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ABSTRACT 
 
Electronic tongues based on potentiometry offer the prospect 
of rapid and continuous chemical fingerprinting for portable 
and remote systems. The present contribution presents a 
technology platform including a miniaturized electronic 
tongue based on electropolymerized ion-sensitive films, 
microcontroller-based data acquisition, a smartphone 
interface and cloud computing back-end for data storage and 
deployment of machine learning models. The sensor array 
records a series of differential voltages without use of a true 
reference electrode and the resulting time-series 
potentiometry data is used to train supervised machine 
learning algorithms. For trained systems, inferencing tasks 
such as the classification of liquids are realized within less 
than 1 minute including data acquisition at the edge and 
inference using the cloud-deployed machine learning model. 
Preliminary demonstration of the complete electronic tongue 
technology stack is reported for the classification of 
beverages and mineral water. 
 

Index Terms— Electronic tongue, polymer, 
electrodeposition, smartphone, cloud computing 
 

1. INTRODUCTION 
 
Electronic tongues can distinguish complex liquids by 
combining cross-sensitive sensor arrays with machine 
learning. In contrast to conventional analytical techniques for 
chemical fingerprinting, such as mass spectrometry for food 
authentication [1], electronic tongues based on 
electrochemical sensing principles may be miniaturized for 
use in portable or remote sensing [2]. Such compact 
analytical devices enable chemical fingerprinting at the point 
of use, thereby reducing time and effort related to sample 
handling and transport. Yet, there are at present no 
commercial electronic tongues available in a form factor 
suitable for portable and remote chemical fingerprinting [3]. 
In the present contribution, a technology framework is 

presented for the development and deployment of 
miniaturized electronic tongues based on potentiometry. The 
hardware and software components of this framework are 
presented along with preliminary results related to 
classification of beverages and mineral water using a 
handheld device, smartphone and cloud computing services. 
The technology stack is expected to support the development 
and deployment of electronic tongues for chemical 
fingerprinting in portable or remote applications. 
 

2. METHODOLOGY 
 
2.1. Potentiometric sensor arrays 
 
Substrates for the sensor arrays were either oxidized silicon 
Si (0.5 mm) / SiO2 (500 nm) or conventional printed circuit 
boards (PCBs) of thickness 1.6 mm. Silicon substrates were 
metallized with sputtered Ti (10 nm)/Pt (100 nm) electrodes 
patterned by optical lithography and selectively masked with 
photopatterned SU-8 polymer to expose four circular pads to 
sample liquid. PCBs were ordered with standard electroless 
nickel immersion gold (ENIG) metallization defining four 
circular pads for contact with sample liquid. The electrode 
pads with Ø2 mm were coated by polypyrrole (PPy) via 
electropolymerization of pyrrole (Py), whereby different 
deposition conditions and precursor solutions were chosen to 
yield different ion sensitivities. As-deposited PPy from 
chloride-containing electrolytes yields films with anionic 
sensitivity, e.g. toward Cl- (Figure 1a). As found previously 
by Michalska et al. [4], incorporation of hexacyanoferrate(II) 
(FOCN) anions in PPy with appropriate concentrations of 
FOCN and Py in the precursor solutions and suitable 
electrodeposition conditions leads to cationic sensitivity of 
the resulting films (Figure 1b). Preliminary classification 
experiments were performed by functionalizing each 
electrode in one sensor array by PPy films exhibiting 
different ion selectivity and sensitivity, mainly toward K+, 
Na+ and Cl-, according to Table 1. Sensors 3 and 4 were 
nominally identical for testing purposes. 
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2.2. Data acquisition board 
 
In lieu of an external reference electrode, the measurement of 
differential voltages across the four terminals of the sensor 
chip (A in Figure 1c) as a function of time was chosen as 
sensor signal for discriminating liquids. This allowed a single 
spring-loaded connector (contact pitch 2.54 mm, B in Figure 
1c) to be used for interfacing of the sensor chip with the data 
acquisition (DAQ) board. The DAQ comprised a 16-bit 4-
channel analog-to-digital converter (ADC, TI ADS1115, C in 
Figure 1c) with programmable range and resolution set to 
±2 V and 0.0625 mV, respectively. The potentiometric data 
was transmitted from the ADC to an Arduino microcontroller 
(DFrobot Beetle, D in Figure 1c) using the I2C protocol. 
Finally, a micro-USB connector (E in Figure 1c) was used to 
transfer data to a smartphone via USB On-The-Go (OTG). 
 
 

2.3. Portable sensor package 
 
Housings for the DAQ board were 3D-printed with windows 
for LED status lights and slots for connecting the sensor chip 
and USB-OTG cable. The circular design of the assembled 
device allows self-supported clamping onto a glass 
containing the sample liquid (Figure 1c, d). 
 
2.4. Machine learning model deployment 
 
An overview of the present framework for calibration data 
generation and model training (“Training”) as well as blind 
liquid sample testing and classification (“Inference”) is given 
in Figure 2. Transient potentiometric sensor data was 
recorded for three beverages A-C (6-8 measurements per 
sample) and four still mineral waters I-IV (24 measurements 
per sample). Prior to insertion of the sensor array in the 
sample liquid, the sensor array was stored in 0.1 M KCl 
which provided stable starting potentials (Figure 3a, first 20 
seconds). 

Data processing involved subtracting the measured 
voltage differentials by their respective average values in the 
KCl solution, eliminating the data obtained while the sensor 
was in the KCl solution and finally concatenating the three 
differential voltages (Figure 3b). A supervised random forest 
classification algorithm was trained with the processed data 
using the scikit-learn library for Python. The training data 
was stored on a cloud server and the trained model was also 
deployed in the cloud using the IBM Watson Machine 
Learning service. Further, a Python server was set up to carry 
out automated data processing and to invoke the deployed 
model during sample testing. 
 

 
Figure 1 (a) Anionic sensitivity of electrodeposited PPy films 
with change in KCl concentration, (b) cationic sensitivity of 
electrodeposited PPy/FOCN films with change in KCl 
concentration, (c) assembly of sensor array on PCB [A] with 
spring-loaded connector [B] and read-out electronics 
comprising an ADC [C] and microcontroller [D] with micro-
USB port [E] for connection to smartphone, and (d) 
photograph of packaged electronic tongue device immersed 
in liquid sample. 
 

Table 1 Potentiometric sensors deposited on electrode array. 
ID Precursor solution Electrodeposition conditions 
1 0.1 M Py 

0.1 M CaCl2 
0.8 V vs. SCE 
60 s 

2 0.2 M Py 
0.05 M K4Fe(CN)6 

-0.5 V...0.8 V vs. SCE @ 20 mV/s 
3 cycles  

3, 4 0.1 M Py 
0.1 M K4Fe(CN)6 

0.8 V vs. SCE 
60 s 

 
Figure 2 Workflow for the portable electronic tongue device 
depicting stages for training and inference, along with cloud 
computing services for storing training and test data as well 
as execution of trained machine learning models during 
inference. 
 



2.5. Mobile app 
 
An Android app was developed to interface a smartphone 
(Samsung Galaxy A3, 2017) with the DAQ board described 
in section 2.2. The app displays the potentiometric data in real 
time and adds a date- and timestamp based on the 
smartphone’s built-in time and location services. The raw test 
data is then transferred to a cloud server using Wi-Fi or 
cellular connectivity and stored in an Elasticsearch database. 
The Python server (section 2.4) processes the test data and 
sends the pre-processed data to the deployed classification 
model. Finally, the most likely classification result together 
with the corresponding confidence level and the pair-wise 
similarity score between the test and training data are sent 
back to the smartphone. In the mobile app, the classification 
results are visualized by means of a column graph showing 
the likelihood score by class, and the training and test data are 
shown in a force directed graph based on their pairwise 
similarity scores 
 

3. RESULTS AND DISCUSSION 
 
3.1. Beverages 
 
Despite the small number of elements in the sensor array and 
predominant sensitivity toward small, monovalent ions, the 
classification of three soft drinks was achieved with an 
accuracy of 95.3% obtained by leave-one-out cross-
validation on the training data set. Transient potentiometric 
features at short timescales (Figure 3b, index < 20) were 
found to be more important for successful classification than 
the final equilibrium potentials. This observation suggests 
that non-equilibrium potentiometry is a promising approach 
for rapid classification of liquids using portable or remote 
sensors. 
 
3.2. Mineral water 
 
Four brands of mineral water were used for training and 
testing with the same hardware as described above. 
Classification of these samples was achieved at an accuracy 
of 61.7%, which is significantly lower than for the beverages. 

The lower accuracy is 
expected due the 
limited range of 
selectivity of the 
simple four-electrode 
array and the limited 
variation in 
concentration of 
dissolved monovalent 
ions at the ppm level 

(Table 2). However, the portable solution still performed 
substantially better compared to human testers, who were 
able to perform correct classification of the four mineral 
water brands with an accuracy of 30.6%. The confusion 
matrices of the two test data sets are shown in Table 3. 
 

Table 3 Confusion matrices for (a) beverages and (b) 
mineral water. Values represent number of observations. 

 (a) Beverages   (b) Mineral water 

Pr
ed

ic
te

d A 7 1 0  

Pr
ed

ic
te

d 

I 16 2 3 1 

B 0 7 0  II 7 7 4 6 

C 0 0 6  III 1 6 15 2 

  A B C  IV 0 3 1 20 

  True    I II III IV 

        True 
 

4. CONCLUSION 
 
A platform has been developed for portable and remote 
applications of electronic tongues based on on-chip sensor 
arrays, a smartphone interface and cloud computing. The use 
of different or a greater number of sensing elements can be 
easily accommodated. Thus, an end-to-end solution for the 
deployment and testing of portable and remote electronic 
tongues is proposed. The incorporation of cloud computing 
services allows combining measurement data from multiple 
remote devices and the deployment of new machine learning 
models without modifying the device or software at the edge. 
 

5. REFERENCES 
 
[1] G. P. Danezis, A. S. Tsagkaris, V. Brusic, and C. A. 

Georgiou, “Food authentication: state of the art and 
prospects,” Curr. Opin. Food Sci., vol. 10, pp. 22–31, 2016. 

[2] C. A. Blanco, R. De La Fuente, I. Caballero, and M. L. 
Rodríguez-Méndez, “Beer discrimination using a portable 
electronic tongue based on screen-printed electrodes,” J. 
Food Eng., vol. 157, pp. 57–62, 2015. 

[3] M. Podrazka, E. Báczyńska, M. Kundys, P. S. Jeleń, and E. 
W. Nery, “Electronic tongue-A tool for all tastes?,” 
Biosensors, vol. 8, no. 1, pp. 1–24, 2017. 

[4] A. Michalska, A. Ivaska, and A. Lewenstam, “Modeling 
Potentiometric Sensitivity of Conducting Polymers,” Anal. 
Chem., vol. 69, no. 19, pp. 4060–4064, 1997. 

 
Figure 3 (a) Raw differential voltage data and (b) processed 
data for training of machine learning model. The multi-array 
sensor was displaced from a 0.1 M KCl reference solution to 
the sample solution at 20 s, in this example a soft drink 
“beverage B”. 

Table 2 Nominal concentrations 
of selected ions for the four 
studied brands of mineral water. 

Sample Concentration [ppm] 
Na+ K+ Cl- 

I 4 2.5 16 
II 7.3 4.9 3.7 
III 6.5 1 6.8 
IV 6 2.5 20 
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