. CONCLUSIONS AND FUTURE WORK
In this paper we have evaluated the amount of personal

information and unique identifiers that benign smartphone APPs
leak to third parties during the installation and use of the APPs,
when accessing the Internet. We have implemented a MitM
proxy setup to intercept the network traffic generated by the
APPs. An active WiFi monitoring platform has been designed
for the interception, decryption and analysis of a user’s personal
information derived from popular APPs installed on different
smartphones of two distinctive vendors.

The experimental methodology implemented to conduct the
experiments has involved the configuration and evaluation of
multiple software tools. During the assessment of the two rogue
AP tools used to provide access to the Internet through the MitM
monitoring machine, it was concluded that HostAPd was the
performing better in our experiments. We found that HostAPd,
in contrast to Airbase-ng, flags the MAC layer frame
retransmissions appropriately. This is an advantage because
HostAPd achieves a performance that closely resembles the
expected behaviour from a legitimate AP. Similarly, we have
evaluated two different MitM proxies, Mallory and mitmproxy.
Mallory was initially chosen for our experiments, but it was
discarded at a later stage as it was unable to unencrypt correctly
the SSL/TLS intercepted network traffic. Hence, Mimtproxy
was consequently adopted as an alternative to Mallory.

The results presented in this work have shown that numerous
unique identifiers and private information are leaked by multiple
of the evaluated APPs. One significant finding is that most of
the information is leaked solely during the installation process.
Hence, it is recommended that APPs are installed only on
trustworthy networks to reduce the risk of personal information
being compromised. Additionally, iOS APPs were identified to
leak much less information than in the Android OS.

The technical advancement that we have conducted on
setting up the active monitoring platform has allowed us to be
able to implement MitM attacks in a WiFi network. As for future
work, we wish to use this platform to enhance our understanding
of MitM attacks and thereby assess the possibility of extending
and complementing this type of attack with injection

capabilities, and to develop a detection mechanism that would
accurately identify the presence of these attacks.

ACKNOWLEDGMENT
All the conducted experiments and produced results in this

paper were implemented by Timothy A. Chadza at the Wolfson
School of Mechanical, Electrical and Manufacturing
Engineering, Loughborough University, UK, as part of his
M.Sc. dissertation [15]. All the smartphones were acquired for
research purposes only, and the smartphones’ owner gave
explicit permission to conduct the experiments. None of the
APPs mentioned in this paper were hacked or modified as part
of this work. The personal information described in this paper
was collected from the wireless communication channel set up
in our testbed. Successive APP updates released after the date
this research was conducted may have partially or completely
eliminated the issues described throughout this paper.

REFERENCES
[1] A. Dogtiev, “Top 10 most popular iOS APPs of all time,” Available:

http://www.businessofapps.com/top-10-popular-ios-apps-time/ (Access
Date: 29 Nov, 2016).

[2] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting privacy
leaks in iOS applications,” in Proc. of the Network and Distributed System
Security Symposium (NDSS), 2011, pp. 177-183.

[3] J. P. Achara, F. Baudot, C. Castelluccia, G. Delcroix, and V. Roca,
“Mobilitics: Analyzing privacy leaks in smartphones,” in ERCIM
Newsletter, 2013, pp. 30-31.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth, “TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” in ACM Transactions on Computer
Systems (TOCS), vol. 32, no.2, 2014, pp. 1-15.

[5] A. K. Jain, and D. Shanbhag, “Addressing security and privacy risks in
mobile Applications,” in IT Professional, vol. 14, no. 5, 2012, pp.28-33.

[6] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and B.
Freisleben, “Why Eve and Mallory love Android: An analysis of Android
SSL (in)security,” in Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2012, pp. 50-61.

[7] I. Mohamed, and D. Patel, “Android vs iOS security: A comparative
study,” in Proc. of the 12th International Conference on Information
Technology-New Generations (ITNG), 2015, pp. 725-730.

[8] J. P. Achara, V. Roca, C. Castelluccia, and A. Francillon,
“MobileAppScrutinator: A simple yet efficient dynamic analysis
approach for detecting privacy leaks across mobile OSs,” in Proc. of the
32nd Annual Computer Security Applications Conference (ACSAC),
2016, pp. 1-14.

[9] Atlassian Bitbucket, “Mallory Wiki home page,” Available: https://
bitbucket.org/IntrepidusGroup/mallory/wiki/Home (Access Date: 29
Nov, 2016).

[10] A. Cortesi, M. Hils, and T. Kriechbaumer “mitmproxy Project,”
Available: https://mitmproxy.org/index.html (Access Date: 29 Nov,
2016).

[11] J. Malinen, “Hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/
RADIOUS Authenticator,” Available: http://w1.fi/hostapd/ (Access Date:
29 Nov, 2016).

[12] Aircrack-ng, “Airbase-ng description” Available: http://www.aircrack-
ng.org/doku.php?id=airbase-ng (Access Date: 29 Nov, 2016).

[13] A. Kennedy, “A database of open-source HTTP proxies,” Available:
http://proxies.xhaus.com/ (Access Date: 29 Nov, 2016).

[14] J. Allen, and R. Umadas, “Network stream debugging with Mallory,” in
Intrepidus Group technical report, 2010, pp. 1-18.

[15] T. A. Chadza, “How much private information is your phone leaking?,”
M.Sc. Thesis, Loughborough University, August 2016.

[16] R. Hipp, “DB browser for SQLite” Available: http://sqlitebrowser.org
(Access Date: 1 Dec, 2016).

