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Abstract—There has recently been considerable interest in
automatic detection strategies for recognising application layer
security threats such as Hypertext Transfer Protocol (HTTP)
Slow Denial of-Service (Slow DoS) attacks in Internet of Things
(IoT) networks. Most existing approaches however, fail to take
cognisance of the substantial resource constraints imposed upon
IoT environments, which limits the applicability and deployment
of many Slow DoS detection mechanisms. This paper addresses
this significant security threat for resource scarce IoT nodes and
networks in proposing an accurate and computationally efficient
approach to packet-based intrusion detection of HTTP Slow
DoS activity. The paper both critically analyses and measures
the impact of applying network attribute filtering and packet
sampling to reduce the computational overheads on the resource
constrained IoT Slow DoS detection node. The unique solution
proposed uses a dataset synthesised from a live IoT environment
comprising both legitimate and malicious network events in
the form of legitimate HTTP traffic and Slow DoS attacks.
Experimental results corroborate that combining filtering at the
Border Router of only in-bound packets containing no TCP
payload with a systematic packet sampling scheme at a sampling
ratio of up to 1:64, the processing overheads on the detection
node are significantly reduced. The novel contribution presented
is a resource efficient solution, garnered by employing systematic
sampling to seamlessly and accurately support selective attribute-
based intrusion detection of HTTP Slow DoS attacks in IoT
networks.

Index Terms—Internet of Things, Intrusion Detection, Slow
DoS, Sampling, Attribute Filtering, Systematic Sampling.

I. INTRODUCTION

The emergent and increasingly pervasive nature of the IoT
paradigm in information and communication technologies,
means that IoT nodes, networks and systems are penetrating
evermore diverse application fields from industrial, manufac-
turing, logistics and transportation to health care and home
automation [1]. One of the main challenges in designing
effective IoT solutions is application layer security, since
while some IoT nodes may be equipped with the requisite
capability to self-manage their protection, many IoT nodes
are resource-scarce and so especially vulnerable to web-based
malicious attacks. One major security threat to web-based
IoT functionality is the Slow Hyper Text Transfer Protocol

(HTTP) Denial of Service (or Slow DoS) attack, which leads
to a significant degradation of service, and even at worst, a
complete cessation of an application’s ability to operate and
deliver the desired client service [2]. HTTP is not the only
application layer protocol used in the IoT domain. A review
of contemporary IoT communications protocols in terms of
vendors and platform providers, [3] highlights that as well as
HTTP, Constrained Application Protocol (CoAP) and Message
Queuing Telemetry Transport (MQTT) hold a large portion
of the market sector. More recently, HTTP/3 has evolved
as an effective means of improving communication speeds.
By utilising User Datagram Protocol (UDP) in preference to
HTTP, HTTP/3 affords a more lightweight alternative, though
there are still numerous IoT nodes available that utilise HTTP
over TCP [3], as evidenced in the CIC IoT 2023 [4], and
HTTP IoT DoS dataset [5] utilised in this research. It is
thus apparent that securing HTTP over TCP and web-based
IoT nodes will, for the foreseeable future, continue to be of
paramount importance.

While various detection systems have been proposed for
identifying Slow DoS attacks, most focus upon post event
analysis using Machine Learning (ML) [6] and Artificial
Intelligence (AI) [7] techniques which require large datasets.
The basis of many DoS detection systems is predicated on
the total volume of network events necessary to provide a
realistic snapshot of the environment, and realise a meaningful
and accurate set of outcomes. Recent proposals [8], and [9]
have sought to rationalise the dataset size by exploiting fewer
attributes to render them more propitious to real time packet
analysis.

All transmitting node packets display various character-
istics, such as size, time sent and received, together with
the source and destination information. It is these discrete
attributes that are exploited in many HTTP DoS detection
proposals, [10]. To address the innate resource node constraints
in an IoT Slow DoS detection system, this paper critically
investigates the resource impact of introducing suitable packet
sampling schemes as a dataset reduction mechanism to support
a real-time solution. The test dataset used comprises both



legitimate and malicious Slow DoS attack activity within a
live IoT network, with a key requirement being that minimal
node resources are expended. The novel contribution in this
work is seamlessly embedding this packet sampling scheme
into existing attribute-based Slow DoS detection models [8],
without compromising detection accuracy.

The remainder of this paper is organised as follows: Section
II defines the problem domain with Section III evaluating the
suitability of different packet sampling schemes for dataset
reduction. In Section IV, the evaluation environment is dis-
cussed, while Section V presents a critical results analysis of
the packet sampling performance at different sampling rates.
Section VI provides some concluding remarks and future work
directions.

II. BACKGROUND

Since Slow DoS attacks are designed to masquerade as
legitimate client HTTP requests and responses, they negatively
impact a detection node’s ability to reliably identify malicious
packets, leading to potential misclassification [10]. Slow DoS
attacks exploit the thread based functionality of web servers,
such as Apache, by initiating seemingly genuine connections.
Once a TCP connection is established, the web server waits
until the client application either completes the required tasks,
or until a local server timeout value expires before closing the
connection. It is specifically this connection orientated envi-
ronment that Slow DoS attacks exploit, where multiple slow
or incomplete connections lead to the web server becoming
overloaded and unresponsive. While there have been several
security modules developed for the Apache server, these offer
only limited protection against Slow DoS attacks, [11]. DoS
attacks targeting web-based servers are an increasing IoT
security threat [12], so the need for a highly efficient, resource
sensitive solution is paramount, with the main impetus being
to lower the number of attributes required to facilitate reliable
and accurate detection.

Real time Slow DoS detection requires traffic monitoring
either by the edge node of an IoT network or via a dedicated
monitoring node. An example of the former is the border
router (BR) where all in-bound network traffic is processed
and forwarded, though inspecting every in-bound packet for
potential anomalies is resource intensive. This has led to
alternative detection strategies being deployed to realise a
more efficient solution [13].

As the principal role of the BR is packet forwarding,
any sampling or inspection at this point naturally incurs a
processing cost for every kth packet. Thus, in an IoT context,
careful consideration must be given to deploying the best
sampling strategy and detection architecture [14].

On resource conservation of the edge node, [15] attempted
to bridge the gap between a distributed DoS detection scheme
for IoT and ML techniques by pre-processing and using
sparse autoencoders to extract network event data, essentially
data filtering before further ML classification. Whilst results
are promising, their ML analysis is undertaken on a high
specification computer utilising a Core i7 processor and 64GB

RAM, so beyond the capacity of low resource IoT at a 1:1
ratio. Most dataset driven approaches focus their evaluation
on measurable network attributes, like the size or length of a
TCP/IP packet, the payload size and the protocol, essentially
sampling the entire dataset. [16] observed a direct correlation
in the performance overhead between IoT detection node
resource consumption and the volume of network packets
under inspection and their size. Interestingly, not all network
attributes were equally weighted, so for instance the detection
node incurred considerably greater processing costs with a
large TCP payload i.e., a 1400-byte data transfer, compared
with a typical TCP control packet which has a zero-byte
payload. Thus, as well as the volume of attributes, cognisance
of the attribute type needs to be factored into the packet
filtering. To support research in testing malicious network
activity, various publicly available datasets have been created.
While ML approaches to Intrusion Detection Systems (IDS),
often yield high accuracy, most intrusion detection datasets are
incomplete and cannot be generalised to live environments, so
ML classifiers are seldom applied in real world deployments.
Another important point is that most datasets are inherently
imbalanced due to the varied attack types often included. This
contrasts with live environments where legitimate network
events generally make up the predominate class. Researchers,
such as [17] and [18] have identified class imbalance in
datasets as a critical risk to the accuracy of ML approaches
for IDS, and recommend further processing to nullify any
imbalance. However, introducing such additional processing
in an IoT context could have a detrimental impact on the
detection node, and raise questions as to the applicability
of synthetically balancing the sampled network events. On
packet sampling, [19] noted that care should be taken as
sampling has the potential to distort the output. The following
section evaluates two approaches to the sampling of network
attributes, and compares the results both pre and post sampling
to identify any distortion.

III. SAMPLING NETWORK EVENTS

A comparative analysis of various sampling algorithms in
[19], compared thirteen different schemes, with the trace files
for each attack being measured based on 30% of the overall
attack traffic. The two most seemingly resource efficient sam-
pling schemes identified in [19] are thus critically evaluated
here to identify the most appropriate sampling strategy to
adopt for an efficient IoT network Slow DoS detection model.

A. Systematic Packet Sampling

Packets are sampled deterministically in this scheme, with
every kth packet being systematically counted and retained in
a process controlled by an internal counter, so for a 16:1 sam-
pling ratio, only every 16th packet in the flow is retained. This
simplicity means nominal processing overheads are incurred,
proportional to the chosen sampling ratio. Although the term
simple innately implies basic functionality, this is certainly
not the case. In [20], while acknowledging this sampling is



a straightforward statistical approach, they effectively imple-
mented systematic packet sampling as part of their work to
develop an IDS formed on Bayesian-based trust management
with sampling for IoT big data environments. Whilst this
approach is viable for high volume, multi-dimensional network
activity, the sequential and ordered nature can negatively
impact the accuracy of the sampling, in for instance, scenarios
where a short burst of network activity falls either side of a
sample period, or where packets follow a prescribed pattern
and arrive in short intervals.

B. Random Packet Sampling

As with systematic sampling, this is a deterministic sam-
pling approach in which the scope of the randomness can be
predefined and reduces the probability of overlooking network
events that may generate a trivial packet stream, such as a
reconnaissance attack by a port scan. A possible limitation
however, is that for each process, a random number generating
algorithm needs to run for each set of samples leading to a
higher processing cost compared with systematic sampling.
[21] discussed the appropriateness of randomness in detection
schemes such as heavy hitters, where high volume traffic is
present, and inculcated the need to trade-off between a desired
accuracy and processing performance.

C. Comparing Systematic and Random Sampling

Comparing the respective random and systematic sampling
performance in the context of the resource constrained IoT
scenarios, the observations of [14] are important. The authors
identified that random sampling will always be more computa-
tionally intensive and proportional to a probabilistic approach.
It was also evidenced that random sampling can severely
impact the accuracy of time-based or multi-point metrics such
as end-to-end delay because of the lack of correlation of
critical data-points. There is thus a significant likelihood that
random sampling will impede the latency, node delay and delta
time analysis employed for attribute based HTTP Slow DoS
detection, which are core components used in [8], and [22].

IV. EVALUATION ENVIRONMENT

For the sampling evaluation, the HTTP IoT DoS dataset
was utilised [5], where responsibility for the sampling is
undertaken by the BR, and given its storage constraints
of 128MB DRAM and 64MB Flash memory, the sampling
scheme had to be as efficient as possible. For this evaluation,
the IoT detection node is represented by a Raspberry Pi
model 4 board with 4GB RAM, 16GB Flash memory. All
sensor nodes are more acutely resource constrained with only
18K RAM, 256KB of Flash and a 20MHz CPU. The dataset
comprises 912,986 network events, in the form of TCP/IP
packets captured in a live IoT network. Of which, 302,340 are
in-bound including legitimate traffic, which in this evaluation
are denoted as Legitimate Nodes (LN), while the Slow Read,
Slow Get and Slow Post events are categorised as Malicious
Node (MN) traffic. All in-bound network packets target the
web server at HTTP port #80. The live HTTP IoT DoS

dataset contains packets generated by all three Slow DoS
variants including legitimate HTTP traffic, whilst limiting the
dataset size to only 562MB. The dataset is in industry standard
Packet Capture (PCAP) trace file format. Any set of associated
network events, such as the three way handshake are measured
in terms of a trace period.

Table I provides the cumulative total of in-bound only
network events per node type, from which it is seen that
combined MN events constitute 16.6% while LN events make
up ≈ 50% of the dataset. The remainder of the dataset is
made up of 610,000 high volume HTTP DoS attack packets,
including web-server responses, along with operational and
control packets. In comparing in-bound only traffic, an impor-
tant point to stress is the respective number of LN and MN
packets which has an acceptable class imbalance of 0.99%,
at the pre-sampling stage, affording a negligible bias towards
the majority LN class, as evinced in Table I. This mitigates
the need for further processing to redress the impact of packet
sampling, with the best post-sampling outcome being to either
retain or reduce class imbalance.

TABLE I
CUMULATIVE NUMBER OF IN-BOUND NETWORK PACKETS GENERATED

Source traffic # Packets IoT dataset %
Total MN 151,058 16.6
Total LN 151,282 50.2

A. Dataset Reduction

To establish a ground truth for the sampling process, the
evaluation concentrates on selecting a single attribute common
to all nodes, namely the TCP application data payload [8].
The rationale for this choice is that TCP segment length (ls)
is shared by all nodes during a TCP client server three-way
handshake, with the most prevalent value being (ls) = 0 bytes.
For packets where ls = 0, it is observed no TCP payload data
is included, so only the header and TCP flag values comprise
the overall lp. As seen in Eq. 1 the node generated throughput
is calculated by the number of bytes transmitted over a discrete
trace period (x̂t) in which these packets exist.

Nth =

(
Nflags+headers

x̂t

)
(1)

In [8], byte values, along with the length of packets and
segments were identified as key IP-based flow attributes ap-
plicable for sampling, so pre-sampling all in-bound TCP/IP
packets where ls = 0 are filtered out. This selective attribute
approach decreases the dataset size to be sampled to ≈ 1.00%,
which is a substantial saving compared with full dataset driven
ML approaches. The corresponding reduction and results dis-
played in Table II, reflect a marginal bias of 8.3% for LN. A
crucial aim of the sampling experiments is to maintain where
possible a sample bias as close to 8.3% as possible.



TABLE II
NUMBER OF TCP/IP PACKETS WHERE ls = 0 BYTES

MN Packets 101,727
LN Packets 120,322
Sample Bias (%) 0.83

V. SAMPLING RESULTS

It should be noted that the average packet length where
ls = 0 is 64 bytes which contrasts with the average packet
length in the HTTP DoS dataset of 166 bytes. As such, there
is an implication that focusing on ls = 0, will incur lower
processing overheads and thus be more efficient. To validate
this hypothesis, Eq. 2 and 3 illustrate the potential throughput
on a per node basis, Nth for each packet processed during a
conversation. This is achieved by observing a single TCP/IP
conversation where TCP/IP flags and headers are calculated
along with the TCP payload. In this example, a MN transmits
a total of 1193 bytes, at an average rate of 21 bytes/s.

Nth =

(
Nflags+headers

x̂t

)
+

(
Nls

x̂t

)
(2)

Nth =

(
734 + 459

56.4

)
(3)

However, by only sampling in-bound packets where ls = 0
bytes the throughput is reduced to an average of 13 bytes/s.
As such, sampling where ls = 0 bytes, not only acts to level
out the class bias, but also reduces node processing require-
ments and bandwidth consumption. This approach imposes an
average saving of 8 bytes/s per TCP/IP conversation, which
is significant when considering that the HTTP DoS dataset
generates an average rate of 168 KB/s. Therefore, based on
this reduced dataset, both random and systematic sampling
schemes can now be equitably compared to evaluate their
respective sampling performance.

A. Random Sampling

Using the reduced pre-sampled IoT dataset, random sam-
pling is firstly evaluated by observing whether the scheme
retains the same class balance compared with the original
data. Table III presents the random sampling results at differ-
ent ratios at binary increments from 1:64 through to 1:512.
Following sampling, the number of packets is respectively
observed as 63.61% MN and 77.12% LN. This demonstrates
the impact of this scheme on increasing the class bias for LN
samples to a maximum of 0.80% and minimum of 0.91%,
which is an acceptably balanced post-sampled dataset, so no
further processing is needed for Slow DoS detection.

B. Systematic Sampling

In contrast, the systematic sampling results in Table IV
reveal a less significant change in class balance to that of
random sampling. While the ground truth of all in-bound
packets with the ls attribute having a null value had an
initial balance in favour of the LN after sampling at 1:64,
it is only slightly lower i.e., from 0.99% to 0.98% which

TABLE III
RANDOM SAMPLING OF PACKETS WHERE ls = 0 BYTES

Node
Ratio 1:64 1:128 1:256 1:512

Total MN 1403 746 372 188
Total LN 1750 831 405 209
% of samples 1.41 0.71 0.34 0.17
Sample bias (%) 0.80 0.89 0.91 0.89

within tolerance of retaining a balanced dataset of attributes.
In reflecting upon the sampling range from 1:128 to 1:512, the
results confirm that 1:64 has the most empathy to balancing the
key attribute samples. Importantly, the results reveal that across
the 1:128 to 1:512 range there is a notable improvement over
random sampling, with the corollary that sampling beyond
1:64 may be appropriate, given a benefit analysis of the
nexus between accuracy of the data to be sampled and lower
processing overheads.

TABLE IV
SYSTEMATIC SAMPLING OF PACKETS WHERE ls = 0 BYTES

Node
Ratio 1:64 1:128 1:256 1:512

Total MN 1599 801 403 200
Total LN 1560 778 387 195
% of samples 1.42 0.71 0.35 0.18
Sample bias (%) 0.98 0.97 0.96 0.96

C. Post Sampling Reduction

It has been seen that packet based detection consumes
resources directly proportional to the volume and size of
packets being processed, so incorporating a sampling step
affords a valuable prospect to lowering the resource overheads,
concomitant with the aim of maintaining a computationally
efficient detection model. Fig. 1 highlights the trend lines
which reflect a common reduction in packet values for each
source node, where pre (a) and post-sampling (b) the ratio
of packets for LN and MN are comparable in terms of the
overall packet volume, which is critical for maintaining the
same class balance as pre-sampling. Maintaining a comparable
ratio post sampling affords a lower overhead approach to
the analysis of Slow DoS and LN attributes used in [8] and
similar approaches where the comparable volume of malicious
to legitimate attributes are crucial.

TABLE V
COMPARING IN-BOUND-PACKET PERCENTAGES

Source Packets (%) Post-Sampling (%)
Total MN 50.0 49.4
Total LN 50.0 50.6

Table V reveals that for the cumulative number of in-
bound packets, (see also Table I), the reduction of 1:64 post
systematic sampling retains a similar percentage of packets
per node in each of the three Slow DoS variants, with similar
reductions observed in the respective numbers of MN and LN.



Fig. 1. Trend lines for pre-sampling (a) and 1:64 post-sampling (b)

Although the LN and MN overall percentage reductions are
comparable, only 1.9% fewer Slow Get packets were collected,
compared to an increase of 1.9% for Slow Read, and 0.7% for
Slow Post. This indicates that by systematically sampling only
in-bound packets where ls = 0 at a ratio of 1:64 only requires
0.3% of the dataset, which equates to 0.2 MB packets, which
is a significant improvement on full packet inspection. These
results corroborate the verdict that a systematic approach
to dataset sampling of MN and LN network attributes can
augment the performance of existing packet based Slow DoS
detection models in terms of lowering operational overheads
by sampling fewer packets whilst retaining detection accuracy.
Sampling thus affords an attractive addition to embed with
existing IoT Slow DoS detection scenarios.

D. Post Sampling Accuracy

In [8], Slow DoS traffic was identified through Packet
Length (lp) analysis, where packets of a specified length could
be used to identify potential Slow DoS traffic. Packets which
fell within a specified byte range were labeled as Candidate
MN. As such, to evaluate the accuracy of the sampling scheme
employed here, all packets where lp ∈ {66, 74} are compared
pre, and post-sampling. From the results in Table VI it is
apparent that Slow DoS generates a high percentage of packets
in the {66, 74} byte range, compared to only 0.8% generated
by the LN.

TABLE VI
COMPARATIVE PACKET LENGTH IN BYTES WHERE lp ∈ {66, 74}

Pre-Sampling % Post-Sampling %
MN 99.2 99.8
LN 0.8 0.2

By identifying packet lengths where lp ∈ {66, 74} as
potentially malicious affords a detection accuracy of 98.6%,
which is based on the pragmatic judgement that packets in
this range are Slow DoS generated. Employing systematic
sampling gives a marginal improvement to 99.8% accuracy

post sampling, so demonstrating that applying this scheme at a
sampling ratio of 1:64 is a viable Slow DoS detection solution.
The corresponding resource overheads upon the sampling node
are critically analysed in the next section. It was also seen that
sampling beyond 1:64, incurred a slight reduction in accuracy,
implying there is a trade off between resources saved and
overall detection accuracy.

E. Sampling Resource Observations

Both observed and recorded values are based on a pragmatic
traffic profile over a period of 120 secs, during which 10
legitimate HTTP requests per sec along with Slow DoS
traffic are generated. This profile reflects the traffic scenario
where the BR encounters the heaviest network load. In these
experiments, sampling was conducted on the BR, with the
results showing that for random sampling, the CPU load on
the BR increased by an average 6% over the observed average
baseline (None) in Fig. 2, while for systematic sampling the
load increased by 4%. When no packet sampling is applied,
as expected then the BR incurs the greatest CPU load.

Fig. 2. BR CPU load comparison

For any node, the CPU processing and memory overheads
are directly impacted by the volume of packets passing through
the network interface, as such the higher the number of
packets per second (PPS), the greater the resources consumed.
For resource scarce IoT node processing this has a critical
impact on CPU load and associated energy requirements. Fig.
2 reveals that CPU load variance is directly correlated with
packet processing, so resource conservation can be considered
in terms of node energy consumption (EC). Given each
node must process packets (pk), including request (pkreq), and
response (pkres) packets, this means EC = pkreq + pkres.
By employing a packet sampling strategy, the processing
overheads and EC are thereby significantly reduced to just
0.3% of the original dataset.

In Section V, the dataset consisted of packets generated at
a rate of 168 KB/s, which equates to an average of 222.5 PPS
during a trace period of 3317 s. Thus by applying systematic
sampling at 1:64, the processing requirements reduce to = 0.95
PPS, which represents an overall reduction in processing and
memory overheads of 99.62%, whilst retaining an acceptable
level of balance comparable to the original dataset. This
equates to 912986/3317 = 252.2 PPS processed at the capture
interface.



In this research, the sampled network attributes of the IoT
Slow DoS dataset, where in-bound packets exhibit values
of ls = 0 bytes are representative of the original dataset,
so the results can be generalised. As such this approach
addresses the common problem of retaining an acceptable
sample balance to ensure equity and accuracy of the sampling
scheme, along with the numerical results. Using a live IoT
Slow DoS attack dataset with a sampling ratio of 1:64 lowered
the processing requirements upon BR by ≈ 99.7% while
concomitantly retaining an acceptable level of balance with
the original dataset. The post systematic sampling results
highlight that Slow DoS detection proposals based on selective
attribute filtering and analysis in [8] and [17], as well as full
packet capture could be enhanced by adopting a systematic
sampling scheme to reliably reduce resource utilisation and
consumption of each respective detection proposal. Although
the findings have focused on resource saving in an IoT context,
this approach to selective attribute filtering and sampling can
be extended into other network domains.

In the context of resource scarce IoT environments, any
additional cost sustained by the sampling scheme must prag-
matically balance the efficiency and accuracy of the detection
model with the extra overheads incurred. The evaluation
results presented have compellingly demonstrated that em-
bedding pre-sampling into an existing real-time Slow DoS
detection model in a live IoT network is a beneficial design
option with significant savings achievable.

VI. CONCLUSION

This paper has critically investigated the impact of dif-
ferent IoT network packet sampling schemes as a reduction
mechanism to provide accurate detection of HTTP Slow DoS
attacks, whilst ensuring an energy efficient approach, suitable
for resource scarce environments. By selectively filtering and
sampling only in-bound TCP/IP packets where the TCP pay-
load attribute is equal to zero bytes, presents a significant
lowering of resource overheads for IoT nodes in the detec-
tion of Slow DoS traffic. Experimental results compellingly
demonstrate that by only filtering packets with a zero-byte
payload, combined with systematic sampling at a 1:64 ratio
on the IoT BR, markedly reduces computational overheads on
the IoT Slow DoS detection node compared to either full or
random sampling, while upholding high detection accuracy.
This strategy is especially attractive for real-time IDS in
resource constrained IoT environments. Future work will focus
upon developing a quantitative framework of the resource
savings realised by embedding systematic sampling of network
attributes on IoT detection nodes, as an integral component in
a computationally lightweight Slow DoS detection model.
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