
Ensemble-based Adaptive Single-shot Multi-box
Detector

Viral Thakar∗, Walid Ahmed†, Mohammad M Soltani†, Jia Yuan Yu‡
∗Department of Electrical and Computer Engineering

Concordia University, Montreal, Canada
Email: v thakar@encs.concordia.ca
†Indus.ai, Thornhill, Canada

Email: walid.aly@indus.ai, mohammad.soltani@indus.ai
‡Concordia Institute of Information System Engineering

Concordia University, Montreal, Canada
Email: jiayuan.yu@concordia.ca

Abstract—We propose two improvements to the SSD—single
shot multibox detector. First, we propose an adaptive approach
for default box selection in SSD. This uses data to reduce the
uncertainty in the selection of best aspect ratios for the default
boxes and improves performance of SSD for datasets containing
small and complex objects (e.g., equipments at construction sites).
We do so by finding the distribution of aspect ratios of the
given training dataset, and then choosing representative values.
Secondly, we propose an ensemble algorithm, using SSD as com-
ponents, which improves the performance of SSD, especially for
small amount of training datasets. Compared to the conventional
SSD algorithm, adaptive box selection improves mean average
precision by 3%, while ensemble-based SSD improves it by 8%.

Index Terms—Single-Shot Multi-box Detector, Object Detec-
tion, Ensemble Methods

I. INTRODUCTION

Object Detection is a domain which has fascinated com-
puter vision researchers since the beginning. It involves the
localization and classification of objects available in an image
or video. Deep object detectors can be divided into two cate-
gories: (i) Two-stage approaches which applies a classifier on
a sparse set of proposed candidate object locations (ii) Single-
stage approaches which divide the input space into dense set
of boxes called default boxes and apply a classifier on them.
Performance wise, it is always been found that two stage
approaches [1], [2] are better in terms of accuracy compared to
single-stage networks because of their localization capabilities.
However in hindsight, two stage approaches are comparatively
slower. On the other hand, in recent work [3]–[5] the single-
stage approaches have also shown a potential performance
in terms of speed and accuracy [6]. The purpose of this
research is to push the capabilities of single-stage networks
by improving their detection precision.

SSD - Single Shot Multibox Detector [3] belongs to the
family of object detection algorithms which uses single deep
neural network to detect different object classes. For detecting
objects, rather hypothesizing bounding boxes or re-sampling
pixels or features for each box and then applying a high quality
classifier; SSD discretized the output space of bounding boxes

into a set of default boxes over different aspect ratios and
scales per feature map location. It then generates scores for
the presence of each object class in each default box and
produces adjustments to better match object shape. The fun-
damental concept of SSD is mostly based on the feed forward
convolution network. The SSD model is comprised of mainly
two structures : Base network and Auxiliary network. The
Base network is the early part of the model which is based on
standard architecture used for high quality image classification.
The Auxiliary network has features mainly focused for objects
with different scales or aspect ratios.

There have been various approaches [5], [7], [8] proposed to
improve the performance of SSD by enhancing its capabilities
to collect more features. In [6], the authors have shown that
the performance of SSD is always very low for small objects
no mater how much deep feature extractor we use. It was
also found that the performance of SSD degrades more when
the training dataset contains small, complex and deforming
objects. Its robustness for real life applications is a point of
concern. Motivated by these limitations and SSD’s popularity
because of its capability to operate in real-time, we wish to
find the possible improvements to SSD which can allow us
to augment its performance for small and complex object
detection.

SSD generates a set of default boxes based on a set of
static values for aspect ratio. For any type of training data,
the generation of default boxes is fixed and never changes.
The problem with the fixed set of aspect ratios and scales is
that the generated default boxes are not ideal for the given
training dataset. This may end up in having either multiple or
very poor localization over the same object, in turn adding to
false positives. By having an adaptive default box generation
algorithm which creates a set of default boxes based on the
distribution of aspect ratios across the training data, we can
optimize the selection of the default boxes. Consequently, this
creates better localization and classification.

The paper is organized as follows. Section 2 describes the
model architecture and training process of SSD. Next, we
present in two section our main contributions to improve the

ar
X

iv
:1

80
8.

05
72

7v
1

 [
cs

.C
V

]
 1

7
A

ug
 2

01
8

performance of SSD. Section 3 covers the adaptive default
box selection algorithm for SSD. Section 4 explains the
ensemble of SSDs and process to train the ensemble of SSDs.
Performance comparison of different improvements to SSD
with conventional SSD is discussed in Section 5. Finally we
present conclusion and open questions in Section 6.

II. SSD - SINGLE SHOT MULTI-BOX DETECTOR

SSD uses a single-stage, feed-forward convolutional neural
network for object detection. The key contribution of SSD is
the use of default boxes over multi-scale feature maps for de-
tection, which are similar to the anchor boxes of Faster RCNN
[2]. This allows SSD to discretize the space of possible output
box shapes. It takes a set of images containing objects along
with object labels and boxes circumscribing this objects. This
boxes are called ground-truth boxes. To begin the training,
it first evaluates a set of default boxes with different aspect
ratios and scales at each location in several feature maps. It
then predicts both the shape offsets and the confidences for
each default box and all object classes. The goal during the
training is to match the default boxes with the ground truth
boxes for a high class confidence score. To achieve this goal,
it uses weighted sum of localization loss and confidence loss
as the loss function.

Mathematically SSD is a function ϕ(x) = Ŷ which takes
any arbitrary image x as input. For number of classes n
and number of default boxes d, SSD produces a matrix
Ŷ ∈ Rd×(n+4) as output. Each row of Ŷ represents a positive
real valued vector ŷ ∈ Rn+4. It contains n real valued
numbers representing per-class classification probabilities or
confidences and four real valued numbers to represent the
offset in the default box. For simplicity consider a matrix
Ŷclss ∈ Rd×n which represents only classification probabilities
for d default boxes and a matrix Ŷloc ∈ Rd×4 which represents
the offset in the d default boxes.

The training of SSD on single training sample can be
divided into three main sections. Repeating the same key steps
for each training sample can lead to the full training approach
used by SSD.

A. Initializing Default Boxes

The default box selection is based on the minimum and
maximum scale values, as well as the number of feature maps
needed to be used for the prediction. The algorithm for default
box selection is motivated from [9]–[11] which are object
segmentation algorithms. The Algorithm 1 shows the process
of generating default boxes for a given number of feature maps
m and bounding values smin and smax for scale of boxes.
For each feature map k ∈ [1,m], SSD calculates the scale of
the default boxes denoted as sk. This is essentially the equal
distribution of scale values between smin and smax based
on the number of feature maps. For example, for number of
feature maps m = 16, SSD divides the [smin, smax] interval
into 16 equally distributed parts. Next for each scale value
sk associated with a particular feature map, SSD considers
five aspect ratio values from {1, 2, 3, 1/2, 1/3} and creates

Algorithm 1 Initialize Set of Default Boxes D

Inputs:
m - Number of Feature maps locations for prediction
smin - Minimum Scale Value - Default 0.2
smax - Maximum Scale Value - Default 0.9
Output:
D ∈ Rd×4 - Set of Default Boxes
Process:
Initialize Scale of Default boxes s ∈ Rm

for each feature map k ∈ [1,m] do
s[k] = smin + smax−smin

m−1 (k − 1)
end for
for each aspect ration ar ∈ {1, 2, 3, 1/2, 1/3} do

for each feature map k ∈ [1,m] do
Size of kth feature map fk
(cx, cy) = (i+0.5

fk
, j+0.5

fk
) where i, j ∈ [0, fk)

if ar == 1 then
Width war

k = sk ∗
√
ar

Height har

k = sk/
√
ar

Default Box Dar

k = [cx, cy, w
ar

k , h
ar

k]
s
′

k =
√
sk ∗ sk+1

Width w
′ar

k = s
′

k ∗
√
ar

Height h
′ar

k = s
′

k/
√
ar

Default Box D
′ar

k = [cx, cy, w
′ar

k , h
′ar

k]
else

Width war

k = sk ∗
√
ar

Height har

k = sk/
√
ar

Default Box Dar

k = [cx, cy, w
ar

k , h
ar

k]
end if

end for
end for

rectangle boxes with each one. The boxes are centered at
(cx, cy) point. For the aspect ratio value 1, SSD considers
an extra box with scale s

′

k =
√
sk ∗ sk+1 which makes a total

of six default boxes for a particular feature map.

B. Defining a Matching Strategy between Default Boxes and
Ground truth Boxes

The next stage in the training part is to match the default
boxes with the ground truth boxes. For a single image, the
matching strategy is explained in the Algorithm 2. The idea is
to find all the default boxes which are overlapping on the
ground truth boxes in order to consider them as a set of
positive samples for the classifier training. The default boxes
which are not sufficiently overlapping on the ground truth
boxes are considered as negative samples or background. After
getting a set of positive and negatives boxes, SSD uses hard
negative mining [12] to balance the number of positive and
negative samples. This keeps the ratio of number of negative
samples to number of positive samples at 3 : 1.

C. Defining Training Objective and Loss Function

The next step is to define the training objective in terms of
minimizing loss function. As the object detection task involves

Algorithm 2 Create set of Matched Boxes M for Single
Training Image

Inputs:
τ - Jaccard overlap threshold - Default 0.5
d - Number of default boxes
g - Number of ground truth boxes
D ∈ Rd×4 - Set of default boxes
G ∈ Rg×4 - Set of ground truth boxes
C - A set of class labels
n - Total number of class labels
Output:
N - Number of positively matched default boxes
Pos ∈ RN - Indexes of positively matched default boxes
Neg ∈ R(d−N) - Indexes of negatively matched default
boxes
Initialize :
Yclss ∈ Rd×n - Ground-truth labels for each default box
Yloc ∈ RN×4 - Ground-truth boxes for each positively
matched default box
Process:
for each ith default box D[i] do

for each jth ground truth box G[j] having cth class label
C[c] do

Jaccard Overlap J(D[i], G[j]) = 1− |G[j]∩D[i]|
|G[j]∪D[i]|

if J(D[i], G[j]) > τ then
Yclss(i, c) = 1
Append G[j] to Yloc
Append i to Pos

else
Yclss(i, c) = 0
Append i to Neg

end if
end for

end for

classification and localization, the loss function is also a
weighted sum of classification and localization loss functions.
As mentioned earlier, for each arbitrary image SSD produces
a matrix Ŷ ∈ Rd×(p+4), which represents a set of real valued
vectors for each default boxes. For simplicity we have also
defined Ŷclss ∈ Rd×p and Ŷloc ∈ Rd×4 representing the
predictions for classification and localization task respectively.

The classification loss is simply Softmax loss or more
accurately known as cross-entropy loss function over multiple
classes confidences.

Lclss(Ŷclss, Yclss) = − 1

N

n∑
c=1

∑
l∈Pos

Yclss[l, c]

· log(Ŷclss[l, c])−
∑

h∈Neg

log(Ŷclss[h, 0]).

The localization loss is smooth L1 loss [13] defined as

Lloc(Ŷloc, Yloc) =
∑

b∈(cx,cy,w,h)

smoothL1
(Ŷloc[b, :]−Yloc[b, :])

where

smoothL1
(x) =

{ 0.5× x2 if |x| > 1
|x| − 0.5 otherwise .

The overall loss function is

L(Ŷ , Y) =
1

N
(Lclss(Ŷclss, Yclss) + α(Lloc(Ŷloc, Yloc)).

III. ADAPTIVE DEFAULT BOX SELECTION ALGORITHM
FOR SSD

The performance of two-stage detectors is mainly because
of a dedicated region proposal network. Default boxes are the
ones which do a similar job like region proposal network of
two stage object detectors. This is the motivation to improve
the default box selection part of SSD. The selection of default
boxes in SSD is dynamic with respect to the scale, but it
is static with respect to the aspect ratio. It chooses aspect
ratios of default boxes from a fix set of values. Fig. 1
shows the distribution of aspect ratios for the selected dataset
mentioned in section 5.1. This clearly shows that each object
label in the dataset has different distribution of aspect ratios,
thus selecting aspect ratios from 1, 2, 3, 1/2, 1/3 is not an
optimized approach.

Considering the appearance of object shapes throughout
the training data as a random process, a positive real valued
random variable X : Ω → R>0 is defined on the probability
space (Ω,z, P). X can map the set of all possible aspect ratio
values Ω to some positive real numbers. For the given training
set, we can find the probability density of aspect ratios for a
particular object class which can be represented as follows.

FX(x) = P (X ≤ x) =

∫ x

0

fX(u)du

where fX is the probability density function of X , and FX

is the cumulative distribution function of X . The goal is to find
five representative points; {x1, x2, x3, x4, x5} for this density
function

The first representative point x1 can be the mode of fX ,
which represents a value of x for which fX(x) takes a
maximum value. In other words, mode is the x-coordinate
of the maximum point on the graph of fX(x). The second
representative point, x2 can be the mean of fX given as

x2 =

∫ inf

0

xfX(x)dx.

x2 represents the arithmetic mean of the aspect ratios for
objects available in the training data.

The third representative point x3 can be the median of fX
given as x3 = m such that∫ m

0

fX(x)dx =

∫ inf

m

fX(x)dx = 0.5.

This represents the line x3 = m dividing the area under the
graph of fX(x) into two equal areas. Next, two representative
points are given as x4 = m such that∫ m

0

fX(x)dx = 0.25

and x5 = m such that∫ m

0

fX(x)dx = 0.75.

In our experiment we are estimating the probability density
function fX using histogram as estimation technique. For a
given starting point x0 and bin width h and total samples n,
the bins of the histogram can be established as

[x0 + βh, x0 + (β + 1)h].

The histogram estimation is defined as

f ′X(x) =
1

nh
· (No of Xi in same bin as x).

IV. ENSEMBLE OF SSDS

Ensemble methods are methods which generate a set of
learning algorithms and then use a voting mechanism among
them to predict a output for a new data point. An ensemble of
classifiers is a set of classifiers whose individual decisions are
combined in some way typically by weighted or unweighted
voting to classify new examples. A necessary and sufficient
condition for an ensemble of classifiers to be more accurate
than any of its individual members, is if the classifiers are ac-
curate and diverse. An accurate classifier is the one which has
high accuracy than random guessing, wheras two classifiers are
diverse if they make different errors on new data points. More
precisely, if the error rates of L hypotheses {h1, h2, ...hl} have
probability p < 0.5 and the errors are independent, then the
probability that the majority vote will be wrong is equivalent
to the area under the binomial distribution where more than
L/2 hypotheses are wrong [14].

A. Bootstrap Aggregating - Bagging

As SSD uses some similar approach like boosting [15]
by implementing hard negative mining, we have decided to
explore the effect of bagging [16], [17] as the combination
of SSDs. It is a method for generating multiple versions of
a specific predictor and using these to get an aggregated
predictor. To generate aggregation, either take the average over
the versions while attempting to solve a regression problem,
or take a plurality vote among the versions while solving a
classification problem. The multiple versions are formed by
generating bootstrap replicates of original learning set and use
them as individual new learning sets. The vital element for
bagging is the instability of the prediction method. If altering
the data changes the parameters of the constructed predictor,
bagging can improve accuracy.

1) Problem Statement for Bagging: Consider a training data
set L, consists of data {(xn, yn), n = 1, 2, ...N} where y is
the label and x is a feature vector. We have some learning
system to form a predictor ϕ(x, L) which predicts y for any
new sample of x. Now let’s consider we are having a sequence
of learning sets, Lk each consisting of N independent observa-
tions from the same underlying distribution as L. Our primary
goal is to use {Lk} to built a better predictor than the single
learning set predictor ϕ(x, L). The only restriction is that we
have to work with a sequence of predictors {ϕ(x, Lk)} [16].

The obvious approach for the classification problem, i.e.
to predict class labels, is voting. Consider a set of classes
Y = {1, 2, ...J} and our predictor predicts a class j ∈ Y then
aggregated predictor is given as:

ϕA(x) = argmaxjVj

where Vj = #{k; {ϕ(x, Lk)} = j}.
Usually we have a single training set L and not a sequence

of training sets {Lk}, we can take repeated bootstrap samples
and create a sequence {L(B)} from L and form sequence
of predictors {ϕ(x, L(B))}. {L(B)} creates replicate datasets,
each having N training samples drawn at random, but with
replacement from L. Each pair (x, y) from training set L =
{(xn, yn), n = 1, 2, ...N} may appear repeated times or not at
all in any particular L(B).

The answer to one of the most critical questions about
bagging that whether it will improve accuracy or not depends
upon the stability of the procedure for the construction of our
predictor ϕ. If the small change in L creates a large change
in the parameters of ϕ then bagging insures the improvements
in performance. As suggested in [17] neural networks, clas-
sification and regression trees are unstable methods while k-
nearest neighbor method is stable. This provides a motivation
to explore the bagging for Object Detection based on the
Convolutional Neural Networks.

2) Procedure:
1) The dataset is randomly divided into a test set T and

training set L. Usually we divide 20% of dataset for
testing set T and 80% of dataset for training set L.

2) An Object Detector e.g. SSD ϕ(x) is trained using L.
Evaluating the test set T through Object Detection al-
gorithm gives the performance parameter Mean Average
Precision denoted as mAPs.

3) A bootstrap sample L(B) is selected from L and Object
Detector SSD is trained using L(B). This step is repeated
m times giving Object Detectors ϕ1(x), ..., ϕm(x)

4) If (xn, yn) ∈ T , then the estimated label of xn is that
label having the plurality in ϕ1(xn), ..., ϕm(xn). The
performance parameter Mean Average Precision denoted
as mAPB can be calculated.

V. EXPERIMENT SETUP AND RESULTS

As the goal of this research is to improve the performance of
SSD for small objects present in complex environments like
construction sites, we have created the dataset from images
taken from real construction sites having a different range

(a) Equipment-1 (b) Equipment-2

(c) Equipment-3 (d) Equipment-4

(e) Equipment-5 (f) Equipment-6

(g) Equipment-7 (h) All Data

Fig. 1: Aspect Ratio Distribution of all the classes

of objects from excavators to workers. The dataset has seven
labels : Equipment-1 to Equipment-7. The images are taken
from surveillance cameras placed at various construction sites
with different angles and heights. This setup allows us to
generate a real dataset with objects ranging in different scales
and different aspect ratios. Fig. 1 shows the distribution of
aspect ratios of objects present in the dataset. Fig. 2 and 3
shows the details about training and testing dataset.

To understand and evaluate the performance of our proposed
improvements to SSD, we have considered two variants of
SSD. i) SSD with Inception [18] as base network ii) SSD with
Mobilenet [19] as base network. To evaluate the performance
we have chosen mean average precision [20] as standard
performance matrix for object detection. During this research
we have evaluated following results.

As a first step, we have trained SSD with the training data
mentioned in section 5.1. While evaluating performance of
SSD we have found that it performs decently for objects which
appear large in terms of scale and aspect ratio. To be fair
in evaluation, while creating different bags we have created
bootstrap samples by randomly selecting 80% samples from
the available training data. So each version of SSD trained
with Bag 0, Bag 1 and Bag 2 is actually trained with less
data. In general we refer these SSDs as Bagged SSDs. We
have also trained one version of SSD with the adaptive default
box selection algorithm and called it ADBS-SSD.

The next step is the evaluation of different approaches.
Tables I and II show the performance comparison of dif-
ferent experiments carried out as a part of this research.
They show the comparison of Average Precision for each
class and mean Average Precision as overall performance for
different approaches. It clearly shows that the performance of
SSD for classes like Equipment-2 and Equipment-4 is better

Equipment-1
1.81%

Equipment-2
5.87%

Equipment-3

13.44%

Equipment-4

11.54%

Equipment-5
28.74%

Equipment-6

16.28%
Equipment-7

22.32%

Fig. 2: Training Dataset Statistics

Equipment-1
1.99%

Equipment-2
3.30%

Equipment-3

8.62%

Equipment-4

6.33%

Equipment-5

22.87%

Equipment-6

26.14%

Equipment-7

30.75%

Fig. 3: Testing Dataset Statistics

but it struggles for Equipment-5 detection as appearance of
Equipment-5 in surveillance camera is comparatively small.
First we have evaluated ADBS-SSD with Inception as base
network on the test dataset and found maximum 9% of
improvement in average precision for class Equipment-3 and
minimum 3% improvement in average precision for class
Equipment-1. Similarly the evaluation of ADBS-SSD with
MobileNet as base network has also shown improvements in
individual average precision as well as mAP. The performance
of Equipment-5 detection is also improved by 4% by using
ADBS-SSD with Inception as well as MobileNet as base
network.

To evaluate the bagging, we carried out three experiments. i)
We have considered the voting between SSD and Bagged SSD
with maximum mAP i.e. SSD trained on Bag 2 for Inception
base network and SSD trained on Bag 1 for MobileNet base
network. ii) We have considered the voting between top-2
Bagged SSDs. iii) We have considered voting between all the
bags. The purpose of carrying out these three experiments is
to understand what should be the optimal number of bags,
as each bagged SSD in evaluation reduces the FPS of overall
performance. By this we can understand more about speed-
accuracy trade off associated with bagging. The FPS of SSD

TABLE I: Average Precision per Class and Mean Average Precision (mAP) Comparison for Inception as Base Network

Class Bag 0 Bag 1 Bag 2 SSD Bagged SSD ADBS SSDSSD + Top Bag Top 2 Bags All Bags
Equipment-1 0.22 0.23 0.21 0.24 0.28 0.33 0.31 0.24
Equipment-2 0.86 0.84 0.88 0.87 0.87 0.90 0.91 0.88
Equipment-3 0.55 0.55 0.56 0.50 0.55 0.66 0.61 0.61
Equipment-4 0.92 0.91 0.90 0.90 0.91 0.94 0.94 0.93
Equipment-5 0.17 0.18 0.20 0.20 0.23 0.29 0.30 0.23
Equipment-6 0.45 0.41 0.46 0.48 0.50 0.53 0.58 0.54
Equipment-7 0.32 0.34 0.36 0.34 0.38 0.48 0.45 0.37

mAP 0.50 0.49 0.51 0.51 0.53 0.59 0.59 0.54
% Improvement 2.0 8.0 8.0 3.0

TABLE II: Average Precision per Class and Mean Average Precision (mAP) Comparison for MobileNet as Base Network

Class Bag 0 Bag 1 Bag 2 SSD Bagged SSD ADBS SSDSSD + Top Bag Top 2 Bags All Bags
Equipment-1 0.16 0.28 0.20 0.23 0.24 0.27 0.25 0.22
Equipment-2 0.77 0.84 0.66 0.61 0.63 0.67 0.64 0.65
Equipment-3 0.32 0.46 0.37 0.40 0.38 0.44 0.47 0.40
Equipment-4 0.92 0.89 0.82 0.87 0.88 0.91 0.88 0.87
Equipment-5 0.12 0.16 0.14 0.12 0.14 0.18 0.19 0.16
Equipment-6 0.29 0.37 0.25 0.26 0.25 0.36 0.30 0.28
Equipment-7 0.22 0.31 0.26 0.23 0.28 0.31 0.25 0.24

mAP 0.40 0.47 0.39 0.39 0.40 0.45 0.43 0.40
% Improvement 1.0 6.0 4.0 1.0

is 40 while testing on NVIDIA GTX GeForce 1060 which
reduces to almost 10 FPS while using all the bags. For
combination of top two bags of SSD we are getting 24 FPS
which is sufficient enough for real-time object detection.

VI. CONCLUSION

In this paper, we propose two improvements to SSD in terms
of Adaptive Default Box Selection algorithm and Ensemble
of SSDs. By using optimal values of aspect ratios for default
box generation we are able to improve the performance of
SSD for small objects like Equipment-5 detection in surveil-
lance cameras. Use of ensemble of SSDs make the detection
more accurate for custom objects in complex surrounding
like construction site resources. Quantitative evaluation of
performance of each improvements shows that they improves
the accuracy while maintaining the FPS required for real-
time application. Both the improvements, adaptive default box
selection algorithm and ensemble of object detectors, are easy
to implement can be extended to any single stage object
detector.

ACKNOWLEDGMENT

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), [funding
reference number 396151363].

REFERENCES

[1] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
CoRR, vol. abs/1703.06870, 2017.

[2] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” CoRR, vol.
abs/1506.01497, 2015.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,
2015.

[4] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[5] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD :
Deconvolutional single shot detector,” CoRR, vol. abs/1701.06659, 2017.

[6] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” CoRR, vol.
abs/1611.10012, 2016.

[7] J. Jeong, H. Park, and N. Kwak, “Enhancement of SSD by concatenating
feature maps for object detection,” CoRR, vol. abs/1705.09587, 2017.

[8] G. Cao, X. Xie, W. Yang, Q. Liao, G. Shi, and J. Wu, “Feature-fused
SSD: fast detection for small objects,” CoRR, vol. abs/1709.05054, 2017.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.

[10] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik, “Hyper-
columns for object segmentation and fine-grained localization,” CoRR,
vol. abs/1411.5752, 2014.

[11] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to
see better,” CoRR, vol. abs/1506.04579, 2015.

[12] A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-
based object detectors with online hard example mining,” CoRR, vol.
abs/1604.03540, 2016.

[13] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.
[14] T. G. Dietterich, “Ensemble learning,” The handbook of brain theory

and neural networks, vol. 2, pp. 110–125, 2002.
[15] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting

algorithm,” in Icml, vol. 96. Bari, Italy, 1996, pp. 148–156.
[16] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.

123–140, Aug 1996.
[17] L. Breiman et al., “Heuristics of instability and stabilization in model

selection,” The annals of statistics, vol. 24, no. 6, pp. 2350–2383, 1996.
[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-

thinking the inception architecture for computer vision,” CoRR, vol.
abs/1512.00567, 2015.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[20] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

	I Introduction
	II SSD - Single Shot Multi-box Detector
	II-A Initializing Default Boxes
	II-B Defining a Matching Strategy between Default Boxes and Ground truth Boxes
	II-C Defining Training Objective and Loss Function

	III Adaptive Default Box Selection Algorithm for SSD
	IV Ensemble of SSDs
	IV-A Bootstrap Aggregating - Bagging
	IV-A1 Problem Statement for Bagging
	IV-A2 Procedure

	V Experiment Setup and Results
	VI Conclusion
	References

