
Proportionally Fair approach for Tor’s Circuits
Scheduling

Lamiaa Basyoni∗, Aiman Erbad‡, Amr Mohamed†, Ahmed Refaey§¶, Mohsen Guizani†
∗Kindi Center for Computing Research, Qatar University, Qatar.

†Computer Science and Engineering Department, Qatar University, Qatar.
‡College of Science and Engineering, Hamad Bin Khalifa University, Qatar.

§Manhattan College, NY, USA.
¶Western University, ON, Canada.

Abstract—The number of users adopting Tor to protect their
online privacy is increasing rapidly. With a limited number
of volunteered relays in the network, the number of clients’
connections sharing the same relays is increasing to the extent
that it is starting to affect the performance. Recently, Tor’s
resource allocation among circuits has been studied as one
cause of poor Tor network performance. In this paper, we
propose two scheduling approaches that guarantee proportional
fairness between circuits that are sharing the same connection.
In our evaluation, we show that the average-rate-base scheduler
allocates Tor’s resources in an optimal fair scheme, increasing the
total throughput achieved by Tor’s relays. However, our second
proposed approach, an optimization-based scheduler, maintains
acceptable fairness while reducing the latency experienced by
Tor’s clients.

I. INTRODUCTION

Tor is one of the most widely adopted low-latency
anonymity communication networks. Over the past decade,
more Internet users have employed Tor to preserve their online
privacy. In 2019, Tor’s users exceeded 3 millions [1]. Tor’s net-
work consists of several relays provided and run by volunteers.
The total number of relays in 2019 was slightly over 6000.
With this massive increase in traffic load, Tor experienced poor
performance due to the increased congestion as well as the low
relay-to-client ratio [2]. The effect of the relay-to-client ratio
on Tor’s performance comes from the fact that Tor multiplexes
multiple circuits over the same TCP connection.Tor’s client
increase has resulted in an even bigger increase in the number
of circuits. Meanwhile, volunteered relays have not increased
at a matching rate, therefore, amplifying the issue of circuit
scheduling. In the following section, Tor’s queuing design and
the route packets deploy through a relay is explained.

A. Traffic Handling in Tor

Tor’s network is an overlay network operating on top of the
public internet. This overlay network consists of several relays
called Onion Routers (ORs) controlled by volunteers. The
volunteered resources assigned to each relay vary remarkably,
and there is no central authority to control it, which has an
impact on the overall performance of the network. Tor provides
anonymity by building a virtual path from the client to the

destination, called a circuit. A circuit typically consists of
three hops (relays) and carries the client’s TCP-based traffic
after adding application-layer encryption for more security.
Each pair of communicating relays maintain a single TCP
connection over which multiple circuits are multiplexed [3].
Data units sent over Tor’s circuits are called cells with a
fixed length of 512 bytes. The path of the cells within a
Tor relay is depicted in figure 1. In this figure, the tor relay
is assumed to be communicating with three other relays,
hence three TCP/TLS connections are maintained. Received
Packets are first stored in the Operating System’s (OS’s) socket
kernel buffer (SKB), and then handled by the kernel’s queuing
discipline and copied to Tor’s application-level connection
buffer where they are accumulated into a cell. Each Tor relay
maintains a separate queue for each circuit. Upon the receipt
of an incoming cell, Tor redirects it to the corresponding
circuit queue. Multiple circuits could be multiplexed over the
same connection between two relays, hence, incoming cells in
one input buffer can be assigned to different circuit queues.
Likewise, cells from different circuit queues can be written to
the same output buffer of the connection to the next relay on
the path [4].

Fig. 1. Tor’s OR Queuing Architecture

Tor utilizes circuit scheduling methods to select a circuit
queue and copy the cells within. If a connection is writable
and the room is available in the Output buffer these copied
cells are placed into the output buffer connection. The
original circuit scheduling approach Tor used was round-
robin selection from active circuits. However, this technique
does not consider the type of traffic carried by the circuit,
which affects the QoS delivered to the clients. In the effort of
improving Tor’s performance, the work of [5] was included978-1-7281-5628-6/20/$31.00 ©2020 IEEE

ar
X

iv
:2

01
1.

07
76

1v
1

 [
cs

.N
I]

 1
6

N
ov

 2
02

0

in Tor’s implementation since version 0.2.4.x-stable. The
work done in [6] introduced further improvements and was
integrated and configured to be used in Tor as of version
0.3.2.9.
To communicate with the underlying OS kernel, Tor uses
libevent [7]. In the kernel, TCP connections are represented
as sockets and identified with file descriptors unique for each
socket. Tor registers these file descriptors with libevent to
asynchronously notify Tor via callbacks about the status of
these sockets once they are readable or writable. Libevent
updates Tor about the sockets’ status sequentially, one socket
at a time. Once Tor is notified of a writable socket, it chooses
from the corresponding connection’s output buffer.

Various proposals have been made to enhance the poor
performance of the current protocol. Issues addressed by
performance-enhancing proposals include the circuit path
selection methods [8, 9, 10], congestion and flow control
[11, 12, 13], and circuit scheduling [5, 6]. In addition to that,
the increase in Tor’s users induced a different research direc-
tion with the interest of measuring and analyzing Tor’s network
[14, 15, 16]. Results from these studies showed that while
interactive web browsing is the main contributor to Tor traffic,
bulk downloading application, such as BitTorrent, consumes
an unfair share of the Tor’s network bandwidth. Consequently,
the importance of providing low latency to clients is a focus of
Tor, which is hindered by handling web and bulk connections
equally. Moreover, there has been a recent increase in media
streaming applications and these applications do not tolerate
high latency. Increasing the throughput of the network and
maintaining fairness to clients while considering the Quality-
of-Service (QoS) requirements are usually contradicting goals
that require a carefully designed scheduling regime.
In this paper, we address the problem of fairness in Tor’s cur-
rent circuit scheduling techniques and propose a proportionally
fair scheduling approach based on the traffic type and QoS
requirements. Moreover, we propose an optimization-based
approach to maximize the total throughput of Tor’s relay.

The contribution of the proposed work can be summarized
as follows:

• Proposing a proportionally fair scheduling approach
based on the average writing rate of the circuits.

• Proposing an optimization-based scheduling approach
using the basic proportional fairness formulation.

• Evaluating the two proposed approaches against currently
used methods.

The rest of the paper is organized as follows. Section II
presents a review of the conducted research related to our
work. In section III, we discuss the main components of the
proposed approach. Section IV depicts the formulation of the
optimization problem. Performance of the proposed approach
is discussed in section V. Section VI presents the conclusion
and future directions of our research.

II. RELATED WORK

There is a considerable amount of research work available
with the aim to improve Tor’s performance. However, the
approaches considering Tor’s circuit scheduling and traffic
control are the most closely related to the work presented in
this paper.
Tang and Goldberg in [5] introduced a scheduling algorithm
for Tor’s circuits that implements the concept of Exponential
Weighted Moving Average (EWMA). The EWMA algorithm
uses the activity of the circuit as an indicator of the circuit traf-
fic type. Interactive web browsing is usually bursty while cir-
cuits transferring bulk downloads are most often busy circuits,
the algorithm then assigns higher priority for web circuits
over bulk circuits. The EWMA scheduler showed promising
results and was integrated into Tor’s implementation, however,
further experiments revealed that within specific conditions
the EWMA scheduler would affect the overall performance of
Tor’s network [17]. Similarly, the authors of [18] proposed a
machine learning-based approach to classify Tor’s circuit and
decide on the QoS requirements for each circuit type. The
described classifier uses a threshold for the number of circuits
established over the connection. The connections with more
than two circuits are considered to be a bulk connection and are
assigned a lower priority, otherwise, the connection is a web
connection with a higher priority. Based on the classification
results of this classifier, the entry guard can adjust the sched-
uler to improve the performance and the service delivered to
the users. PCTCP [19] follows a different approach by de-
multiplexing the circuits and assigning a separate TCP connec-
tion for each circuit. The authors of [20] proposed Torchestra
a solution that combines the previously mentioned proposals.
Torchestra uses the EWMA classification to categorize either
a web or bulk circuit type. Then it maintains two separate TCP
connections between every two communicating relays, one
connection for web circuits and the other for bulk circuits. In
[6], the authors introduced Kernel Informed Socket Transport
(KIST) to reduce congestion in Tor’s network. KIST uses a
timer event to collect information from the kernel regarding
the writable sockets, once the timer is out Tor starts flushing
data to the kernel. However, in this case, Tor can choose
data cells to write from all the circuits’ queues. Moreover,
KIST applies a maximum write limit for the connection to
avoid flooding the kernel and causing long queuing delays. In
[21], the authors proposed a scheduling technique, in which
Tor starts by constructing several circuits over low-bandwidth
relays. The relay then dynamically allocates cells over the
maintained circuits.
In [22] Alsabah, et al, presented N23 an ATM-like algorithm
that improves Tor’s flow and congestion control mechanisms.
N23 allows Tor relays to add direct limits on their queue sizes
and use back-pressure for congestion control, which helps
to eliminate the overhead delays and memory consumption.
Another back-pressure-base algorithm for controlling Tor’s
flow was proposed in [12]. In their work, a customized
transport layer was designed using latency-based congestion

control. The authors introduced a reliability feedback mech-
anism as an ACK message upon the receipt of a cell. The
reliability feedback was implemented in the application layer,
which makes it easier to control cell dropping if needed.
Algorithms presented in this paper are also inspired by work
in improving the quality of video streaming using adaptive and
fair scheduling of traffic [23] [24].

III. SYSTEM MODEL

Fig. 2. The system model of the proposed optimization-based approach

The proposed optimization-based circuit scheduler is illus-
trated in figure 2. The input to the optimizer is the system state
data, namely the circuit queue and connection buffer state, as
well as the kernel socket state using Libevent notifications. The
input data is periodically read from the system. The optimizer
then searches for the optimal scheme to fairly allocate buffer
slots for all active circuits mapped to a particular connection
in a fair way. The output of the optimizer is formulated as a
decision for circuit scheduling.

A. Fairness

In the presented framework, allocating the resources of a Tor
relay is attempted, with a special focus on both the connection
buffer space and the kernel socket buffer space. A key aspect
of network resource allocation is how fairly it is done to
all clients or circuits in our system. The two most widely
employed fairness algorithms are Proportional Fairness and
Max-min Fairness. Max-min fairness attempts to allocate the
resources equally by maximizing the minimum allocation rate
in the network [25]. On the other hand, proportional fairness
tries to reach a good trade-off between the network throughput
and fairness [26] [27]. In our proposed framework we adopt
a weighted proportional fairness approach where we consider
the type of the circuit as weight values reflecting the priority
of each circuit type.

B. Classification of Circuits Traffic

There are several classification techniques discussed in the
literature that are you used to identify the type of traffic
carried by Tor circuits. [18] uses a threshold for the total
number of circuits multiplexed on the same connection as
an indicator of the traffic type. In [15], a more accurate,
yet more invasive, classification technique is implemented
using deep packet inspection and identify the traffic type
by the port number from the packet header. However, the
classification used by Tang and Goldberg in [5] is simple and
is based on the understanding of the behavior of web browsing
traffic compared to bulk downloads. Since this method is
integrated and implemented in Tor, EWMA as the base for
our classification of Tor’s circuits will be used.

C. Optimization

In complex domains, where the optimization problem can
not be described in a linear form, convex optimization is
considered to be a suitable method for optimally solving such
a problem. Convex optimization has been applied in many
domains, such as control, signal processing, and machine
learning [28]. Convex optimization problems that are bounded
by certain limitations derived from the system rules are solved
using the concept of disciplined convex programming. The
proposed optimizer utilizes CVX, which is a generic solver
used for convex optimization [29].

IV. PROPOSED SCHEDULERS

At each time step, a decision is required on the selected
circuit queues and the number of cells to be flushed from
these queues. The decision is based on the availability of
buffer space as well as the QoS requirement for each circuit
traffic type. Tor’s overlay network can be represented using the
well-known network graph representation D(N,E), where N
is a set of nodes (Tor ORs), and E is a set of edges (OR-
to-OR connections). At each node (OR) several circuits are
maintained, each circuit is assigned to a connection based on
its routing information. We will be refereeing to the set of
circuits maintained by each OR as C. For a circuit c ∈ C,
there is an edge bound to this circuit which means it’s located
on this circuit’s path, and we represent this relation as e 3 c.
Each relay maintains a separate queue for each circuit. All
concurrent circuits that should be routed to the same OR will
be sharing the same connection buffer.
The logical end-to-end connections between the client and
destinations are called streams. These streams are carried
on Tor’s circuits. There are various types of stream traffic
which include: opening a web page, downloading a file, or
media streaming. The Quality of Service (QoS) parameters
vary according to the traffic type. Interactive and real-time
applications such as web browsing should be assigned a higher
priority, while bandwidth-consuming applications such as file
sharing applications are restrained. In our approach, we aim to
maximize the throughput of the relay while achieving weighted
proportional fairness for concurrent circuits corresponding to
a certain connection. The available capacity in a connection

buffer will be referred to as x We start by defining our target
utility function F :

F = total written packets/δt (1)

We will be representing the circuit queue size as ζ, and the
percentage of the circuit queue to be written to the connection
buffer as λ. The assignment of λ is constrained by the available
space in the connection buffer

C∑
i=1

λi ∗ ζi ≤ x (2)

For each circuit, we define circuit type y to be one of three
types: web, bulk, and streaming. We assign a weight for
circuits depending on their type and the number of waiting
packets in the queue γ, where γ= (α1*ζ) +(α2*y). Hence, for
each connection, the connection buffer can be represented by :

C∑
i=0

ζi ∗ γi ∗ λi (3)

The monitoring window for throughput is δt at each time
step. A summary of the symbols used in the problem formu-
lation is presented in table I. In the following, we explain the
details of the two proposed approaches.

A. Average Rate-based Proportionally Fair Scheduling
Inspired by the concept in [30] used for designing pro-

portional fair scheduler in communication networks through
assigning network resources in a multi-user network based on
users’ channel states, we propose a proportional fair scheduler
in Tor network through dividing OR connection amongst
different circuits using their queue state and circuit priority.
For each circuit, we consider the average of the previous
rate of packet writing. First, at every time step tj , we define
instantaneous rate for each circuit ri (∀ i ∈ C) :

ri(tj) =
ζi(tj) ∗ λi(tj)

δt
(4)

Next, we define the average rate for each circuit at tj as Ri(tj).

Ri(tj) =

∑j−1
k=1 ζi(tk) ∗ λi(tk)

tj−1
(5)

The proposed scheduling algorithm will try to allocate the
connection resources such that:

γ1 ∗
r1
R1
≈ γ2 ∗

r2
R2
≈ ≈ γC ∗

rC
RC

(6)

using the definition of r in (4), we can rewrite equation (6) as
follows :

λ1 ∗ ζ1
h1

≈ λ2 ∗ ζ2
h2

≈ ≈ λC ∗ ζC
hC

(7)

Where hi(tj) = δt∗Ri(tj)
γi

From (2) and (7), the algorithm can calculate λ as follows:

λi(tj) =
hi(tj) ∗ x

ζi(tj) ∗
∑C
i=1 hi(tj)

(8)

Symbols
δt Time elapsed between two observations
ζ Number of cells in the circuit queue
λ The percentage of the circuit queue to be flushed
y Circuit Type (web, bulk, and media streaming)
γ Circuit Priority
α Tuning Parameter (∈ (0,1))
x Connection Buffer Capacity

TABLE I
SYSTEM’S SYMBOLS

B. Optimization-based Proportionally Fair Scheduler

Our goal is to achieve proportional fairness while
considering the QoS requirements for different traffic
types by defining different weights. The utility function
U(f) = log(f) captures resource allocation according to
the criterion of proportional fairness [31] [32]. Using this
definition, we can rewrite the utility function from (1) as
follows:

F =

E∑
i=1

log(1 +
connBuffer

δt
) (9)

Using the formulation of connection buffer in equation (3),
the optimization problem can be formulated as follows:

maxλ =

C∑
j=0

log(1 +
ζj ∗ γj ∗ λj

δt
) (10)

s.t
∑
j λj ∗ ζj ≤ x

The objective function formulated in equation 10 is a con-
cave function. By definition, concave functions are considered
quasi-convex functions and an optimal solution can be found
using cvx solver.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We simulate a scenario in which Tor’s relay is assumed to
be maintaining a single connection on which a varying number
of circuits is multiplexed. In our experiment, we considered
three types of circuits.

1) Web circuits, with the highest priority, and we represent
it by generating bursty traffic of size in the range (4MB,
6MB) to reflect the average web page size [33].

2) Bulk circuits are represented by a continuously gener-
ated traffic, with average size > 50MB.

3) Media streaming circuits are also represented as contin-
uously generated traffic. However, the average size for
bulk traffic is normally larger than streaming. On the
other hand, media streaming application is assigned a
higher priority than bulk download applications, since
streaming applications do not tolerate long latency.

For comparison purposes, we implemented the circuit
scheduling method used in Tor, EWMA, to compare its
performance to our proposed scheduling approaches. EWMA
defines only two types of circuits, web, and bulk. Hence,

media streaming circuits are considered bulk circuits as
well. We evaluate three performance aspects of our system.
Total throughput the relay achieves using both schedulers.
Throughput is calculated as the total number of bytes written
within an observation window of time. Latency, which is
defined by the time needed to flush the entire circuit queue.
Finally, we measure how fair each scheduler is allocating the
resources among different types of circuits.

B. Results

To quantitatively judge a system to be fair or unfair, Jain,et
al, presented a measure of how fair a system is, this measure
is referred to as Jain’s Fairness Index [34]. Jain’s index can
be applied to any resource allocation scheme regardless of
the number of resources to be allocated. The value of the
index J ∈ (0, 1). Jain’s index is computed as follows: where
s is the share assigned to each user (circuit), and n is the
number of users (circuits)

J(x) =
(
∑n
i si)

2∑n
i s

2
i

(11)

A system that assigns the same share of resources to all
participants, circuits in Tor’s case, has a J-index of 1, which
means it is 100% fair. On the other hand, the system that favors
a specific set of circuits while neglecting others has a very low
fairness index. Figure 3 shows the fairness index measured
for the EWMA, the optimization-based, and the Average Rate-
based (AR-PF) schedulers. As the number of circuits increases,
the EWMA scheduler continues to favor the web circuits
over other circuit types. Since EWMA scheduler handles
streaming circuits the same way it handles bulk circuits, the
QoS delivered to this type of application is decreased. The
optimization-based scheduler’s fairness is affected directly
by the number of web circuits mapped to the connection.
However, in most cases, the optimization-based scheduler is
fairer to the other circuits than the EWMA scheduler. The
AR-PF scheduler achieves the best fairness compared to the
other two schedulers since it considers not only the priority of
the circuits but also the previously allocated resources to each
circuit.

In figure 4, it can be noticed that the total number of
packets flushed per millisecond using the AR-PF scheduler
is significantly greater than the throughput achieved by the
EWMA and optimization-based schedulers. Since the AR-
PF scheduler assigns fair share to all circuits, the aggregated
number of packet copied from all the circuits at a one-time
step is high.

Latency is an important measure to consider while evalu-
ating the performance of a network. In our experiment, we
measure the latency as the number of time steps required to
completely flush the circuit queue. The optimization-based
scheduler allocates a bigger share for web circuits which
helps to flush more packets out of its queues faster, yet it
does allocate smaller shares to other circuit types, unlike the
EWMA scheduler. In our evaluation, the optimization-based

Fig. 3. Jain’s Fairness Index

Fig. 4. Relay Throughput

scheduler was able to completely flush 80% of its circuits
queues within 150 milliseconds, while the AR-PF scheduler
takes around 400 milliseconds to flush only 50% of its circuit
queues. EWMA scheduler, on the other hand, takes more
than 800 milliseconds to flush 50% of the circuit queues as
illustrated in figure 5.

VI. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of circuit scheduling
in Tor’s network. We introduced two scheduling approaches,
an average-rate-based proportionally fair (AR-PF) scheduler,
and an optimization-based scheduler. The AR-PF scheduler
allocates the available resources to the concurrent circuits
considering not only the circuit type but also the previously
allocated resources to each circuit. This approach ensures that
all circuits receive a proportionally fair share of the resources.
In our experiment, the total throughput achieved by the relay
increased significantly using the AR-PF scheduler. The second
proposed approach is an optimization-based scheduler that
builds its allocation decision mainly on the circuit type, which
leads to a resources allocation scheme that is not as fair
as the AR-PF. However, the use of the optimization-based

Fig. 5. Latency Results

scheduler reduced the total time required to write the entire
circuit queue to the connection buffer. Hence, in the context of
finding an acceptable trade-off between providing a fair QoS
that serves the needs of different applications, and reducing
the system’s latency, our optimization-based scheduler can be
considered as a good solution. Our plan includes integrating
the proposed methods within Tor’s code to conduct more
realistic experiments with Tor-specific scenarios. We also plan
to test our methods using different transport designs, such as
UDP-based designs. Moreover, we plan to investigate other
possible techniques to solve the resource allocation problem.

VII. ACKNOWLEDGEMENT

This work was jointly supported by Qatar University and
the University of Western Ontario - IRCC [2020-003]. The
findings achieved herein are solely the responsibility of the
authors.

REFERENCES

[1] “Tor Metrics,” https://metrics.torproject.org/.
[2] R. Dingledine and S. J. Murdoch, “Performance Improvements on Tor

or , Why Tor is slow and what we ’ re going to do about it,” pp. 1–27,
2009.

[3] R. Dingledine, N. Mathewson, S. Murdoch, and P. Syverson, “Tor: The
Second-Generation Onion Router (2014 DRAFT v1),” Cl.Cam.Ac.Uk,
2014. [Online]. Available: http://www.cl.cam.ac.uk/{∼}sjm217/papers/
tor14design.pdf

[4] M. Alsabah and I. Goldberg, “Performance and Security Improvements
for Tor,” ACM Computing Surveys, vol. 49, no. 2, pp. 1–36,
2016. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2966278.
2946802

[5] C. Tang and I. Goldberg, “An Improved Algorithm for Tor Circuit
Scheduling,” Proceedings of the 17th ACM Conference onComputer and
Communications Security, pp. 329–339, 2010.

[6] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and P. Syverson,
“KISt: Kernel-informed socket transport for ToR,” ACM Transactions
on Privacy and Security, vol. 22, no. 1, pp. 1–37, 2018.

[7] “Libevent-an event notification library,” https://libevent.org/.
[8] M. Alsabah, K. Bauer, T. Elahi, and I. Goldberg, “The Path Less

Travelled : Overcoming Tor ’ s Bottlenecks with Multipaths,” Portal,
pp. 1–20, 2013.

[9] C. Wacek, H. Tan, M. Sherr, and K. Bauer, “An Empirical Evaluation
of Relay Selection in Tor,” NDss, 2013.

[10] M. Imani, M. Amirabadi, and M. Wright, “Modified relay selection and
circuit selection for faster Tor,” IET Communications, vol. 13, no. 17,
pp. 2723–2734, 2019.

[11] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. M. Voelker, “DefenestraTor: Throwing out windows in Tor,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6794
LNCS, pp. 134–154, 2011.

[12] F. Tschorsch, B. Scheuermann, I. Nsdi, and F. Tschorsch, “Mind the Gap
: Towards a Backpressure-Based Transport Protocol for the Tor Network
This paper is included in the Proceedings of the,” 2016.

[13] F. Fiedler, D. Christoph, F. Tschorsch, and S. Lucia, “PredicTor :
Predictive Congestion Control for the Tor Network,” 2020.

[14] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the tor network,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 5134 LNCS, pp.
63–76, 2008.

[15] A. Chaabane, P. Manils, and M. A. Kaafar, “Digging into Anonymous
Traffic : a deep analysis of the Tor anonymizing network,” 2010.

[16] R. Jansen and A. Johnson, “Safely Measuring Tor,” 2010.
[17] R. Jansen and N. Hopper, “Shadow : Running Tor in a Box for Accurate

and Efficient Experimentation.”
[18] M. AlSabah, K. Bauer, and I. Goldberg, “Enhancing Tor’s performance

using real-time traffic classification,” Proceedings of the 2012 ACM
conference on Computer and communications security - CCS ’12,
p. 73, 2012. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2382196.2382208

[19] M. AlSabah and I. Goldberg, “PCTCP: per-circuit TCP-over-
IPsec transport for anonymous communication overlay networks,”
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security - CCS ’13, pp. 349–360, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2508859.2516715

[20] D. G. Heninger. and N., “Torchestra: Reducing Interactive Traffic Delays
over Tor,” 2013.

[21] L. Yang and F. Li, “MTor: A multipath Tor routing beyond bandwidth
throttling,” 2015 IEEE Conference on Communications and NetworkSe-
curity, CNS 2015, pp. 479–487, 2015.

[22] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. M. Voelker, “Defenestrator: Throwing out windows in tor,” in In-
ternational Symposium on Privacy Enhancing Technologies Symposium.
Springer, 2011, pp. 134–154.

[23] A. Erbad, M. Tayarani Najaran, and C. Krasic, “Paceline: latency
management through adaptive output,” in Proceedings of the first annual
ACM SIGMM conference on Multimedia systems, 2010, pp. 181–192.

[24] A. Erbad and C. B. Krasic, “Sender-side buffers and the case for
multimedia adaptation,” Communications of the ACM, vol. 55, no. 12,
pp. 50–58, 2012.

[25] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

[26] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
1998.

[27] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[28] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[29] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[30] C. Wengerter, J. Ohlhorst, and A. G. E. von Elbwart, “Fairness and
throughput analysis for generalized proportional fair frequency schedul-
ing in ofdma,” in 2005 IEEE 61st vehicular technology conference,
vol. 3. IEEE, 2005, pp. 1903–1907.

[31] F. P. Kelly, A. K. Maulloo, D. K. H. Tan, F. P. Kelly, A. K. Maulloo,
and D. K. H. Tan, “Rate control for communication networks : shadow
prices , proportional fairness and stability,” vol. 5682, 2017.

[32] S. W. Cho and A. Goel, “Bandwidth allocation in networks: A single
dual update subroutine for multiple objectives,” Lecture Notes in Com-
puter Science, vol. 3405, pp. 28–41, 2005.

[33] “State of the web.” [Online]. Available: https://httparchive.org/reports/
state-of-the-web

https://metrics.torproject.org/
http://www.cl.cam.ac.uk/{~}sjm217/papers/tor14design.pdf
http://www.cl.cam.ac.uk/{~}sjm217/papers/tor14design.pdf
http://dl.acm.org/citation.cfm?doid=2966278.2946802
http://dl.acm.org/citation.cfm?doid=2966278.2946802
https://libevent.org/
http://dl.acm.org/citation.cfm?doid=2382196.2382208
http://dl.acm.org/citation.cfm?doid=2382196.2382208
http://dl.acm.org/citation.cfm?doid=2508859.2516715
https://httparchive.org/reports/state-of-the-web
https://httparchive.org/reports/state-of-the-web

[34] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

	I Introduction
	I-A Traffic Handling in Tor

	II Related Work
	III System Model
	III-A Fairness
	III-B Classification of Circuits Traffic
	III-C Optimization

	IV Proposed Schedulers
	IV-A Average Rate-based Proportionally Fair Scheduling
	IV-B Optimization-based Proportionally Fair Scheduler

	V Performance Evaluation
	V-A Experiment Setup
	V-B Results

	VI Conclusion and Future Work
	VII Acknowledgement
	References

