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Abstract—Imbalanced data occurs in a wide range of scenarios.
The skewed distribution of the target variable elicits bias in
machine learning algorithms. One of the popular methods to
combat imbalanced data is to artificially balance the data through
resampling. In this paper, we compare the efficacy of a recently
proposed kernel density estimation (KDE) sampling technique
in the context of artificial neural networks. We benchmark the
KDE sampling method against two base sampling techniques and
perform comparative experiments using 8 datasets and 3 neural
networks architectures. The results show that KDE sampling
produces the best performance on 6 out of 8 datasets. However,
it must be used with caution on image datasets. We conclude
that KDE sampling is capable of significantly improving the
performance of neural networks.

Index Terms—imbalanced data, KDE, neural networks, kernel
density estimation, deep learning, sampling

I. INTRODUCTION

Imbalanced data refers to skewed distribution of the target
variable in the dataset. It occurs in a range of fields including
medical diagnostics, cybersecurity, fraud detection, text cate-
gorization, and many others. Imbalanced data can cause bias
in machine learning classifiers [16]. Since the objective of a
classifier is to minimize the overall error rate it focuses on
correctly classifying the majority class subset at the expense
of the minority class. However, the minority class data is
often of more importance than the majority class set. For
instance, although only a minority of credit card transactions
data is fraudulent identifying such transactions is critical. A
commonly employed approach to combat imbalanced data is
resampling the original data. Concretely, oversampling the
minority set points is often used to achieve a balanced dataset.
In this paper, we analyze the effectiveness of a recently
proposed sampling technique based on KDE in the context
of artificial neural networks.

The KDE sampling is carried out by first estimating the un-
derlying distribution of the existing points and then generating
the new minority points from the estimated distribution. As
a result, KDE offers an effective and natural way to sample
new points. The KDE sampling was originally proposed in
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[5] where the authors demonstrated the effectiveness of the
sampling method on k-nearest neighbors, support vector ma-
chines, and multilayer perceptron classifiers. Our goal is to
conduct a more in-depth analysis of the performance of the
KDE sampling with neural networks.

We employ neural networks of various depths to analyze the
performance of the KDE sampling. We train and test the neural
networks on 8 different datasets from a range of applications.
We also employ two standard sampling approaches as bench-
marks against the KDE sampling. The results demonstrate
that the KDE sampling is effective in the majority of cases
achieving the highest overall F1-scores on 6 out of 8 datasets.
We conclude that the KDE method can be a valuable tool
in dealing with imbalanced data when using neural network
classifiers.

II. LITERATURE SURVEY

Imbalanced data occurs in a range of machine learning
applications. In [3], the authors study various sampling tech-
niques in the context of cancer data. In [17], the authors use
generative adversarial networks (GAN) to balance machinery
vibrations data. GANs are applied to train and generate artifi-
cial readings of faulty machinery states. Sampling techniques
are evaluated in the context of software detection in [13]. The
authors of the study compare the performance of sampling
and cost sensitive approaches to imbalanced learning using
12 NASA datasets. Oversampling is used to balance traffic
incident data in [14]. The authors use SMOTE to preprocess
highway traffic dat to develop an accident predicting intelligent
model.

There exists a number of sampling approaches to deal
with imbalanced data. A survey of the existing sampling
methods can be found in [10]. Sampling approaches can be
grouped into two categories: undersampling and oversampling.
Undersampling involves sampling from the majority subset
to achieve the same size as the minority subset. In [12],
the authors propose two undersampling methods where the
majority points are divided into the same number of clusters
as the number of the minority points. In the first approach, the
new majority points are taken as the centers of the clusters
whereas in the second approach the new majority points are
taken as the nearest neighbors of the clusters. Oversampling
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involves generating new minority points to achieve the same
number as the majority set. One of the popular oversampling
methods SMOTE creates new points along the line segment
joining a pair of neighboring minority points [2]. More re-
cently, a Gamma distribution-based oversampling approach
was introduced in [6]. The authors generate the new points
along the straight line between two existing minority points
using the Gamma distribution. Oversampling for multiclass
data is explored in [8]. The authors propose to generate new
data samples in the regions of space with sparse mutual class
distribution.

Sampling has been used to address the issue of imbalanced
data in the context of neural networks. In [15], the authors
employed the SMOTE algorithm to balance the data before
using backpropagation neural network to analyze credit card
data. In [4], the author evaluate the performance of ROS and
RUS with deep learning in the context of Medicare fraud
detection.

III. METHODOLOGY

A. Sampling methods
KDE is a well-known nonparametric density estimator used

in number of applications [7], [9]. The KDE-based sampling
approach is based on estimating the underlying distribution
of the minority data. Given a set of existing minority points
x1, x2, ..., xn the underlying density distribution f can be
approximated by

f̃(x) =
1

n

n∑
i=1

Kh(x− xi), (1)

where K is the kernel function, h is the bandwidth parameter,
and Kh(t) = 1

hK( t
h ). The optimal bandwidth value can be

determined numerically through cross-validation. It is done
by applying a grid search method to find the value of h that
minimizes the sample mean integrated square error:

MISEn(h) =
1

n

n∑
i=1

(f̃(xi)− f(xi))
2. (2)

Default values of h exist under certain assumptions about
the underlying density function f . A standard approach to
calculating the optimal value of h is given by Scott’s rule:

h = n− 1
5 · s, (3)

where s is the sample standard deviation.
We benchmark the performance of KDE sampling against

two standard sampling techniques: random oversampling
(ROS) and random undersampling (RUS). The ROS technique
balances the data by randomly selecting with replacement from
the existing minority points. The main disadvantage of the
ROS is overfitting. Since the ROS selects points with replace-
ment it essentially replicates the minority set multiple times
creating points of high concentration. The RUS technique
randomly selects a subset of the majority set to match the
size of the minority set. The main disadvantage of the RUS is
the loss of information since only a portion of the available
data is utilized.

B. Experimental Data

We employ 8 different imbalanced datasets in our numerical
experiments. The datasets are available through the imblearn
library [11] or the UCI repository [1]. The details of the
datasets are provided in Table I. The imbalance ratio in the
datasets ranges from 9.3 : 1 to 42 : 1. The datasets include
a diverse areas of application including medical, meteorology,
computer vision, and others.

TABLE I: Details of the experimental datasets.

Name Ratio #Samples #Features

abalone 9.7:1 4177 10
letter img 26:1 20,000 16
libras move 14:1 360 90
mammography 42:1 11183 6
ozone level 34:1 2536 72
satimage 9.3:1 6435 36
spectrometer 11:1 531 93
wine quality 26:1 4898 11

C. Neural network classifiers

The performances of the KDE sampling and the benchmark
methods are tested on 3 different neural network architectures
with 1, 2, and 3 hidden layers. Deeper networks would be
redundant due to the relatively small size of the datasets used
in our experiments. The details of the three neural networks
are presented in Table II.

TABLE II: Details of the neural networks used in the experi-
ments.

Classifier Layer 1 Layer 2 Layer 3 Activation Optimizer

MLP-1 64 - - Relu, sigmoid
(output layer) RMSpropMLP-2 32 8 -

MLP-3 64 32 4

As noted earlier, the classifier performance on the minority
labeled data is often of far more importance than the majority
data. For instance, in medical diagnostics it is crucial to
identify the positive cases even if occasionally producing
false positive results. Similarly, in network intrusion detection
catching malicious attacks is the primary concern even if they
comprise only a small portion of network traffic. Therefore,
the accuracy on the minority set must play an important role
when measuring the performance of the sampling methods.
In our experiments, the performance of the neural networks
is measured with the macro average F1-score which is well
suited for imbalanced datasets. The macro average F1-score
is calculated as an equally weighted average F1-score of the
majority and minority labeled data

F macro
1 =

F major
1 + F minor

1

2
. (4)

As a result, it properly reflects the performance on the minority
set.



IV. RESULTS

The detailed results of the experiments are provided in
Figures 1-3. As can be seen from the figures, the KDE-
based approach outperforms the benchmark methods. The
KDE sampling performs particularly well on the abalone,
libras move, mammography and wine quality datasets. On the
other hand, it does not perform well on image recognition tasks
and the corresponding datasets letter image and satimage.

In the experiments using a 1-layer neural network, the KDE
sampling method performs well in all but two datasets (Figure
1). It achieves either the best or nearly the best results. The
only datasets with poor performance are the image datasets
letter image and satimage. In the abalone dataset, the KDE
sampling outperforms the benchmarks but lags behind the
original imbalanced dataset. In the experiments using a 2-
layer neural network, the KDE sampling method performs
well in all but one dataset (Figure 2). As above, it achieves
either the best or nearly the best results. The only dataset
with poor performance is the image dataset letter image. Note
that the performance is good on the second image dataset
satimage. The experiments with a 3-layer neural network
yield mixed results (Figure 3). The KDE sampling achieves
the best F1-score on the three datasets abalone, libras move
and ozone level. It is tied with the ROS method on the
spectrometer.
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Fig. 1: Macro average F1-score for MLP with 1 hidden layers.
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Fig. 2: Macro average F1-score for MLP with 2 hidden layers.
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Fig. 3: Macro average F1-score for MLP with 3 hidden layers.

To obtain the overall comparison of the sampling methods
we averaged the F1-scores for each dataset over the three
neural networks. A summary of the overall results is presented
in Table III. As shown in the table, the KDE sampling achieves
the best overall score on 6 out of 8 datasets and tied on
1 dataset. Furthermore, we observe that the KDE sampling
method performs poorly on the image datasets letter image
and satimage. The poor performance on the image datasets is
not surprising as the process of generating new image samples
must take into account the internal structure of image files.
Small changes in the values of an image file can easily result
in a nonsensical image. As a result the new samples would be
unhelpful.

TABLE III: Summary of averaged the F1-scores for each
dataset over the three neural networks.

Dataset imbalanced KDE ROS RUS

abalone 0.5400 0.6167 0.5800 0.5833
letter im 0.8667 0.8267 0.9100 0.7833
libras 0.8000 0.8800 0.8533 0.6767
mammo 0.6633 0.6933 0.6567 0.6233
ozone 0.5567 0.6267 0.6233 0.5500
satimage 0.7667 0.7233 0.7633 0.6967
wine 0.4900 0.6167 0.5967 0.5400
spectrometer 0.7533 0.9300 0.9300 0.8000

The KDE sampling algorithm outperforms the benchmark
methods due to a more natural approach to sampling. The RUS
method reduces the size of the majority set thereby losing
valuable information contained in the original set. The ROS
method essentially replicates the original minority set multiple
times leading to overfitting. The KDE method avoids the
above problems associated with the ROS and RUS methods. It
samples from the estimated distribution providing an organic
sampling procedure.

It is worth noting that, in theory, ROS and RUS are compu-
tationally more efficient than KDE sampling. Since ROS and
RUS perform simple random sampling of the original dataset
the associated algorithmic complexity is very small. The KDE
sampling requires estimation of the underlying distribution
prior to sampling which requires additional time. Modern
implementations of the KDE have linear complexity O(n).



V. CONCLUSION

Imbalanced data occurs in a range of machine learning
applications. Sampling is one of the effective approaches to
deal with imbalanced data. In this paper, we analyzed the
performance of a recently proposed KDE-based sampling
method in the context of neural network classifiers. The
performance of KDE sampling was compared against two
standard benchmark sampling methods as well as the original
imbalanced dataset. The results show that KDE sampling
achieves the best overall score in 6 of the 8 datasets used
in the experiments. However, KDE sampling performs poorly
on image data. The underperformance is explained by the
internal structure on image files that require a more nuanced
approach. We concluded that the KDE sampling offers a viable
tool to deal with imbalanced data when using neural network
classifiers.
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