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Abstract—A machine learning (ML) technique has been used
to synthesis a linear millimetre wave (mmWave) phased array
antenna by considering the phase-only synthesis approach. For
the first time, gradient boosting tree (GBT) is applied to estimate
the phase values of a 16-element array antenna to generate
different far-field radiation patterns. GBT predicts phases while
the amplitude values have been equally set to generate different
beam patterns for various SG mmWave transmission scenarios
such as multicast, unicast, broadcast and unmanned aerial vehicle
(UAV) applications.

Index Terms—5G, phased array antenna, gradient boosting
tree (GBT), machine learning (ML), millimetre wave (mmWave),
array factor, phase-only synthesis.

I. INTRODUCTION

Uniformally excited array antennas synthesis namely
amplitude-only array synthesis is a conventional method for
antenna array optimization [1]. Amplitude-only array synthesis
is useful for the sidelobe level (SLL) reduction by assigning
different amplitude values for each array element. This method
is mainly applicable for boresight far-field radiation pattern
synthesis when the beam pattern starts to steer away from the
boresight direction, amplitude weights need to be recalculated
again to satisfy the SLL margin. However, it is also feasible
to synthesize phased array antennas by phase tapering while
element amplitudes are set to one. This approach is termed
as phase-only array synthesis in the literature and has simpler
feeding network compared to amplitude-only method. Basi-
cally, phase shifters are indispensable components of phased
array systems irrespective of the synthesis technique while
amplitude-only synthesis approach suffers from a complex
feeding network due to tapering for each antenna element.
Although phase-only approach is promising, there are only a
few research studies dedicated to phase-only array synthesis
due to the need for using non-linear optimization methods.
For example, genetic algorithm (GA) approaches have been
applied to the phase-only synthesis problems [2]-[4]. In ad-
dition, a non-linear phase-only synthesis GA-based approach
was proposed in [5] to reduce the SLL for both planar and
linear arrays. All of reported studies are based on optimisation
techniques (mainly GA) and have several disadvantages in-
cluding no-guarantee to converge or find the optimum solution,
intractability of finding the optimal parameter settings, and
the need to design a fitness function that largely impacts the
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final results. Here, for the first time machine learning (ML) is
introduced to estimate the desired radiation patterns by apply-
ing the phase-only synthesis technique. Machine learning in
contrast with optimisation models allows establishing a model
describing multiple patterns that can be used to synthesise a
similar pattern of interest. However, optimisation techniques
must be run independently to estimate phases for each pattern
of interest. As summary, one of significant advantages of ML
methods is that they can learn from the data without any
prior knowledge and the learned model can be used for future
designs [6] .

On the other hand, recently there is a huge interest towards
millimetre wave (mmWave) as an enabling technique for future
5G network [7]-[9]. Ofcom proposed 26 GHz band as a
pioneer band for 5G in Europe [10] while FCC proposed
28 GHz band for 5G deployment in US [11]. In this paper
a linear phased array antenna with 16 radiator elements has
been considered to synthesis radiation pattern based on the
phase-only approach. Gradient boosting tree (GBT) [12] is
applied to estimate the phase values of each array elements to
generate different array antenna far field patterns for various 26
GHz 5G applications; such as multicast, unicast, broadcast and
Unmanned Aerial Vehicle (UAV) scenarios. GBT is based on
training sequential weak learners by focusing on the residual
error from the previous stage. Eventually, the final prediction
is based on a vote from multiple learners. GBT is a powerful
technique based on training multiple weak learners to improve
the final performance and has lower sensitivity to outliers and
has shown to perform well in various applications. As a result,
it has been selected in this work.

II. DATA GENERATION AND MODEL DESCRIPTION

A. Background

The mmWave frequency bands suffer from high path loss
due to their short wavelength. Array antenna provides an
effective means of tackling this problem. Having an array
results in narrow and sharp beams, and coverage can be
extended by steering the beam in different directions. An array
response is based on the array structure, separation distance
between array elements, element weights and the excitation



phases is called the array factor (AF) and, for a linear array
with M radiator elements, is calculated by

M
AF =) " w,el =¥ (1)
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where w,, is an element weight, and ,, is the excitation
phase due to element position and observation direction. In
this paper, we assume all elements have identical amplitudes
V(n € M) [w,, = 1] and only phase values are varying. To find
the total far-field array pattern, AF is multiplied by the far-field
radiation pattern of a single radiator element as follow:

Pattern Factor (PF) = Element Pattern (EP) x AF  (2)

where pattern factor (PF) is an angular description of the far
field radiation pattern of the whole array antenna considering
the effect of EP and AF.

In this study, a linear array with 16 radiator elements (M
= 16) is considered. To perform the pattern factor, a single
common patch antenna has been simulated and optimised
to operate at 26 GHz, the prototype is fabricated and the
measured radiation pattern is used as element pattern. 10000
PFs have been generated; half with the progressive phases and
the second half with the random phases. Each PF represents
an input and the corresponding phase elements as the output.
Consequently, it covers the parameter space which are multiple
possible phase elements as the output of the ML model and
their corresponding PFs for the input to the learning algorithm.

B. Gradient Boosting Tree

Boosting methods are based on training sequential weak
learners that performs only marginally better than the random
guess. A small decision tree can be considered as an example.

Considering N samples as {(x1,¥1), (X2, Y2), ---s (XN, YN)}+
at the start, same weights are assigned to them, e.g. wy; = D
where x, y; and w1; shows a data sample, its associated predic-
tion, and the corresponding weight respectively. Nonetheless,
in the following iteration, samples are weighted according to
their miss-prediction at the previous step:
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where k is the iteration index, e is the error at step k& and
w41 represents sample weights for the estimator at the next
step. The procedure focuses on improving performance for
mis-predicted samples by increasing their weights. Then, all
estimators are combined by a weighted majority vote for
the final prediction. This way of learning is less sensitive
to outliers and noise in the data. GBT is a generalisation

of boosting to an arbitrary differentiable loss function. For
estimating multiple output a model for each target can be
considered.

Considering x; as a PF and y; as v; with 16 phase values,
GBT was used here to predict each v, for a given PF. In order
to improve performance and let GBT focus on learning useful
information, correlation between each desired PF and the
whole data set was calculated. The threshold was considered
as more than 90% and the data with lower correlation has been
removed from the dataset. Then, the final dataset is the joint
set of remained high correlated data to each desired PF. This
step is only a preprocessing optional step.

After filtering based on the correlation, 6813 data points
were considered for training (90% of the remained data) and
the remaining 757 points for testing the model. For each
PF, the input is represented by a vector of size 180 and the
corresponding output is a vectors of size 16 representing 16
phase elements. The training and test accuracy were 0.001
and 0.03 respectively. Accuracy here is the normalised mean
square error between the estimated 16 phases representing
antenna elements and the true phases for PFs in the test or
train sets.

III. PHASE ONLY SYNTHESIS

A main task of phase-only array synthesis is to determine
the optimal set of values, ¢, in Eq. (1) to obtain the specific
far-filed array pattern. Here, 16 1), values are estimated to
form different beam patterns to support various 5G mmWave
applications.

A. Unicast and Multicast Application

It is predicted that the traffic demands continues to grow
at an exponential rate in the the next-generation communi-
cation systems (5G). One of the aims of 5G communication
is to provide improved services to existing 4G applications
(multimedia streaming and High-QoE services) in addition
to providing machine-type applications (smart environments
and intelligent transport systems) as well as ultra-reliable low
latency (URLLC) applications (autonomous vehicles, etc.).
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Fig. 1. Three beams normalised pattern factor based on estimated 16 phase
values at 26 GHz.
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Fig. 2. Five-beam normalised pattern factor based on estimated 16 phase
values at 26 GHz.

Furthermore, handling increasing demands for the unicast
and multicast systems is significant in accessing broadband
wireless services efficiently. Basically, sending information
from a point in the network to another single point is called
a unicast transmission which is the most common form of
information transfer with easy and well-established techniques
and protocols. In addition, multicast is described as having
multiple users who have the subscription to the same service.
Multicasting has the advantage of better use of the capacity
in the cellular systems and is a practical solution for sharing
information to a number of terminals. From the transmitter
perspective, the difference between Unicast and Multicast is
the number of RF chains to generate different independent
data stream while for both applications multi-beam antenna is
needed.

Phase difference determines the direction of propagation
and amplitude distribution would control radiation pattern
characteristics such as side-lobe lever (SLL), HPBW, and
beam ripples. In the proposed method, we focus on only
controlling the phase difference to come up with an aperture
radiates toward the direction(s) of interest. To generate multi-
ple beam patterns, fixed switched beam is one solution but it
is costly and switching time between different fixed beams
is an another issue that degrades the system performance.
Also, using amplitude-only approach causes the gain reduction
due to turning off some of radiator elements by tapering the
amplitude. Here, phase-only synthesis is applied to determine
the optimal set of phase values such that the array factor results
in the multi beam pattern. To generate PF, which is defined in
Eq. (2), a rectangular patch antenna at 26 GHz is simulated
and its radiation pattern is multiplied by the AF. To find 16
optimal phase values, first three-beam pattern is assigned as an
input of the GBT model. Fig. 1 shows the normalized PF based
on estimated phase values. In contrast to the GA approaches,
once the data is trained with ML techniques, it can be used to
predict the phase values for a new desired radiation pattern.

Next, five-beam pattern is applied as an input and phases
are estimated to form the five-beam radiation pattern. Fig. 2
indicates five-beam radiation pattern suitable for multicast and
unicast applications while the optimal phases are estimated by
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Fig. 3. Saddle-shaped beam pattern.

GBT. Considering more path loss in non-boresight direction
in comparison to the boresight direction, five-beam pattern is
generated by having higher beam gain in those angles far away
form the Theta = 0° to meet the link budget and have a same
received power in all angles.

B. Unmanned Aerial Vehicle (UAV) application

Assuming a 3-D cone-shaped area as the illuminating region
beneath the UAV, a circle-shaped contours of coverage is
achieved on the earth [13]. Vertical distance from the vertex
of the cone to the earth is clearly lower than that of any other
non-vertical lines. From propagation point of view, the radiated
waves through the vertical line experiences lower path loss
in comparison with any other non-vertical lines and regions
near the center point of the circle-shaped contours of coverage
have higher EIRP values in comparison with the edge-regions,
results in a non-uniform distribution of received power over
the area of coverage. In order to have an almost uniform
level of sensitivity over the entire area under coverage, the
most appropriate shape is a saddle-shaped pattern in which the
minimum gain pattern must be accrued at (6 = 90) to reduce
the EIRP of vertical line component while higher gain values
are needed to compensate the higher path loss at the near-edge
regions on the ground. Fig. 3 indicates the saddle-shaped array
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Fig. 4. Widebeam array pattern calculating for phase values predicted by
GBT.



Array Elements

Fig. 5. 3D normalised radiation pattern factor in dB of (a) three-beam, (b) five-beam, (c) saddle-shaped beam, (d) widebeam, (e) boresight pattern for ; =0

,and dynamic range of 60 dB.

TABLE I
PREDICTED 16 PHASE VALUES FOR DIFFERENT RADIATION PATTERNS.

Saddle-Shaped Beam Pattern = WideBeam Array Pattern

0 0
136.77605927 184.76658412
273.55211855 309.52055325
411.77337706 500.89647463
547.10423709 645.04110651
686.28896177 803.8512703
883.54675412 1120.85281386
439.64520644 666.78612754
439.64520644 666.78612754
883.54675412 1120.85281386
686.28896177 803.8512703
547.10423709 645.04110651
411.77337706 500.89647463
273.55211855 309.52055325
136.77605927 184.76658412

0 0

Estimated Phases | Three-Beam Pattern  Five-Beam Pattern

Y1 0 0

g 142.32847184 143.33452399
3 281.99939286 282.62453362
(o 435.69848803 475.69848803
Y5 562.63272243 561.77552221
e 719.28436561 720.10224530
7 801.60312986 891.60312986
g 436.89813568 496.89813568
g 436.99478245 496.99513568
P10 801.74963177 891.74312986
P11 719.32898648 720.11392745
P12 562.87651446 561.63986522
P13 435.37910201 475.37910201
P14 281.42939179 282.91291166
P15 142.52491657 143.84732378
Y16 0 0

pattern while the relative phase values are estimated by GBT.

C. Broadcasting Application

With broadcast transmissions, the same message is received
by all users distributed in a spacious area, such as auditoriums,
stadiums, shopping malls and working offices, the antenna
with the semi-omnidirectional radiation is usually preferred.
In addition to broadcast applications, a beam with wide
beamwidth and stable gain is also very useful for the unicast
beam training. Here, the aim is to estimate 16 phase values
in such a way that widebeam pattern with stable gain would
be achieved. By using GBT, 16 phase values are estimated
and widebeam pattern is generated with stable gain over
100 degrees. Fig. 4 shows this widebeam pattern with slight
variation in the gain.

Table I presents the estimated 16 phases for different
scenarios. To ease understanding, 3D normalized PFs over
47 steradians are presented in Fig. 5 in spherical coordinates.
Each radiation pattern is normalized to its own maximum and
Figs. 1 to 4 are the 2D views with § = 90,0 < ¢ < 180
cut of their respective 3Ds. Fig. 5 (a) and (b) are 3D view
of the multicast/unicast scenario presented in Fig. 3 and 4,
respectively. Fig. 5(c) is a saddle-shaped beam pattern which is
the most suitable pattern for UAVs while Fig. 5(d) is widebeam
pattern suitable for the broadcasting scenario. The radiation PF
of the equally phase/amplitude distributed array is illustrated
in Fig. 5(e) as a reference for comparison.



IV. CONCLUSION

A linear phased array antenna was synthesised by phase-
only approach with the ML technique. A 16 x 1 equally
weighted-amplitude phased array antenna with half lambda
element spacing was synthesized to obtain targeted beam
patterns for different mmWave applications. For the first time
multi-output GBT technique is applied to estimate 16 phase
values to form different specific beam patterns. The phase
tapering approach enable us to have a different beam patterns
for various 5G use-case scenarios. It is worth mentioning that
this method is applicable for all linear array geometry with
arbitrary number of radiator elements.
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