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Abstract—Distributed applications require novel solutions to tackle
problems that arise due to the scarcity of resources such as bandwidth,
memory and processing power. One of these challenges is seen in
distributed data management. The challenge is the two part problem
of ensuring that the content is valid when accessed and updating it
immediately when changed. This is especially difficult when considering
p2p-based distributed online social networks, which aim to build reliable,
secure social networking platforms on top of often unreliable and unse-
cure devices. In this paper, we propose three selection strategies, random,
trend and social score, for a social caching mechanism. They consider
the social interaction patterns in the social network. We implement and
evaluate them in a DHT-based distributed online social networks called
LibreSocial and show that the social score is the best strategy. Further we
implement the social caching solution and also show that when used in
combination with the existing caching solution almost all requests can be
serviced via cache while retaining the consistency of data during updates.

I. INTRODUCTION

Online social networks have revolutionized how users commu-
nicate with each other and share content as well as information.
As a consequence, there has been a rapid growth in the amount
of information that is available online, as well as the volume of
content that users upload into the various social media platforms.
The obvious downside to this phenomenal increase in shared content
and the connections initiated is seen in the growing concerns raised
regarding the privacy of personal information and the ownership of
uploaded content as well as the high costs of scaling the network.
These concerns are a direct result of the use of centrally managed
systems by the online social network (OSN) system providers. The
system providers essentially own all the content uploaded to their
servers, including private information and in many cases utilize this
information to generate an income by selling it to third parties.
As a solution to these concerns, distributed online social networks
(DOSNs) have been proposed. A distributed online social network
is designed with the goal of ensuring that the OSN operates in a
distributed fashion with minimal or no central control. This design
offers three key benefits over the centralized OSNs: a) general
reduction on the operational costs as most resources are provided by
the users; b) possibility for implementing better user-oriented privacy
control; and c) innovative development [1] as more resources, such
as communication and storage, are availed via the users.

The gains realized in offering solution to mitigate the privacy and
scaling concerns of centralized OSNs by the DOSNs are met by
challenges in the actual design and deployment of the DOSNs. One
of these challenges is the management of social content or data in a
distributed environment [2] which can also be viewed as the problem
of scalable dissemination of social updates [3]. “Social data” or
“social update” is basically all the data that is exchanged among
the users (profile information, relationships, community memberships

and so on) and the generated content (comments, messages, posts,
images and so on) [2], [3]. While a content delivery network (CDN) is
used in a centralized network to help reduce the load on the network,
the selection of a good social content delivery strategy can effectively
achieve load reduction on the content storing nodes. One method of
handling the dissemination of this social data is the use of social
replication/caching of the data. Social caching differs from distributed
caching [4] and dynamic data replication [5] on several points [6]:
social network topology shows non-trivial clustering and positive
degree correlation [7], social cache selection is social-relationship
driven, and social caches only cache updates for friends to ensure a
predictive pre-loading and one-hop communication.

In this paper, we propose a social caching mechanism for a
P2P-based DOSN application called LibreSocial (previously called
LifeSocial.KOM [8]–[11]) with the aim of reducing the load on the
content storing nodes. We propose three caching selection strategies
called random algorithm, trend algorithm and social-score algorithm,
and compare the performance of each of these selection strategies.
The social-score algorithm is designed to utilize the social graph
while taking into account the various centrality measures within a
nodes ego network. We show that the social-score selection strategy
outperforms the others based on the cache hit ratio. Further, we
evaluate the overall performance of the network taking into account
four instances, that is, no cache, default cache, social cache and social
cache plus default cache. The results show that the network gives the
best values when the default and social cache are enabled together.

II. RELATED WORK

There have been several ways in which DOSNs have been clas-
sified such as based on the decentralized data model [12], privacy
and security considerations [13]–[15], and design decisions such as
storage, access control and interaction [16]. These classifications,
though comprehensive do not provide insightful information about
how data management in terms of handling social data is performed
in DOSNs. Probably the best comprehensive study on social data
management in DOSN is given in [2] in which DOSNs are classified
into three groups, namely DHT-based, social overlay (SO) based and
external resource-based DOSNs.

DHT-based DOSNs, such as DECENT [17], Cachet [18], and
LibreSocial [8]–[11], are characterized by an overlay that relies on a
distributed hash table (DHT), which is build through all participating
peers and provides a key-value storage as well as ID-based routing.
The DHT usually is used for storing the social content and also
offers indexing services. On the other hand, for social overlay (SO)
based DOSNs, the social overlay is a network of logical connection
between pairs of nodes that correspond to their friendship relations,
and they also exploit the DHT for indexing services. An examples
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Fig. 1. Screenshots of LibreSocial

of a SO-based DOSN is DiDuSoNet [19]. Finally, external resource-
based DOSNs like Diaspora (https://diasporafoundation.org) and Vis-
á-vis [20], are set up through a federation of private web serves and
thus are a compromise between centralized servers and completely
decentralized solutions.

The appropriate solutions that help in ensuring reliable decentral-
ized data management services for DOSNs are a great necessity
that must always be kept in mind. However, it requires handling
two challenges associated with are data availability/persistence and
information diffusion [2]. In the context of this work , we discuss
these two points in detail and give a summary on privacy.

A. Data availability

This challenge entails the persistence of publicly accessible data
in a distributed environment for which several techniques such as
distributed dynamic data replication [5], erasure codes [21] and
caching [4] are proposed. However these traditional approaches do
not work well for DOSNs. Thus, suitable solutions in DOSNs can
be divided based on two considerations, external resource-based
strategies and replica selection strategies [2].

In external resource-based DOSNs, the data availability is guar-
anteed by utilizing some external resource management service such
as cloud-based storage services, or even hybrid solutions that entail
distributed storage augmented with cloud services. Cadros [22] is
an example of a DOSN that uses cloud assisted data replication.
Replication requires the design of a replica selection strategy to
guarantee availability and the strategies can be separated into two
general groups, replication in the DHT (untrusted nodes) and repli-
cation on trusted nodes. In replication in the DHT (untrusted nodes),
replication of stored content is handled by the underlying DHT
overlay, therefore the social network has no control whatsoever of
the replica placement. In LibreSocial the content stored in the DHT
is encrypted and a sophisticated access control scheme is applied,
thus the data storage nodes do not have to be trusted. On the other
hand, replication on trusted nodes does not depend on the overlay
replication mechanisms. Replica placement is controlled by the social
network, where each node selects a suitable nearby replica node
based on some calculated measurements. Two key aspects must be
accounted for in this replication strategy. The first aspect is that nodes
can go offline at any time which can affect persistent storage. This can
be handled by analysis of online behavior of the nodes. The second
aspect is how to gauge the trust between nodes so that data can be
exchanged. This can be solved by inclusion of encryption as well as
determination of social strengths that peers have with one another

based on factors such as number of common friends or number of
actual interactions between each other.

B. Information diffusion

The second challenge to consider is information diffusion. This
covers the possibilities available in efficient access of needed infor-
mation. There, costs have to be taken into account in term of factors
such as network bandwidth, response times and so on, while ensuring
data consistency. In the case of DOSNs, this challenge relates to the
update dissemination process wherein updates to a user’s data are
made available to all interested nodes [2]. The update dissemination
process can fall into three classes, request-reply, active dissemination
and hybrid approaches

Request-reply approaches are based on the notion that, if data
availability is guaranteed, all available content can be accessed
by simply making a request for it. The node responsible for the
content will then reply by availing the requested content to the
requester and in case the owner of the content is offline, replica
nodes will give a response. This approach is seen in DOSNs such as
PeerSoN, DECENT, SocialCDN [3], Vegas and LibreSocial. Active
dissemination approaches may be viewed as a form of network
flooding common in unstructured P2P networks but the distribution of
the updates is limited using mechanisms such as gossip protocols like
rumor mongering and anti-entropy [23], or based measures such as
weighted ego betweenness centrality (WEBC) [24], social interaction
behavior [25] and so on, to ascertain that only the nodes that require
the update receive it. Examples of DOSNs that use this approach
include DiDuSoNet. The last class, hybrid approaches, the DOSNs
implement a combination of request-reply and active dissemination
approaches. This is seen in Cachet [18].

III. DATA MANAGEMENT IN LIBRESOCIAL

LibreSocial, previously LifeSocial.KOM [8]–[11], is a DOSN
designed based on a P2P framework model, hence relies on a DHT for
its underlying functionality. Screenshots of LibreSocial are presented
in 1. LibreSocial is designed using (a heavily modified) FreePastry
(http://www.freepastry.org/FreePastry), an open source implementa-
tion of Pastry [26] which includes PAST [27], a persistent storage
utility that manages data replication. PAST relies on FreePastry
for routing, and hence LibreSocial performs replication within the
structure of the DHT. LibreSocial’s architecture has been previously
discussed. We focus here primarily on how LibreSocial achieves data
management, and specifically its storage structure.

A. Storage structure of LibreSocial

In Fig. 2, LibreSocial’s data management structure is shown.
In addition to the use of (a heavily secured and extended) PAST
for persistence storage, three other components are included for
efficient data storage, retrieval and dissemination: Storage Dispatcher,
Message Dispatcher, and Information Cache. The Storage Dispatcher
provides an interface to interact with the data stored in the overlay
network via PAST. It provides additional functionality not previously
available in PAST, in particular, the abilities to update data, to remove
data and all security elements. The Message Dispatcher is useful
in handling system messages and specific events triggered by users
such as sending, receiving and replying to friend requests. Therefore
messages sent using the Message Dispatcher must entail a receiving
user account along with a payload. When a message arrives via the
Message Dispatcher, the user receives a notification. In case the user
is offline, this message is stored persistently in the network.

The Information Cache provides a caching mechanisms for Li-
breSocial in addition to PAST’s internal caching mechanism. It is

2

https://diasporafoundation.org
http://www.freepastry.org/FreePastry


Fig. 2. LibreSocial’s architecture Fig. 3. With social cache extension

designed on top of both the Storage Dispatcher and the Message
Dispatcher, building a single layer responsible for data and message
access and dissemination for the OSN application. Messages are
accessed via a hash map in accordance to the OSN plugins that
the messages are intended for or coming from. It hides the delays
and complexities due to the asynchronous nature of the system by
providing the needed content if available in cache and requesting it
otherwise. The data management process for a node is as follows:

• First time request from plugins, cache miss: The Information
Cache sends a request to the Storage Dispatcher which performs
an overlay lookup. Once retrieved, the content is sent to the
Information Cache which stores it in the local cache storage,
before forwarding it to the requesting plugin. Cached content is
valid for a fixed amount of time.

• Consequent requests, cache hit/miss: A lookup is performed in
the local cache. If available and valid, it is sent to the requesting
plugin. If unavailable or not valid, a request is sent to the overlay.
The received content is updated to the local cache before being
delivered it to the requesting plugin.

• Cache management: In case the local cache has reached its
maximum limit, some of the cache content is deleted based on
a “Least Recently Used” (LRU) strategy.

• Adding of new content: When new content is added by a plugin,
the Information Cache first adds it to the local cache before
forwarding it to PAST for persistent storage in the network.

LibreSocial thus utilizes replication in the DHT for data availability
and the request-reply approach for information diffusion. The request-
reply approach is efficient for DHT-based DOSNs but can result in
high network traffic due to recurring overlay lookups (for the same
content). Also, in view of the Information Cache freshness, the value
set for cache freshness can cause regular overlay lookups if selected
too short. Thus to tackle this, we propose introducing a social cache
that employs update dissemination that ensures (relevant) cache data
is synchronized after it is updated. In the next section, we review
two DOSNs, Cachet and DiDuSoNet, to gather insight into a possible
social caching solution.

B. Cachet vs DiDuSoNet

Cachet [18] performs replication in the DHT and uses both
reply-request and active dissemination approaches for information
diffusion. Cachet implements social caching using a pull-push based

gossip algorithm in which a new joining node pulls content from
online nodes while a node that generates an update pushes it to
other online nodes. Attribute-based encryption is used to prevent
unauthorized data exchanges from the caches when pulling content.
However, in Cachet, the social contact selection algorithm tends to
select all online users in a continuous fashion rather than dynamically
selecting a few contacts. This can be achieved easily by collecting
information on node interactions by analyzing the social graph
structure formed by the social connections but this is not possible
in DHT-based DOSNs such as Cachet due to the network topology.

In [24], an epidemic protocol for spreading social updates is
suggested, with the links between nodes based on the social inter-
actions. The protocol uses an egocentric social measure to approxi-
mate Betweenness Centrality called the Weighted Ego Betweenness
Centrality (WEBC) that exploits a weighted graph with the weights
referring to the tie strengths between the nodes. Thus nodes with
higher interactions have a higher value of WEBC. This concept is
used in DiDuSoNet. DiDuSoNet [19] is a SO-based DOSN that
does replication on trusted nodes with the DHT providing indexing
services, while relying on request-reply for information diffusion.
Unlike Cachet, DiDuSoNet does not include an advanced caching
mechanism but describes a very effective trusted nodes selection
mechanisms that makes use of Dunbar-numbers [28], [29] to build
an ego network for each user (ego) in the network, in which a an
ego’s network is composed of the trusted nodes. Dunbar’s research
on real-life social interactions pointed to the ability of a single person
actively maintaining an average of 150 social relationships, referred to
as alters, at a given time, which is referred to as the Dunbar number.
Further, [30] show that these 150 alters can be divided based on level
of closeness around the node into four level such that and each outer
layers including the preceding layer, hence 5, 15, 50 and 150. Using
social interaction analysis based on the epidemic protocol in [24] to
generate the tie strengths, a choice of alters to store the replicas can
be made. This way the selection of friends to replicate content done.

IV. A SOCIAL CACHING MECHANISM FOR LIBRESOCIAL

The fundamental structure of LibreSocial’s design based on a DHT
overlay ensures reliability, scalability and fault-tolerance. Although
LibreSocial assumes no trust among the nodes, not even among
“friends”, it implements key security features that can allow us to
develop a social cache structure within the framework, which contains
content from nodes that are considered friends hence maintain
privacy. Fig. 3 show the proposed social cache integrated into the
Information Cache. This placement is informed by the fact that
the Information Cache interacts directly with the OSN plugins and
therefore would provide a platform for the social cache. We now have
to define the social updates, handle lookup requests and selection of
suitable users to subscribe to based on social interaction.

A. Social updates

In LibreSocial the cached data is not actively re-synchronized with
the original data, hence cached data consistency is not guaranteed but
the maximum age of the data is limited. By use of social updates
we can actively disseminate changed content to selected users for the
case. Once they would request the content (as predicted) it will be
already available locally. Performing social updates is characterized
by two aspects: detection and distribution of content changes, and
receiving and storing the updates. We consider each aspect carefully
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Fig. 4. Distribution of social updates Fig. 5. Receiving updates from subscribed channels Fig. 6. Lookup request using the
social cache

Algorithm 1: Information Cache Lookup
Input : storageKey, MUC List subscriptionChannels, updateLimit, selectionStrategy
Output: Subscripion list based on selection strategy
username← getUsername(storageKey); if selectionStrategy == random then

if username ∈ MUC List then
RandomSelectionStrategy(username)

endif
endif
else if selectionStrategy == trend then

if username ∈ MUC List then
numOfChannels← sizeOfList(subscriptionChannels)
if numO fChannels < updateLimit then

subscribe2Updates(username);
endif
else

TrendSelectionStrategy(username)
endif

endif
endif
else if selectionStrategy == socialScore then

if username ∈ MUC List then
numOfChannels← sizeOfList(subscriptionChannels)
if numO fChannels < updateLimit then

subscribe2Updates(username);
endif
else

SocialScoreSelectionStrategy(username)
endif

endif
endif

1) Detection & distribution of content changes: The social update
includes content modified by its originator disseminated via a messag-
ing channel, called an instance channel, to a defined group of users
listening to that channel. Each social caching instance maintains a list
of selected users subscribed to the upcoming content modifications of
this instance called receiver list. When a user performs any content
modifications that updates the data in the DHT, the social cache also
transmits a social update for each of the subscribed users stored in its
receiver list. This process is illustrated in Fig. 4. This guarantees that
users subscribed to upcoming social updates of a particular user’s
instance channel receive content updates.

2) Receiving & storing update: Each social caching instance
handles its own subscriptions to other users’ instance channels.
This is shown in Fig. 5. The social cache listens to the instance
channels for updates and stores them into a data structure called
update channels. Every time a social update is populated through
one of this update channels, the social cache receives the stored
information from the update message and stores it in its own caching
data structure. The caching structure in the social cache is organized
in two-layers and is shown in figure 7. For each subscribed user,
received information is stored based on its StorageKey and every
social update contains information regarding the subscribed user and
the particular StorageKey. Previous information is overwritten by a
newly incoming social update. By this, availability and consistency
for all stored items in the social cache is assured.

The next issue of concern are now the extensions to the Information
Cache to support the lookup process using the received social updates
instead of performing overlay requests. This is considered next.

Fig. 7. Social cache with two nested
abstraction levels

Fig. 8. MUC list structure

B. Handling lookup requests

The social cache is integrated to work with the lookup process
within the Information Cache. Lookup requests contain the username
of the information requestor as well as the StorageKey of the needed
information. Upon receipt of a request from an OSN plugin, the
Information Caches first tries to locate the content in the caching
structure of the social cache by matching cached data against the
StorageKey. If available, the content is sent to the requesting plugin.
If the requested content is not found in the social cache, then a request
is issued to the DHT. This process is shown in Fig. 6.

Algorithm 2: Random Selection Strategy
Input : userName, subscriptionChannels, updateLimit
Output: Randomly selected replication list
numO fChannels ← sizeOfList(subscriptionChannels)
if numO fChannels < updateLimit then

subscribe2Updates (userName)
else

randomIndex ← getRandomNum(0, numO fChannels-1)
unsubscribe2Updates(subscriptionChannels[randomIndex])
subscribe2Updates(userName);

C. Selecting suitable users based on social interaction

The next major step is the selection strategy for subscriptions. The
selection strategy is the method used to filter and select a set of
suitable users to which an instance then subscribes to so as to receive
social updates. The suitable subscriptions should ideally be those that
will be accessed frequently in the future. Because the only way to
achieve a high ratio of cache hits for the social caching mechanism
is to ensure that data accessed in future mainly belongs to users that
are currently subscribed to. The selection of those users is a crucial
component of the social caching mechanism.

To make an informed decision on subscriptions to make, the social
cache monitors the interactions an instance makes with other users.
We further make the restriction that the social cache does not monitor
the application plugins but only keeps track of all incoming requests
received by the Information Cache from the OSN plugins without
consideration of the source of the final response to the request. For
every request, details on the user making the request, the type of
request and the timestamp of the request are stored. This information
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Algorithm 3: Trend Selection Strategy
Input : username, subscriptionChannels, updateLimit
Output: Replication list based on trends
trendArray← ∅
foreach user ∈ MUC List do

trendArray← number of requests by user
end
sortByDescending(trendArray)
newSubscriptions← ∅
i ← 0
while i < updateLimit do

newSubscriptions← trendArray[i]
i = i + 1

end
oldSubscriptions← ∅
oldSubscriptions← subscriptionChannels
foreach user ∈ (newSubscriptions ∩¬ oldSubscriptions ) do

subscribe2Updates(user)
end
foreach user ∈ (¬ newSubscriptions ∩ oldSubscriptions ) do

unsubscribe2Updates(user)
end
MUC List← ∅

is stored in a separate data structure called most-used-contacts (MUC)
list, from which suitable subscriptions are to be made. In Fig. 8 a
representation of such a MUC list is shown. This data is independent
from the actual social behavior of the users as viewed from the social
network, but it nevertheless offers information about how frequently
and in which way the own instance is interacting with other users.

The MUC list is the basis for the selection strategy that is used to
choose the most suitable users to subscribe to. The selection process
is triggered in fixed intervals called update intervals. Let m be a
predefined maximum number of tracked lookup requests and n the
number of parallel maintainable update channels with n < m. After
m lookups, n candidates are chosen who are deemed most suitable
to subscribe to during the next update interval. We propose three
selection strategies for these n candidates, namely random, trend,
and social score selection strategy which are further described. The
general Information Cache lookup is shown in Algorithm 1.

1) Random selection strategy: The random selection strategy is
shown in Algorithm 2. In this strategy, the user subscribes to every
new user who is tracked in lookup process until the limit of n
candidates to subscribe to is reached. If that limit is reached and a
new user is discovered through the MUC list process, a currently
subscribed user is randomly chosen to unsubscribe from and the
new subscription is added. In this selection strategy the MUC list
is only used to monitor known and unknown user. The stored lookup
information does not affect the selection’s decision in any way. An
unsubscription of a user also leads to the removal of this user from
the MUC list. Therefore the number of stored users in the MUC List
is the same as the currently maintained parallel subscriptions.

2) Trend selection strategy: The trend selection strategy is given
in Algorithm 3. It utilizes the MUC list in a different way from the
random selection strategy. Once the required m lookups are achieved,
the tracked users stored in the MUC list are ranked based on the
number of performed lookups from highest to lowest. Then the first
n users are chosen, which are assumed to have the most interaction
with the user over the current lookup interval. During the next lookup
interval, subscriptions are then sent to these n users as long as
there are no existing subscriptions. In case of existing subscriptions,
subscribed users not in the generated ranking are unsubscribed from.
Thereafter, the MUC List is cleared for the new lookup interval.

3) Social score selection strategy: The strategy is shown in
Algorithm 4. It follows the idea of using a SocialScore based on
Dunbar’s [28] social interaction model, as we sketched for DiDu-
SoNet [19]. While DiDuSoNet is based on a social overlay and
uses a mixture of overlay connection and interaction information to
determine trusted nodes for replication based on social closeness,
we adopt the mechanism in the scope of the DHT-based nature
of LibreSocial to express strong social connections between a user

Algorithm 4: Social Score Selection Strategy
Input : username, subscriptionChannels, updateLimit
Output: Replication list based on trends
socialScoreArray← ∅
foreach user ∈ MUC List do

socialScore ← calculateSocialScore(user)
socialScoreArray← socialScore

endfch
sortByDescending(socialScoreArray)
newSubscriptions← ∅
i ← 0
while i < updateLimit do

newSubscriptions ← socialScoreArray[i]
i = i + 1

end
oldSubscriptions← ∅
oldSubscriptions← subscriptionChannels
foreach user ∈ (newSubscriptions ∩¬ oldSubscriptions ) do

subscribe2Updates(user)
endfch
foreach user ∈ (¬ newSubscriptions ∩ oldSubscriptions ) do

unsubscribe2Updates(user)
endfch

with other users. This strategy deviates from the trend selection
strategy based on how the ranking of users in the MUC list during
the subscription is done, in addition to not clearing the MUC
list during a new lookup interval. When the lookup interval of m
lookups is reached, for each user in the MUC list a social score
is calculated. The social score for a user x is calculated as shown
in Equation 1. It is based on the value of the TieStrength and the
MediumInteractionLength (MIL) where α and β are weights that are
defined by the users based on relevance given to each criteria.

SocialScoreLS(x) = α ∗ TieStrength(x) + β ∗MIL(x) (1)

The TieStrength as defined by [19] is a numerical value that helps
to define the relationship between two users and can be calculating
by considering factors such as frequency of contact between users,
number of likes, posts, tags, comments and so on [30]. It is obtained
by summing all tracked interactions for a user x divided by the total
amount of all monitored interactions I so as to normalize it based on
the total number of interactions by user x.

TieStrength(x) =

n∈I(x)∑
i=1

weight(interactioni)

|I|

(2)

The metric MIL, shown in Equation 3, is the average duration of
interactions between two users and is introduced in place of the
ranking of users done for the trend selection strategy. It is calculated
by taking the medium time span between all tracked interactions for
a user x and in relation to the time period between the first recorded
interaction and the current timestamp available for user x at the time
of the calculation.

MIL(x) =

n∑
i=1

[
(Ti(x)−Ti−1(x))

n−1

]
Tnow − T0(x)

(3)

By combining the values of TieStrength and MIL it is now possible to
obtain a relation between the number of interactions against length of
interactions for every monitored user. Hence, the SocialScoreLS ranks
a user with more frequent interactions over a longer period of time
higher, than a user with fewer interactions and shorter period. This
mechanism ensures consistent cache entries, takes into account the
social component of an OSN, dynamically adopts to changes of users
preferences, and is fully working without undermining the existing
processes of the given application.

Nevertheless, there are some special cases in which the social
caching mechanism has conceptual weaknesses or limits. Those
weaknesses and limits need to be considered and can be solved by
additional processes which are discussed in the following.
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D. Addressing constraints in social caching

With the combination of the proposed concepts of social updates,
the tracking of interactions by the MUC list, and the selection
of subscriptions by selection strategies, we have created a caching
mechanism, which uses active dissemination of newly updated infor-
mation to a fixed set of users. This proactive caching is optional
and allows for a quicker, as local, resolving of requests at the
LibreSocial instances of friends. However, there are some cases in
which the social caching mechanism presents conceptual weaknesses
or limits which need to be addressed via additional processes which
we highlight.

1) Recurrent overlay requests for own content: Sometimes,
lookups may not result in cache hits thus leading to overlay requests,
negating the use of the social cache. This can occur when a user
does not have his/her friends’ content in the social cache, but may
need to also access this content often and may therefore result in
recurrent overlay requests. As changes to the content are initiated
by the OSN plugins which are on top of the social caching process,
we can easily store them in an additional data structure and serve
the requests from the social cache instead. With this data structure
we do not undermine the consistency of the stored information but
reduce the needed overlay requests by a significant amount.

2) Social bootstrapping: When one of the current subscription
hardly make changes to content, there will be no social updates
received from them. Since only social updates lead to cache entries,
requests for this user will always cause recurrent overlay request. To
tackle this case we introduced the concept of social bootstrapping.
Every time a subscription between users is performed, the user
receiving the subscription request sends a message to the subscriber
to inform him/her to receive social updates from that point onward.
The user being subscribed to then answers with all of their own
cached content which is inserted into the caching structure of the
subscribing user. The consistency of cached content is not affected
by this process, because a change in the initially sent content will
lead to a social update and which will overwrite the initial content.

3) Limitation of active subscription and Dunbar-number: So far
it has been assumed that there is a limitation placed on the number
of parallel active subscriptions without giving an actual limiting
value. As the social cache is designed as additional mechanism in a
given DHT-based overlay, the number of connections between users
needs to be restricted to prevent establishment of a second overlay.
This limiting value is based on the Dunbar number. Because the
maximum amount of maintainable contacts is at about 150 according
to Dunbar [28], we also restrict the MUC list to store information
for a maximum of 150 distinct users. When this limit is reached,
the users with the least rank according to the selection strategy is
removed to create space for newly monitored users.

V. EXPERIMENTAL SETUP

Evaluation of the social caching mechanism is the process of
benchmarking the overall performance of LibreSocial in the face of
the new mechanism. A benchmark is in general a tuple of quality
attributes (or properties) Q, metrics M, and test scenarios S [31].
In the discussion that follows, we describe each of these in view of
the social caching mechanism evaluation. Thereafter, the results are
presented and discussed.

A. Quality properties and metrics

While the metrics focus on only one attribute of the system or
mechanisms within the test scenario, the quality attributes generally
describe the same system or mechanism characteristics while taking
into account several metric measurements. Thus, with the use of a set

of quality metrics, useful statements about the general characteristics
can be made which describe the overall quality of the system. For
purposes of analyzing the social caching mechanism, the quality
properties chosen were performance and efficiency. This are further
considered.

1) Performance: This characterizes the system in terms of how
it responds, its throughput and the validity of the results as a
consequence of a particular workload within the bounds of the test
environment. In the case of the proposed social caching mechanism,
the overall objective is a reduction in overlay requests and an increase
in cache-based responses to the content requested. Thus by collecting
the overall requests against the answered requests from the cache
and from the overlay, we can calculate the metric cache hit ratio as
shown in Equation 4, which helps in quantifying the performance.
The higher the value of the cache hit ratio, the better the performance

Cache hit ratio =
Cache replies
Total replies

(4)

2) Efficiency: This is defined as the ratio between performance
and costs when considering a particular task that the system is un-
dertaking. For the proposed social caching mechanism, we distinguish
between two types, that is local efficiency and overall efficiency.

• Local efficiency: With this, we desire to find out how certain
resources in the local environment, in this case, the local node,
is utilized. As more content is to be stored locally in the cache,
it is expected that more system resource will be utilized. We
desire to ensure that the local resources are not used up, such
as memory as well as processing power. Therefore, we monitor
the number of objects cached in order to find out the required
memory to achieve a desired cache hit ratio, as well as the
average MUC list size, and the number of subscription and
unsubscription processes. Generally, smaller values observed in
all these metrics in combination are an indicator of good local
efficiency.

• Overlay efficiency: Since we are working in a distributed
environment, we would like to find out the overall workload
generated by the system and its effects on several aspects of the
system, and in particular, the overlay. Thus we keep track of the
number of messages in the overlay, the number of PAST and
Pastry data operations, and average storage used to maintain
overlay processes. Therefore, we observe different aspects of
the LibreSocial’s overlay like the number of messages passed
through it, the number of Pastry/PAST data operations, and the
amount of storage used to maintain the overlay processes in each
node.

Having established the quality properties and their relevant metrics,
we now consider the test scenario.

B. Test scenario

The test scenario constitutes the environment in which a test is
being undertaken, involving all the system parameters, the workload
parameters and the workload itself. Different test scenarios affect the
quality of the system in different ways. To effectively evaluate the
proposed social caching mechanism, we take into consideration the
number of interactions and the time interval occurring between these
interactions. This points to the need of a more realistic test scenario.
For this, three suitable OSN data sets were considered, which provide
realistic information about the number of interactions as well as time
intervals between interactions. The data sets are the Facebook’09
[32], SNAP’14 [33], and Facebook’14 [19]. These data sets are also
ego-based, contain information about the relations and are all based
in analysis of Facebook. The information that can be gleaned from
these data sets is shown in Table I.
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The SNAP’14 data set only include information about the friend
relations and the user profiles, and the data has no information about
interactions between users nor interaction times through timestamps
and hence is unsuitable. The Facebook’14 data set provides informa-
tion about friend relations and different types of interactions (such
as wall posts, likes, tagged photos) as well as relevant timestamp
indicating time of interactions. Unfortunately due to privacy concerns,
this data set could not be available at the time of testing. Therefore,
Facebook’09 data was chosen, as it was available and fulfills the need
for a data set that reveals information about friend connections be-
tween users, interactions between the users as well as the timestamps
for the interactions. The Facebook’09 data set is further analyzed
so as to obtain relevant real world statistical information, shown in
Table II, that would be useful in designing the test scenario.

From these values, we downsampled the experimental setup from
870 days a few days. The downsampling of this information enables
the evaluation of the caching approaches in smaller time frames
without losing the usage characteristics gathered from the data set.
Our downsampling approach is shown in Equation 5

sampledInterval(x) =
dataSetExperimentTime
newExperimentTime ∗ x

(5)

The sampledInterval(x) is the downsampled time period be-
tween an friend request or a wall post, where x represents
the actual value calculated from the Facebook’09 data set. The
dataSetExperimentTime is the whole time the original experiment
has run, while newExperimentTime expresses the time on which the
data is to be downsampled to. This way, we can select a fixed number
of 25 friends while ensuring the time span between new interactions
and friend request remains relative to the analyzed Facebook’09 data
set. This helps attaining a similar utilization of user interactions in
our test scenarios in comparison to the overall time period of the
Facebook’09 experiment.

There are two test scenarios that are considered, each focusing on
a different aspect.

• Comparing selection strategies: In this paper, we propose three
cache selection strategies. We would like to find out which
is the most suitable strategy considering all quality aspects.
Therefore, for this test, the laboratory setup involved 64 Libre-
Social instances on 8 distinct machines having similar hardware
and operating system, Debian Linux. Each machine had 8
LibreSocial instances. We use a downsampled test scenario from
the Facebook’09 data set which runs for 6 hours. For all tests
only the social cache is enabled, but not the current caching
mechanism. The test is for each of the three selection strategies,
random, trend, and social score. For the parallel social update
channels we choose the number of 15 simultaneously used
channels, according to the Dunbar number, as well as a total
MUC list size of 150 monitored users. The social bootstrapping
functionality is enabled and the update interval is set to 50
seconds. A summary of the test setup can be found in Table III.

• Comparing caching approaches: We use the same parameters
shown in Table III. However, in this case, the test scenario runs
for 2 days and thus the interaction and friend request intervals
were downsampled to 2 days. Four tests are performed consider-
ing the following settings, caching completely disabled, current
caching only enabled (LibreSocial before social caching), social
caching only enabled and both current and social caching
enabled.

VI. RESULTS AND DISCUSSION

We now consider the results obtained from the experiments con-
ducted and analyze them for each test scenario in the following.

A. Comparing selection strategies

The selection strategies are evaluated and the results are tabulated
or graphed for comparison. The performance of each of the strategies
is shown in Table IV, the results for local efficiency and overall
efficiency are shown in Fig. 9. We discuss them in detail.

1) Performance: From the values tabulated in Table IV, we
calculate the cache hit ratio and compare the three selection strategies’
performance. The cache hit ratio ranges between 94.9% and 92.4%,
which are very good values, as more than 92% of the overlay lookups
related to data requests have been saved. While the random selection
strategy shows the highest cache ratio and the social score selection
strategy has the lowest value, the values are very close.

2) Local efficiency: We now consider the local efficiency for the
three selection strategies.

• Social cache size: This is shown in Fig. 9a. The social score se-
lection strategy stores the smallest number of data objects within
the cache structure, closely followed by the trend algorithm, with
both algorithms maintaining roughly constant number of stored
objects throughout the whole experiment. With the random
selection strategy the social cache size keeps increasing. While
the number of stored cache objects may not be directly related
to the needed memory size to maintain them, we see that the
random selection strategy needs a much higher amount of local
resources to achieve similar performance as trend and social
score. Thus the latter two approaches are much more efficient.

• Number of subscription messages: Fig. 9b depicts the subscrip-
tions during the experiments. The social score strategy has the
least number of subscriptions hence fewer changes in the social
cache participants. This correlates very well with the cache size
results indicating high efficiency as it uses fewer local resources
to achieve a high performance rate as evidenced by the cache hit
ratio. While the trend strategy has more subscription messages
than the social score strategy, it also uses the local resources
well when we consider the social cache size. The results for
the random selection strategy correlate with observations for
the social cache size, having a large number of ever increasing
subscriptions messages.

•

• Average size of MUC list: This is depicted in Fig. 9c. The
social score and random strategies have almost similar values
throughout. A low MUC list number can be seen as equivalent
to a smaller amount of local resources used by the social cache
and therefore a better local efficiency. In comparison, the size
of the MUC list for the trend strategy is constantly increasing
contrary to expectations. This may need further investigation and
a possible error may be due to the monitoring process rather than
the actual MUC list structure.

Thus in view of the results gathered in analyzing the local
efficiency, it can be inferred that overall, the social score strategy
is the preferred choice over trend and random selection strategies
as it attains a very high performance of 92.4% cache hits against a
drastically lower costs at the local node.

3) Overlay efficiency: We analyze the overall efficiency of the
selection strategies by considering the following overlay aspects.

• Overlay data load generated: Fig. 9d shows the overall amount
of data objects sent in the Pastry overlay for each selection
strategy. Social score and trend selection strategies seem to
have similar values of data sent until the second phase of
friend requests is introduced to the system at about 257 minutes
of the experiment. Then the trend strategy produces less data
transactions than the social score strategy. The random selection
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TABLE I
AVAILABLE DATA SETS WITH RELEVANT FEATURES

Data set Year Available data
Timestamps Friends Interactions Profile

Facebook’09 2009 3 3 3

SNAP’14 2014 3 3

Facebook’14 2014 3 3 3 ?

TABLE II
AVAILABLE FEATURES IN FACEBOOK’09

DATA SET

Total # of egos 60102
Total # of alters 1545690
Average # of alters 25.7177
Average TS/new friend request 36.7332 days
Average TS/new interaction 43.0402 days
Experiment time span 869.458 days

TABLE III
EXPERIMENTAL PARAMETERS AND

CONDITIONS

Test Environment LibreSocial instances 64
Physical machines 8

Application settings Social update channels 15
MUC list size 150
Update interval 50 sec.
Social bootstrapping enabled

Duration of Experiment Selection strategies 6 hours
Caching approaches 2 days

TABLE IV
ANSWERED REQUESTS COMPARISON BASED

ON SELECTION STRATEGIES

Strategy

Requests answered Cache
hit ratio

Cache Overlay Total
Random 635663 33032 669476 0.949
Trend 387253 26987 414971 0.933
Social
Score

1054618 85355 1140900 0.924

TABLE V
DISTRIBUTION OF REQUEST RESPONSES

Cache
setup

Request responses
Cache
hit ratioCache Overlay Total

Current Social
Current 3427562 197264 3626229 0.945
Social 5170354 918365 6090445 0.849
Current
+Social

786123 4606187 44299 5437792 0.992

TABLE VI
CACHE SIZES AND RESPONSES/ITEM COMPARED

Cache
setup

Items in cache Response
/ item

Current Social Total
Current 200674 — 200674 17.0802
Social — 584968 584968 8.8386
Current
+Social

50474 889148 939622 5.7401

strategy generates a higher amount of traffic due to overlay
requests.

• Average memory consumed per instance: The results presented
in Fig. 9e are helpful in understanding the memory utilization
for a single instance. For each instance, it can be seen that,
depending on the selection strategy, average memory utilization
is between 250 and 400 MB. Social score strategy has the
least memory utilization followed very closely by the trend
strategy, while the random selection strategy has the highest
consumption of memory. In addition, it can be seen that the two
times when friend requests occur have a considerable impact
on the memory usage. The sudden sharp increases observed
close to the end of the experiment is due to lookup request for
unknown user leading to additional or change of subscriptions.
The defined limit of parallel subscription channels therefore
translates to a trade off between memory consumption and
additional subscriptions for social updates.

• Messages at the MessageDispatcher: Focus here is on the mes-
sages produced at the overlay due to registration, updating, and
bootstrapping processes of the social cache. The results can be
seen in Fig. 9f in view of the MessageDispatcher messages. We
see that the social score selection strategy generates the highest
number of messages followed by the random strategy and
finally the trend strategy. However, it is worth noting that more
messages due to registration, updating and social bootstrapping
is not a equivalent to a higher resource consumption, but can be
an indicator for that. One reason for producing more messages
may be the higher amount of total processed lookup request in
the social score strategy, seen at the beginning of this evaluation.

In summary, the social score again shows the lowest costs in terms
of data transfer and used memory, but produces more messages over
the MessageDispatcher. The trend selection strategy shows a similar
pattern as the social score strategy albeit having slightly higher values
for the data transfer and memory consumption but with the least
messages observed a the MessageDispatcher. The random selection
strategy, may be considered to have poor efficiency when considering
the data transferred and the memory consumed without consideration
for the messages generated.

B. Comparing caching approaches

From the results obtained in comparing the selection strategies,
based on a comparison of the performance, local efficiency and
overall efficiency, the most efficient selection strategy is the social
score selection strategy. Therefore, in the test scenarios that we

conduct to compare the caching strategies, the social score strategy is
used. Before discussing the results of Figures 9g-9i, it is important to
note that the tests without any cache solution generally failed quarter
way during the experimental period due to internal errors generated
in Pastry. Nevertheless, we include the results for comparison to show
their influence on the data storage costs. We now discuss the results
obtained from the cache comparison tests.

1) Performance: Once again, the cache hit ratio is used to get the
effectiveness of the cache mechanism when requests were sent by
an instance. The results are given in Table V for three experiments,
current (i.e. Pastry internal) cache only, the (new) social cache only,
and both caches in combination. With the social cache only, we reach
a cache hit ratio of 84.9%, which is nearly 10% less than the current
cache (94.5%). Also the total amount of performed requests is much
higher with the social cache only as compared to the current cache
only, with 918,365 lookups compared to 197,264 lookups. However,
when the two caching solutions are used in combination, a cache hit
ratio of 99.2% is observed which outperforms the current caching
solution by nearly 5%. In this scenario, the current caching solution
is accessed when the social cache does not answer the requests and
therefore the current cache shows fewer cache hits in comparison
to the social cache when in combination. The social cache in this
case responds to nearly 85% of the cache answered requests. It can
thus be seen that the combination of both caching approaches leads
to a more efficient a solution than having the two caching solutions
separately.

2) Local efficiency: We now look at the use of local resources for
the three scenarios to set the performance in relation to utilization
of the local system and therefore measure their efficiency. Thus we
focus on the number of stored items for each of the different caching
structures. In Table VI the number of objects in the cache for each
test scenarios as well as the ratio of requests per item is shown. The
number of items stored in the current cache alone as well as in the
social cache solution alone are much fewer than when the two caches
combined. Comparing the current cache alone to the social cache
alone, the current cache stores less than 50% of the items in the social
cache while initiating about twice as many cache responses per items
(17 and 9 respectively). Thus, the current cache appears to use the
local resources more efficiently by achieving a higher cache hit ratio
with fewer items in cache. However, we have to contend with twice as
many lookups. The combination of both caches is accompanied by a
drastic increase in the cached items (almost five times as much as the
current caching only) but an equally significant drop in the number of
cache responses per item (thrice as much as current cache only). It is
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(b) Social cache registration messages
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(c) Average MUC list size/instance
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(d) Data from the overlay
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(f) Messages at MessageDispatcher
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Fig. 9. Evaluation results of the local efficiency (resource utilization) and overall system efficiency

also observable, as expected, that there are much fewer items stored
in the current cache as in the social cache. This is explained by the
hierarchy and arrangement of the caches. The lower count of items in
the current cache indicates a higher coverage of lookups responded
to by the social cache. Therefore it appears that in order to achieve
a high performance as indicated by the hit ratio, the trade-off is a
higher storage capability as indicated by the number of items stored
by the combined solution local resource usage can be determined
when it comes to use both caches at the same time.

3) Overlay efficiency: Finally, we analyze the impact of the
caching mechanisms in terms of generated workload at the overlay.

• Data transferred: Fig. 9g shows the amount of data transferred
and monitored in the Pastry layer of LibreSocial. The current
caching solution causes more data transfer to occur at the overlay
than the social caching solution. This may be due to the need to
keep the data refreshed as a result of the validity time in cache
for the current caching solution. There is a higher data transfer
for the combined caching solution in comparison indicating
higher bandwidth utilization. This is as both caches are operating
simultaneously resulting in an addition on the communication
payload and the needed lookup requests at the overlay.

• Average memory consumed per instance: This is illustrated in
Fig. 9h. The current cache and social cache when used separately
consume similar amount of memory. For the combined caching
approach, there is a similar trend until the second group of friend
requests are made at about the 2200th minute of the experiment.
Thereafter, the memory usage increases slightly in comparison
to the other solutions.

• Messages at MessageDispatcher: The results are shown in
Fig. 9i. The social cache alone generates the fewest messages
to the overlay and the current cache alone. It also has a
higher number of messages, which indicates that not actively
sharing content updates, as done by the current cache, results
in the need for the system to exchange more messages with

other system components. The combination of the two solutions
caches has the highest amount of messages. We assume that the
simultaneously use of both solutions tend result in a summing
effect on resource consumption.

In summary based on the results of overlay efficiency, the evalua-
tion shows that the social cache has the least resource consumption
as compared to the current caching approach. However, the combined
approach results in the highest overlay load. By combining both
efficiency qualities with the examined performances results, this
evaluation in general shows that when the social cache is used alone,
it has a lower cache hit ratio hence lower performance rating, while
also consuming the most local resources in form of the managed
caching structure and the corresponding need of memory to store it
at a single instance. However, at the overlay level the social cache
shows slightly better results in the need of data and message transfer
as well as memory usage.

The comparison on the current cache solution and the combination
of the social cache and the current cache shows, that in terms of
performance, this combination reaches by far the best cache hit ratio
and can reduce the overlay request to 0.8% of the total used lookups
in the Information Cache. This performance advantages comes with
the trade off of a higher load and resources consumption at the local
level as well as in the overlay. It is also important to notice, that the
use of the social cache ensures the consistency of the cached and used
information through the social update mechanism. This consideration
can not be guaranteed in the current cache mechanism.

VII. CONCLUSION

The use of a social caching mechanism presents several advantages
but comes with several trade offs that must be put into consideration.
The use of the social interactions to actively select where to repli-
cate data in combination with an active dissemination strategy for
information diffusion makes for a good solution to ensure that the
data is always up to date. We present in this paper three selection
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strategies, random, trend and social score, and show that the social
score strategy is the best solution for active dissemination of content.
Using LibreSocial as our testing platform, we have implemented a
social caching mechanism on top of the existing request-reply caching
mechanism and compared the performance and efficiency of the two
solutions as well as the combination of the two. The combination of
the two caching solutions gave the best performance as recorded by
the cache hit ratio value but with a compromise on the local as well as
overall resources. For the user it seems to be of higher value to have
a very low delay in the user interface and having instant presentation
of social network elements he desires. For that it seems reasonable
to apply such a combined social and conventional caching approach
leading to a higher user satisfaction. The corresponding higher load
in the networking and storage utilization is of lower relevance, as
long as other services run on the computer are not disturbed. Thus,
our proposed approach presents a clear benefit to the user.
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