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Olfactive robot for gas discrimination over several
months using a new optoelectronic nose
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Anton Andreev!, Pierre Comon!, and Simon Barthelmé™!

ICNRS, GIPSA-Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France
2Aryballe Technologies, 38000 Grenoble, France

Abstract—A new optoelectronic nose has recently been de-
veloped using, for the first time, Surface Plasmon Resonance
Imaging. Initial studies indicate that the instrument is very
promising, and can detect and recognise a large variety of volatile
organic compounds (VOCs) even with very limited sampling time.
In this paper, we investigate its use as a continuous monitoring
system under real-life conditions, recognising VOCs over several
months. To this end, we present a robot-based platform which
allows fast, realistic and repeatable measurements of several
VOCs. We have generated a substantial data set over several
months and under different environmental conditions. Results
show that the device can be used to recognise VOCs with high
reliability, even when training and testing sessions are months
apart. The results are quite encouraging for further studies.

Index Terms—olfactive robot, gas discrimination, drift, open
sampling, fast sampling

I. INTRODUCTION

A new electronic nose (eNose) featuring low specificity
and a fast response has recently been developed [1]. The
technology of this promising tool is based on the use of
peptides as sensing materials coupled with Surface Plasmon
Resonance imaging (SPRi) as the transduction method. With
this technique, up to hundreds of chemical sensors could be
used on a single chip, overcoming one of the main weak-
nesses of established eNoses. The instrument has already been
successfully evaluated in quite controlled environments [1].
However, it must be still usable in non-lab conditions to fully
fulfill the expectations of an eNose.

From this viewpoint, mobile robot olfaction is an interesting
domain of application. Initiated almost 30 years ago, [2],
robot olfaction aims at equipping a robot with chemical
sensors, to enable olfactory measurements over a whole area.
Among other issues, research in this field has examined real-
time monitoring [3], gas distribution mapping [4] and source
localization [5]. Robot olfaction has indisputably had a great
impact for getting the eNose out of the lab, making it a good
field to test this new tool.

To this end, we have designed a robot-based system which
provides fast, realistic and repeatable measurements. We have
acquired a significant data set over 5 months and under
various environmental conditions, in which 3 volatile organic
compounds (VOCs) must be detected and discriminated. After
introducing a processing pipeline to extract information from
the raw recordings, we have assessed the classification per-
formance obtained by the system. Results, both considering
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each data set individually and the whole dataset after drift
correction, indicate excellent discrimination performance, even
in this unfavourable scenario.

II. EXPERIMENTAL SETUP
A. Electronic nose

The eNose used here is based on the technology described in
[1], [6] and is provided by Aryballe Technologies. A chemical
sensor is a molecule which is fixed over the golden surface
of a prism. When a VOC is brought above the surface by
an airflow, it interacts with the molecule through a reversible
binding reaction. This interaction is measured using SPRi.
Briefly, a light is sent, reflected by the surface and caught by
a simple camera. When interaction occurs with the molecule,
this changes the refraction index leading to a change in
reflectivity.

Our eNose is equipped with 26 different molecules, each
of them repeated 2 or 3 times on the surface, leading to 63
chemical sensors, an uncommon number since the usual one
in the literature is closer to the dozen [7].

B. Open sampling system

The open sampling system consists of a line follower robot,
a flat surface where VOCs are placed and the previously
introduced eNose. The ground is a Im X Im x 2.5mm
polycrystal plate which is 1.5cm lifted. 4 small cups, of 2.5cm
diameter, are designed with a 3D-printer and are slid below
the plate in order to deposit the VOC in liquid phase. Then, a
60cm x 60cm square path is drawn on the plate near the VOC
locations. Finally, the eNose is mounted on the mobile robot
and equipped with a 3D-printed funnel in order to increase the
suction area. The platform is presented in figure 1. Despite its
simplicity, it allows a fast VOC sampling, as shown in figure
2, as well as realistic and repeatable measurements.

Several sources of unpredictable variability are expected
such as: the environmental conditions (temperature, humid-
ity) which are not controlled, the VOC diffusion, the VOC
concentrations which are neither controlled nor measured, the
change of the reference gas, the absence of plateau, etc.

C. Data sets

For this study, we used citral (152.24 g/mol), [S-pinene
(136.23 g/mol) and geranyl acetate (196.29 g/mol) as pure
VOCs and a volume of around 250uL of their liquid solutions
is put in 3 cups. A fourth cup is left empty as a control.
Concerning some of the other settings, the eNose frequency



Session  Date Duration (min) N Temperature (°C) RH (%) AH (mg/m?) SVM (%) k-Means (%)
1 Jul 6, 2018 58.4 114 NA NA NA 97.4 98.2
2 Sep 14, 2018  60.2 117 NA NA NA 90.6 93.2
3 Sep 21, 2018 49 93 [31.6, 34.5] [27.0, 36.0] [102.9, 119.8] 92.5 91.4
4 Oct 4, 2018 86.7 165  [25.1, 29.6] [30.1, 39.0] [88.3, 93.9] 98.2 95.8
5 Oct 16, 2018  37.2 72 [28.0, 28.9] [34.6, 37.5] [98.5, 103.1] 94.4 54.2
6 Nov 9, 2018 76.2 141 [23.3,28.2] [31.4,37.5] [76.9, 87.5] 86.6 63.8
7 Dec 4, 2018 113.7 152 [23.5,27.1] [34.7, 40.3] [84.8, 94.4] 94.1 69.7
481.4 852  [23.3, 34.5] [27.0, 40.3] [76.9, 119.8]

Table I: Information about the data sets studied in this paper. NA values are due to the absence of the sensors at the recording date. RH and AH respectively
stand for Relative Humidity and Absolute Humidity. See the main text for the classification results.
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Fig. 1: The open sampling system.
A video showing the robot in motion
is available here: https://barthesi.gricad-
pages.univ-grenoble-alpes.fr/wise/.

citral as the injected VOC.
sampling is SHz, the robot speed is set between 2 and 3 cm/s
and the pump flow is 45mL/min.

Over a period of 5 months, we have generated 7 data sets
in order to assess both the ability of the eNose to discriminate
over one data set, and its ability to generalize over other data
sets across time. The cups are refilled before each session.

All the information concerning these data sets is gathered in
Table I (the associated classification results are detailed later
in the paper).

III. DATA PROCESSING
A. Intra dataset

This section presents and summarizes all the processing
steps that take place between the raw recording and the
extracted signatures. In this section we consider only one data
set (ie one line of Table I).

1) Short term drift correction: Figure 3 shows a classical
raw recording for one chemical sensor, demonstrating a short
term sensor drift. This drift is quite common when using
chemical sensors and can be due to the aforementioned sources
of variability. In the usual sampling methodology, a baseline
measure before the VOC onset easily solves this issue but this
is no longer the case in our continuous setting.

To remove this drift, we propose to first estimate the trend
using quantile filtering. This filter is straightforward but quite
robust: for a given window, the central point is replaced by the
value greater than or equal to p% of the values in the window
(here, p = 25%), thus avoiding spikes. This estimation (cf fig.
3) is then subtracted from the raw recording.

2) Segmentation: as in [3], a segmentation step has to be
performed in order to extract the regions of interest (ROI), ie
the spikes, from the signal.

t(s)

Fig. 2: comparison between a classical 3-phase sampling and
sampling using our setup. Each colored line corresponds to
the output of one chemical sensor. In this example, we used
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Fig. 3: A raw recording (blue) and the short term
drift estimation (red) for one chemical sensor. The
first value has been subtracted.

To this end, we take the signal averaged over the chemical
sensors to reduce the noise and a 2-step procedure is then
applied. First, we detect all maxima present in a given range
(here, £10s) and greater than a given threshold (here, 8o,
with o, the standard deviation of the noise) using a sliding
window. Second, we build a ROI by extending the area around
the maxima until a given threshold is reached (here, 50,,). This
heuristic limits the number of false positive and has proved to
be efficient and robust over all the data sets.

3) Feature extraction: a common practice is to extract
as discriminant feature the steady-state value describing the
equilibrium phase of the reaction between the chemical sensors
and the VOC. It is clear from Figure 2 that we never reach
steady-state. In such situations, one may try to work only with
the transient part of the measurement [3], [8]. In this study,
we integrate responses over the whole ROI.

At this step, every ROI is thus summarized by a vector of
measurements, or "signature", € R%3 (column “N” in Table I
indicates the number of these signatures per data set).

4) Normalization: the extracted feature is influenced by
both the duration of the ROI and the VOC concentration.
As we are interested in qualitative results, these 2 parameters
act as a nuisance on the signature. To get rid of them, we
normalize each signature by dividing it by its L2-norm. It
is interesting to note that this normalization implies a linear
relationship between the measurement and the concentration.

5) Dimensionality reduction: as mentioned in the introduc-
tion, one of the strengths of the eNose used is the number
of chemical sensors, which is much greater than in current
technology. To avoid the effects of the curse of dimension-
ality, we perform a simple dimensionality reduction based on
Principal Component Analysis (PCA). In each dataset, the first



k components (here, k = 5) are used as our new representation
space for projecting the data.

B. Inter datasets

Even if the first challenge concerns the ability of such a
framework to perform gas discrimination during one session,
a second harder challenge is to go further by checking if
this setup could also be used over several months after initial
training.

On this point, it is well known in the community that chemi-
cal sensors always suffer from long term drift [9], as opposed
to the aforementioned short term drift. This drift decreases
considerably the generalization capacity of the classifier which
has been learned during the first session.

To compensate for it, the literature has been (and still is)
prolific. For the sake of intelligibility, we only use the well-
established drift correction technique based on component
correction (CC), namely the Principal Component Analysis
CC [9]. To perform the dimensionality reduction step, the
PCA is calculated by taking only the first session. The first &
components (here, k¥ = 5) of this PCA are used for projecting
data from the other sessions.

IV. RESULTS
A. Intra-dataset

To perform gas discrimination, we use 2 classifiers: a
supervised one (linear Support Vector Machine), and an un-
supervised one (k-Means). For the SVM classifier, we report
5-fold cross validated performance. Note that for k-Means,
100 random starts are used and the best one is chosen. All
the results are reported in Table I. They indicate a really
good discrimination between the 3 VOCs for all the data sets,
considered individually. The few low results observed for k-
Means are explained by the presence of occasional outliers,
which can form clusters by themselves.

These results validate the described processing pipeline and
demonstrate both the feasibility of this continuous monitoring
framework and the good selectivity of the eNose used. We add
that no signal has been detected at the location of the empty
cup, showing that the material used doesn’t affect the eNose.

B. Inter-datasets

As shown on Figure 4, an important drift occurred between
the first session and the later ones, clearly perceptible in the
2-dimensional space of the PCA. To quantitatively assess it,
we use a linear SVM classifier, trained on the first session and
tested successively on the others. The results agree with the
visual observation and the drift clearly causes a decrease in
classification performance if no correction is applied.

As mentioned before, the PCA-CC method has been used
to correct that drift. It requires tuning 2 crucial parameters: the
calibrant used, which has to be representative of the whole set
of VOCs, and the number of components to be removed. After
a grid search taking averaged classification rate as criterion,
calibrating using citral and removing of the first component
present the best results, as reported in Figure 4.

Despite the heterogeneous environmental conditions, to cite
only a few, between the data sets, the results are quite
encouraging even with a simple correction method. This paves
the way to further studies, which are discussed next.
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Fig. 4: Top: the 2 first PC components of the first session. Other sessions
are projected in this new space. Bottom: evolution of the generalization over
the time (solid: no correction, dashed: PCA-CC). Citral and first component
were used for PCA-CC.

V. CONCLUSION AND PROSPECTS

In this paper, we have presented a new open sampling
system, allowing a fast, realistic and repeatable VOC mea-
surement. We have also described a processing pipeline to
deal with the data generated in such a setting. On this point,
it is noteworthy that all the described processes can be, and
actually are, implemented in real-time, allowing the real-time
detection and identification of the 3 studied VOC:s. Finally, the
eNose used, recently developed, shows quite promising results
for gas discrimination in this unfavourable scenario and under
drift condition.

Further studies will enhance the processing pipeline by in-
cluding the use of other features extracted from the dynamics,
for instance. The acquisition of larger data sets, meaning ones
that features more VOCs, also over several months, are also
planned to make the gas discrimination task even harder.
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