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Abstract—The network slicing concept (probably one of the
most important innovation brought by 5G) promises significant
flexibility and autonomy for network management. Thanks to
its main key features, heavily relying on the NFV and the SDN
technologies, new communication services can be designed and
deployed much faster than before. However, maintaining the
reliability level of conventional networks remains a major open
problem. One of its consequences is that the monitoring of the
network infrastructure dedicated to this class of services is an
essential challenge, which we address in this paper.

In this paper we describe a new monitoring procedure,
customized for NFV-based network infrastructures deployed with
the Service Function Chaining (SFC) mechanism, one of the
most important key enablers for NFV networks. Our solution
allows the deployment of efficient probing schemes that guarantee
the localization of multiple simultaneously failed nodes with a
minimum cost. This is formulated as a graph matching problem
and solved with a max-flow approach. Simulations show that
our solution localizes the failed nodes with a small rate of false
positives and false negatives.

I. INTRODUCTION

The emergence of 5G networks brings the promises of
enhanced services with higher throughput, massive connec-
tivity, and lower latency. But the main breakthrough of the
technology is network slicing, the capacity of partitioning
the network resources totally relying on software, providing
specific virtual networks to each client in a very flexible way.
This allows to offer customised network infrastructures to
satisfy the different requirements of the business offers.

The network virtualization concept aims to offer more
flexibility and scalability while decreasing the Capital Ex-
penditures (CAPEX) and Operating Expenses (OPEX) of
the network infrastructure. The classic network functions are
implemented as a software that can be carried out over
generic hardware. Thus, network resources can be dynam-
ically allocated and automatically scaled according to the
clients’ demands. This flexibility allows managing efficiently
network resources by hosting multiple services with varied
requirements on the same physical infrastructure. Network
virtualization technologies has thus continuously evolved, to
reach nowadays the modern concept of slices.

The VNFs composing the slices hosted by the NFV In-
frastructure (NFVI) will share the same set of resources and
they can be used by multiple services. These VNFs must
be executed in a specific order to provide those end-to-end
services. The concept of connecting multiple VNFs in an

ordered chain to compose an end-to-end service with specific
QoS requirements is known as Service Function Chaining
(SFC) [1]. The SFC mechanism is complementary to the NFV
forwarding graph concept since it enables the interconnection
of multiple virtual functions over different domains in a
dynamic and flexible way.

In this paper we propose to design a lightweight and
scalable probing solution based on end-to-end measurements.
Our methodology is particularly useful to detect problems in
NFV infrastructures hosting networks service chains. It can
be observed that it is always possible, in principle, to infer
the state of the intermediate nodes from end-to-end metrics
by taking advantage of the correlations created by the shared
nodes. However, there are some conditions about the network
topology and the collected measurements to be respected in
order to ensure accurate estimations.

The process of inferring node or link metrics from end-to-
end measurements is called network tomography [2]. Multiple
works have been proposed, essentially in the last two decades,
to solve this problem following different approaches. Most of
these works consider general network topologies and do not
consider the specificities of virtual networks infrastructures.
In this paper, we propose a tomography monitoring solution
that takes into consideration the particularities of the SFC
deployment mechanism. We take advantage of the previously
proposed works in network tomography for node failure detec-
tion and we adapt them for the characteristics of NFV-based
infrastructures.

The remainder of the paper is organized as follows. Sec-
tion II overviews the state-of-the-art on failed node localiza-
tion. Section III describes the context of our contributions and
the problem model formulation. Section IV, presents the main
components of our solution, namely the SFC probing designer
and the inference algorithm. Section V provides a description
of the performance evaluation method and the obtained results.
Finally, Section VI concludes the paper and outlines some
perspectives for future developments.

II. BACKGROUND AND RELATED WORK

In this section, we study the existing strategies to identify
faulty nodes in a network infrastructure with a special focus
on NFV network monitoring.

In [3], the authors propose a Machine Learning approach for
anomaly detection in virtual network functions. The proposed



solution includes three main functions: anticipate failures
by detecting the first signs of SLA violation, detecting the
SLA violation, and identifying the root cause. This tool can
help the network administrator to make efficient and fast
troubleshooting and take remediation actions like rebooting
a Virtual Machine (VM) or scaling the allocated resources.
The approach is based on supervised learning models and the
training dataset is built by monitoring data coming directly
from the VMs. A fault injection process is used to emulate
anomalies and provide abnormal states since the collected
data obviously represents mostly the normal state. Paper [4]
proposes another statistical learning solution for VNF anomaly
detection. The idea here is to collect metrics by continuously
monitoring the deployed VNFs and then predict the next values
using a regression model. Afterward, the predicted values are
compared to the reported ones in order to detect any deviation
in VNFs behavior.

In [5], the proposed solution tries to find the appropri-
ate positions of monitors and probing paths between them
enabling to cover a given network topology and, then, to
detect any misbehavior. The problem is formulated as an ILP
model, where the goal is to reduce the monitoring cost. The
problem is solved using a heuristic approach. An exact solution
was proposed before in [6] for the same problem, but the
methodology is intractable for large topologies.

Recently, some attention has been accorded to Boolean
network tomography. The main idea is to infer the state of
single points or links in a network from end-to-end Boolean
metrics. In [7] the authors introduce the application of Boolean
network tomography for node failure localization in a general
network topology. They first define an “identifiability” metric
to measure the maximum number of simultaneously failed
nodes in a given topology. Then, they give necessary and
sufficient conditions to localize failure points under different
probing schemes. In [8], the authors studied a similar problem.
The proposed solution gives some insights for the design of
monitoring strategies that maximize the number of identifiable
nodes under different probing scenarios. Finally, let us cite [9]
that studied the impact of topology properties on the maximal
identifiability. They establish a relation between the different
typologies classes (directed, undirected, trees, d-dimensional
grids, and bounded-degree graphs) and the identifiability of
Boolean metrics.

III. GENERAL CONTEXT AND PROBLEM FORMULATION
A. Service function chaining

The Service Function Chaining (SFC) is a mechanism
that enables connecting multiple network functions to create
an end-to-end service, taking advantage of the virtualization
techniques and the flexibility offered by SDNs. It is a key
enabler for NFV networks and provides a fast an efficient
tool for fast service deployment. Fig. 1 depicts the main
components of the SFC architecture. The first element in
the service chain is the Classifier which is responsible for
applying the traffic steering policy to match the coming flows
with the needed Service Functions (SFs) where the packets

can have specific processing. The SFs can be, for example, a
firewall or a Deep Packet Inspection (DPI). A Service Function
corresponds to a VNF (or to multiple connected VNFs) in
the NFV MANO architecture. Finally, the Service Function
Forwarder (SFF) is responsible for forwarding the traffic to the
SFs or to the next SFFs according to the SFC encapsulation
information. The path taken by a packet formed by the SFFs
and SFs is called the Service Function Path (SFP).

SF(FW)
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SF(NAT) SF(PROXY)

<
source
destination

Fig. 1: Network services chains deployed with the SFC mech-
anism and sharing the same VNFs.

B. Failure detection in NFV networks

Fig. 2 illustrates a simplified example of a virtual network
infrastructure deployed with the SFC mechanism, where the
deployed services share a set of VNF instances. For each
service, a tunnel is created between three VMs, where each
VM represents a VNF instance. The mapping of the created
services over the NFVI can look like the graph shown in Fig. 2.
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Fig. 2: Virtual Network Function Infrastructure example: The
service is composed of three VNFs. Each one is hosted by
multiple VMs. For each client, a tunnel is created between
three VMs to compose the service.
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If there are some failed nodes in the NFVI, efficient
troubleshooting to identify the failure root causes can be a
complex task. In such cases, the use of end-to-end metrics
can be a relevant alternative to enhance the efficiency of the
monitoring system. The misbehavior of a VNF can result from
memory leaks, disk access problems, network problems, heavy
workload, etc [3]. A failed node in the NFVI can lead to the
disruption of all the service flows passing through. Therefore,
we can take advantage of the correlated end-to-end collected
metrics to infer the state of intermediate nodes. However, there
are some required conditions to fulfill while designing the
monitoring system in order to ensure the efficiency of such
methods.



The efficiency of a tomography monitoring system can be
evaluated by its capacity to localize accurately the maximum
of simultaneously failed nodes. The scope of this paper is to
give a methodology to design efficient probing schemes to
monitor NFV networks deployed with the SFC mechanism.
Thus, the most important step is to determine the required
conditions to detect up to k simultaneous failed points in an
NFVI hosting multiple network services. The parameter k is
an input of the procedure that we will describe. Then, we shall
benefit from these conditions to design a monitoring strategy
for NFV networks.

C. Network model and notation

TABLE I: List of main used variables

variable description

N set of VNFs composing the service; N%: the i*" VNF
1% virtual network function instances representing N*
V]Z instance j of V*
Li; set of links between V* and V/
V, L set of VMs and set of links between them

P path set, P paths

G=W,L) network topology
F set of failed nodes; cardinality of F = F'

Tab. I summarizes the notation adopted in this paper. We
consider a network service decomposed into a set N =
{NL,...,NN} of N VNFs. To respond to many service
requests, the VNFs are instantiated over a set V of VMs.
We denote by V' the set of VMs where the VNF N is
instantiated. The cardinalities of ' and V* are denoted by V'
and V' respectively. The whole system represents the NFV
Infrastructure (NFVI).

The created service chains make that there is no connection
between VMs inside a same V¢ (no “vertical” links in the
picture of Fig. 2). Links only exist between VMs in V' and
Vitl fori=1,2,..., N — 1. Of course, every VM in V'’ has
at least a connection with another VM in Vit 1 < i< N—1
(if N > 2). We denote by L the set of all links (size L), and
by G the graph G = (V, L).

A node V} can be either in a failed state (or down) or in
a normal state (or up). We denote by X the Boolean vector
representing the states of all the nodes, thus a vector with
size V. The binary value 1 corresponds to the failed state
and O to the up state. Let us denote by p a path in the graph
corresponding to a chain of VNF instances composing the
service. It is represented by a Boolean vector having size V,
where component %, p(¢), is 1 if node 7 belongs to p, and to 0
otherwise. The state of a traffic path is up if all the nodes
composing it are up. Otherwise, it is a failed path. We denote
by Y the Boolean vector representing the paths’ states. The
goal is to estimate the states of the intermediate nodes from the
end-to-end path metrics. Let P denote the set of such paths,
with cardinality P, denoted p',p?,...,p". Let A denote the
Boolean matrix whose rows are the P path vectors. Thus,
A(i,j) is equal to 1 if node j belongs to path p’, and to 0
otherwise.

With this notation, between the nodes’ states in X and the
path states’ in Y, we have the relation

AOX =Y, (D

where ® denotes the Boolean matrix product. Y (), the state
on the rth path (row) is 0 if all the nodes composing it are
up, ie., Y(r) = \/}/:1(/1(7’,]') A X (j)). In next section, we
describe how to build a probing schemes that guarantees the
localization of a maximum number of faulty nodes.

IV. THE SFC PROBING SCHEME DESIGNER

This section presents the main components of our solution.
In the first subsection, we discuss about the tomography prob-
lem considered in the paper, that will make the connection with
our proposal that starts in Subsections B and C. Subsection D
discusses complexity issues.

A. Necessary and sufficient conditions for k-failures detection

The end-to-end paths start from a VM on the left side (in
the subset of nodes V'), and end on some VM on the right
side (in V). Let us call here blocks the N sets of nodes (or
VMs) V1, V2 ..., VN, Once the links built between the VMs
instantiating the VNFs that compose the considered network
service, we can monitor any path following any sequence of
nodes vy, vs, ..., vN, Where v; belongs to block Vi, provided
there is a link (belonging to some tunnel) from v; to v;41,
i=1,2,...,N —1, even if (v1,vs,...,vx) is not a tunnel
itself (that is, in Fig. 2, even if the links don’t have the same
color).

In the sequel, we were inspired by the developments made
in [7] where the problem of node failures detection is con-
sidered in a general setting and for an arbitrary network
topology. As in other works related to the failure of network
components (for instance, in fault tolerant design, as in [10]),
it is often useful to decompose the problem in the cases
where the number of failures is bounded by some integer k.
The failure of a node or a link is always an event having
a small probability, and the simultaneous failures of two or
more components is much smaller, even if the considered
events are not necessarily independent. So, we will organize
the discussion by considering as a global assumption that the
number of failures, here of node failures, is < k for some fixed
integer k > 1. Since we are in a Boolean domain, observe that
when a path is measured as up (value 0), we know that all its
nodes are necessarily up. Now, for the design of our approach
we focus on the following property: for a selected node v,
we consider the fact that for some path p through v, all nodes
excepting v are up. In that case, the state of p is the state of v:
if v is up, then all nodes in p are up and so is p, and when
v fails, then p fails as well. The next propositions provide
conditions under which this property holds.

Proposition 1 (Sufficient condition). Letr us assume that the
number of failed nodes is < k, for some integer k > 1. If for
all node v € V' its interior degree (for i > 2) and its exterior
degree (if © < N — 1) are both > k, then there exist a path p
containing v such that its state is the state of v. The interior



degree of a node denotes the number of incoming arcs and
the exterior degree is the number of outgoing arcs.

Proof. Say v € V' If i > 2, since v has at least k + 1
neighbors in V=1 and since there are at most k nodes
down, there is at least one of these neighbors up; let us
denote it by n;_;. In the same way, n;_; has at least one
neighbor up in V=2, and so on. The same reasoning is valid
when we go to subsets Vi1, Vit2 etc. So, we can build a
path p = (n1,n9,...,m;-1,v,Ni41,...,nN), where all nodes
except v are up. This means that the state of the path coincides
with the state of v: if v is up, p is up, and if the node is down,
p is down as well. O]

Proposition 2 (Necessary condition). Let us assume that the
number of failed nodes is < k, for some integer k > 1. A
necessary condition to have the property that for all node v
there exist a path p containing v such that p’s state is equal
to v’s state, is that for every node in V' its interior degree (for
i > 2) and its exterior degree (for i < N — 1) are both > k.

Proof. The proof is by contradiction. We will denote by
deg™ (v) the in-degree or interior degree of node v, and
by deg™ (v) its out-degree or exterior degree.

Consider first the case of v € V' for some i > 2, with
deg” (v) < k. The existence of path p passing through v
with all nodes up except possibly v is in contradiction with
previous assumption, because it can happen that all v’ € V=1
connected to v are down (this is because we can have up to k
failed nodes and we assumed that deg™ (v) < k). The case
of v € V' for some i < N — 1 with deg™ (v) < k is treated
exactly in the same way. O

Previous properties are related to more general ones in [7].
In that paper, the discussion covers arbitrary topologies and,
as a consequence, the development is more complex, requiring
other auxiliary concepts related to the problem. Here, our
specific architecture of the NFVI allows us to exhibit very
simple properties that lead to the procedures that we describe
in next subsection.

Let us denote by d the smallest degree in or out in graph G:
d = min{deg~ (v), deg™ (v),for all node v}. Observe that
the sufficient condition in Proposition 1 means that £k < d —1
and the necessary one in Proposition 2 means that £ < d.

B. Probing scheme design as a matching problem

After defining the conditions on the probing topology that
guarantee the localization of the failed nodes, this section
proposes an algorithm to build a topology with the minimum
number of links that respects these conditions. This simplifies
the monitoring operation and reduces the costs since less
bandwidth is used.

Let us consider two consecutive blocks V* and V! and
the links built from the first to the second, which we denote
by L;i+1. Consider the problem of selecting a subset of
these links in order to fulfil the sufficient condition given in
Proposition 1. In other words, we consider here that we can
take any existing link from any node in V? to any other node

-+» Flow capacity — Available link — Selected link

(b) Bipartite graph before
(a) Initial bipartite graph  rynning Max-Flow

PoSel

(c) Residual graph after ex- (d) Bipartite graph after
ecuting Max-Flow adding capacity to the arcs

R
CHENG S OG.
(e) Residual graph after second Max- ©

Flow (f) Bipartite result

Fig. 3: Matching algorithm illustration. The values on the
dotted arcs are capacities, either the initial ones, or the residual
ones after a Max-Flow execution. The arcs between blocks
have obviously capacity 1.

in V*1 and we want to select a subset of those satisfying the
sufficient condition. This means that we have chosen some k&
satisfying k < d—1 where d is defined considering all existing
links before this selection operation, and that in the given
graph, all degrees are > k + 1.

Previous selection operation between two sets is an instance
of a classical matching problem in graph theory, typically
solved using a Max-Flow technique. We will solve the problem
in this way. The algorithm steps are illustrated in Fig. 3 using
the case of k£ = 1.

The first step of the process is to add two “fictitious” nodes
to the two sets, named Source (57) and Sink (Sk), as illustrated
in Fig. 3b. The source Sr is connected to all the nodes in V*
with a flow capacity equal to £ + 1 (= 2 in the example),
and similarly for Sk and V**!. As typically done in matching
graph problems, the capacity of the links from V? to Vit! is 1.
This limits the number of links going in and out each node
to be no more than k£ + 1 which in turn enables to limit the
number of used links.

In the second step, we use a conventional Max-Flow
algorithm, like the Ford-Fulkerson or the Edmonds-Karp algo-
rithms [11] to find a maximal flow from Sr to Sk, which we
denote by ./\/l?z 41+ In the obtained flow, if we remove from
the graph the arcs where the flow function is 0, the degrees
calculated with the remaining arcs do not necessarily satisfy
the sufficient condition. In the example given in Fig. 3, where
we color in red the selected arcs (see Fig. 3c), the In-degree
of V;H and V§+1 is only 1, since the number of links going
out of V) and V) is limited to 2. We need more links from



and to these nodes.

To avoid such a situation, in the third step we add some
capacity to specific arcs as illustrated in Fig. 3d. For each
node v in V* where deg™ (v) < k+1, we add capacity to all the
arcs from the nodes in next(v) to the sink Sk, where next(v)
denotes the nodes in V! that receive arcs from v. Similarly,
for each node v in V! for which deg” (v) < k + 1, we
add capacity to all edges from the source Sr to the nodes
in prev(v), where prev(v) denotes the nodes in V' that send
arcs to v. We actually set the new capacity value of all these
arcs to oo since there is no risk to select new useless arcs
in L;;q1.

Then, in the fourth step illustrated in Fig. 3e, we compute
for a second time the MaxFlow between Sr and Sk. It is worth
noting that the arcs selected in the first call to the MaxFlow
algorithm (in the second step) cannot be reused. The obtained
maximum flow is denoted by /\/llll 11

This matching process is repeated for each two consecutive
blocks. The final obtained graph, denoted by M, comes from
composing the optimal matching obtained for each pair of
consecutive blocks. We will use this new graph, a partial graph
of the initial one (same nodes, part of the links) to localize up
to k failures in the considered network.

C. Probing paths selection

After designing the topology that guarantees the location
of failed nodes in the network infrastructure, an inference
algorithm is required to analyze the end-to-end measurements
collected on this topology and then estimate the state of each
intermediate node. For this purpose, we use an inference algo-
rithm called ESA [12] that calculates metrics on intermediate
nodes from end-to-end measurements. The state of the nodes
is given in the form of a probabilistic distribution that indicates
the probability of each possible value of the metric.

D. Complexity analysis

The computation complexity of the described process is
essentially determined by the Max-Flow algorithm. If we
denote by Ly, the average number of links between each
consecutive pair of sets V' and V**!, and by V,,,,, the average
number of vertices in each set V!, the complexity of the
Max-Flow algorithm (Edmonds-Karp for example) can be
approximated by O(Vinoy L2, ). It will be invoked twice. This
process is repeated N — 1 times, corresponding two each pair
of VNFs. Indeed, the global complexity of can be approxi-
mated by O(2NVinoyL2,,,)- As a result, the computing time

increases polynomially with L,,,, and linearly with the other
parameters Vo, and V.

V. EVALUATION
A. Methodology

Our solution allows to design a probing strategy enabling
to localize accurately a maximum number of failed nodes.
To evaluate the robustness of the designed slice topologies,
we proceed as follows. First, the graph G, which corresponds
to the NFVI topology, is randomly generated. Second, the
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Fig. 4: Failure probability estimations and confusion matrix
for 50 tests made with service chain A. The parameter k
is fixed to 1, which means that the topology is designed to
guarantee only the localization of only one failed node. In
the tests, we vary the number of simultaneously failed nodes
denoted, from 1 to 3.

matching algorithm is applied to select a minimum number
of links enabling the detection of up to a fixed and given
number k of failures upper-bounded by the min degree d.
Third, multiple samples of nodes states are simulated, and we
compute the end-to-end Boolean path states. The number of
simulated failures is varied to check the algorithm’s behavior
in different situations.

Finally, the inference algorithm estimates the node states
from end-to-end simulated measurements, and the estimations
are compared to the real states to evaluate the accuracy of the
monitoring system.

B. Results
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Fig. 5: Failure probability estimations and confusion matrix
for 50 tests made with service chain B. The parameter k is
equal to 1. We vary the number of failed nodes F' from 1 to 3.



Consider first the case of a network service chain A com-
posed of 3 VNFs. Each network function has between 4 and 5
instances. The connections between the two consecutive sets
of VNF instances are generated randomly. Each VNF instance
has around 3 connections with the previous and the next sets
of VNF instances. The matching algorithm selects a minimal
number of connections enabling the detection of up to k
simultaneous failed VMs, and £ is fixed to 1 in these tests.
Afterward, we simulate the node metrics as explained before.
We vary the number of generated node failures from 1 to 3.

Fig. 4 illustrates the probability dispersion and the confusion
matrix for the node states made with 50 tests. With only
one failure node, the monitoring system can localize them
accurately in all the tests. These results are expected since
the tested topology satisfies the sufficient condition for the
detection of a single failed node. Therefore the number of false
negatives and false positives is zero. However, this condition
is not respected when more than one failure are generated as
shown in the next tests, Fig. 4.

It is worth noting that if the sufficient condition for the
detection of k failures is not satisfied, the monitoring system
is still able to detect them if they occur. When the sufficient
condition is not fulfilled, what we can say is that one or more
situations (a combination of failed nodes) can exist where
the monitoring system is unable to identify the failures in a
deterministic way. The tests with 2 or 3 simultaneously failed
nodes confirm this observation. In fact, with two and three
failed nodes, the inference algorithm identifies all of them.
However, the number of false positives increases a little bit to
reach 3% and 9% respectively.

We make similar tests with a longer network service chain
denoted by B, composed of 5 network functions. Fig. 5
illustrates the probability dispersion of the tests made with
the second example. With only one failure, the monitoring
algorithm identifies them accurately as in the first example.
With two failures, the algorithm is still able to localize all
malfunctions, which is not the case with the first example.
This can be explained by the fact that the second topology is
broader than the first one. Therefore, even if there are some
cases where the monitoring system is unable to identify the
unknown failure points, the probability of selecting these sub-
sets of nodes during the simulations becomes extremely small
due to the number of possible combinations that becomes very
large. Then, starting from three failures, the numbers of false
positives and false negatives start increasing.

VI. CONCLUSIONS

In this paper, we study the problem of monitoring in virtual
network infrastructures deployed with the SFC mechanism,
and we focus on node anomaly localization. We provide a
general framework for the solution to this problem and exhibit
necessary and sufficient conditions enabling the detection of
up to k simultaneous failures in a NFV infrastructure for a
given parameter k. These results serve to establish a probing
design strategy.

The optimization process is formulated as a matching prob-
lem and solved with a classical Max-Flow algorithm. Finally,
the end-to-end measurement performed on these topologies
is the input for a Boolean metrics inference algorithm in
order to estimate the state of each node and to localize the
failure points. The simulation results are consistent with the
developed model. The main work planned for the continuation
of this work is to consider other possible ways of deploying
a network of NFVs. Exploring in deep the behaviour of our
procedures with much larger examples is another research task
to be done in the close future.

ACKNOWLEDGEMENTS

This work has been partially supported by the European
Union’s H2020 MonB5G (grant no. 8§71780) project.

REFERENCES

[1] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, pp. 138-155, 2016.
[Online]. Available: https://doi.org/10.1016/j.jnca.2016.09.001

[2] A. Coates, A. Hero, R. Nowak, and B. Yu, “Internet tomography,” Signal
Processing Magazine, IEEE, vol. 19, pp. 47 — 65, 06 2002.

[3] C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,” in
27th IEEE International Symposium on Software Reliability Engineer-
ing, ISSRE 2016, Ottawa, ON, Canada, October 23-27, 2016. 1EEE
Computer Society, 2016, pp. 196-206.

[4] M. Kourtis, G. Xilouris, G. Gardikis, and 1. Koutras, “Statistical-based
anomaly detection for NFV services,” in 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), Palo Alto, CA, USA, November 7-10, 2016. 1EEE, 2016, pp.
161-166.

[5] E. Salhi, S. Lahoud, and B. Cousin, “Heuristics for joint optimization
of monitor location and network anomaly detection,” in Proceedings of
IEEE International Conference on Communications, ICC 2011, Kyoto,
Japan, 5-9 June, 2011. 1EEE, 2011, pp. 1-5.

, “Joint optimization of monitor location and network anomaly
detection,” in The 35th Annual IEEE Conference on Local Computer
Networks, LCN 2010, 10-14 October 2010, Denver, Colorado, USA,
Proceedings. 1EEE Computer Society, 2010, pp. 204-207. [Online].
Available: https://doi.org/10.1109/LCN.2010.5735702

[71 L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe, “Node
failure localization via network tomography,” in Proceedings of the 2014
Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada,
November 5-7, 2014, C. Williamson, A. Akella, and N. Taft, Eds. ACM,
2014, pp. 195-208.

[8] N. Bartolini, T. He, and H. Khamfroush, ‘“Fundamental limits of
failure identifiability by boolean network tomography,” in 2017 IEEE
Conference on Computer Communications, INFOCOM 2017, Atlanta,
GA, USA, May 1-4, 2017. 1EEE, 2017, pp. 1-9.

[9]1 N. Galesi and F. Ranjbar, “Tight bounds for maximal identifiability

of failure nodes in boolean network tomography,” in 38th IEEE Inter-

national Conference on Distributed Computing Systems, ICDCS 2018,

Vienna, Austria, July 2-6, 2018. 1EEE Computer Society, 2018, pp.

212-222.

N. N. Jara, G. Rubino, and R. Vallejos, “A method for joint routing,

wavelength dimensioning and fault tolerance for any set of simultaneous

failures on dynamic wdm optical networks,” Optical Fiber Technology,

vol. 38, pp. 3040, 2017.

[11] J. E. Hopcroft and R. M. Karp, “An nb/2 algorithm for maximum

matchings in bipartite graphs,” SIAM Journal on Computing, vol. 2,

no. 4, pp. 225-231, 1973.

M. Rahali, J. Sanner, and G. Rubino, “Unicast inference of additive

metrics in general network topologies,” in 27th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, MASCOTS 2019, Rennes, France, October

21-25, 2019. IEEE Computer Society, 2019, pp. 107-115.

[6]

[10]

[12]



