
Combining Logic and Algebraic Techniques for
Program Verification in Theorema

Laura Kovács, Nikolaj Popov, Tudor Jebelean
Research Institute for Symbolic Computation,

Johannes Kepler University, Linz, Austria,
Institute e–Austria, Timişoara, Romania

Email: {kovacs,popov,jebelean}@risc.uni-linz.ac.at

Abstract— We study and implement concrete methods for the
verification of both imperative as well as functional programs
in the frame of the Theorema system. The distinctive features
of our approach consist in the automatic generation of loop
invariants (by using combinatorial and algebraic techniques),
and the generation of verification conditions as first–order logical
formulae which do not refer to a specific model of computation.

I. INTRODUCTION

Our research aims at obtaining useful theoretical insights
and achievement of concrete practical progress by studying
various methods for computer aided verification of both im-
perative and functional programs.

This work is performed in the frame of the Theorema
system – www.theorema.org, a mathematical computer
assistant which aims at supporting all phases of mathematical
activity: construction and exploration of mathematical theo-
ries, definition of algorithms for problem solving, as well as
experimentation and rigorous verification of them. Theorema
provides both functional as well as imperative programming
constructs. Moreover, the logical verification conditions which
are produced by the methods presented here can be passed to
the automatic provers of the system in order to be checked for
validity. The system includes a collection of general as well as
specific provers for various interesting domains (e. g. integers,
sets, reals, tuples, etc.).

Imperative Programs. Our approach is based on the Floyd-
Hoare-Dijkstra’s inductive assertion method [11], [15], [8]. We
focus in this paper on the automatic generation of the inductive
(equality) assertions for loops in imperative programs, by us-
ing algorithmic combinatorics and computer algebra. Starting
from the recurrence equations of the loop variables, we gen-
erate the closed forms by combinatorial techniques, and then
we find the invariant properties as polynomial equations, by
eliminating the loop index(es) using algebraic methods. These
invariants are further used for the generation of verification
conditions by the weakest precondition method.

It is well known that generation of loop invariants is in fact
the challenging part of the Floyd-Hoare-Dijkstra method. Early
attempts [9], [12], [18] treat cases where only few arithmetic
operations (mainly additions) among program variables are
involved. Significant advances have been achieved during the

last decade by using computer algebra: [32], [1], [6], [5], [17],
[26], [30], [28].

Some distinguishing features of our method are: the use
of advanced symbolic summation techniques for finding the
closed form of the loop variables (see below) and the use of
Gröbner Bases for identifying the essential set of the invariant
equality properties (by the Buchberger algorithm – see [2]).

Gröbner basis is also used in [26], [30], [28], but in this
approach one must fix apriori the degree of the seeked poly-
nomial. Our method does not need this, and in fact generates
all the essential polynomial invariants. We use, in addition to
algebraic computations, techniques from symbolic summation
(Gosper algorithm [14], generating functions [31], [29], C-
finite solving [10], algebraic dependencies [19]). Although the
method is applicable only when certain restrictions on the
loop syntax (see subsection II-C) are fulfilled, a large class
of programs of practical interest can be handled.

The main contribution of this paper (w. r. t. imperative
verification) is the identification and precise characterization
of a certain class of loops P–solvable loops, for which our
method will always find all existing polynomial invariants (that
is, the generator of the corresponding ideal). We demonstrate
the method on a concrete example involving loops with
conditionals, and further interesting examples are presented
in [22].

Functional Programs. Proving correctness of non-recursive
procedural programs is broadly discussed and well understood
in the literature, for instance by using Hoare Logic [15],
[4]. However, there are relatively few approaches to recursive
procedures (see e.g. [27] Chap. 2).

As usual, program correctness is transformed into a set of
first-order predicate logic formulae by a Verification Condition
Generator (VCG) – a device, which takes the program (its
source text) and the specification (precondition and post-
condition) and produces several verification conditions. As
a distinctive feature of our method, these formulae do not
refer to a theoretical model for program semantics or program
execution, but only to the theory of the domain used in the
program. This is very important for the automatic verification,
because any additional theory present in the system will
significantly increase the proving effort.

However, there is no “universal” VCG, due to the fact that
proving program correctness is undecidable in general. On

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI

67

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.46

67

Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation

978-0-7695-3071-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ISoLA.2006.46

67

the other hand, in practice, proving program’s correctness is
possible in many particular cases and, therefore, many VCG-s
have been developed for serving a big variety of situations.
Our research is contributing exactly in this direction.

Our method is designed for simple recursive programs (mul-
tiple choice if-then-else with at most one recursive call on each
branch) – which are the most used in practice. We furthermore
define a specific class of such programs, the coherent ones,
which have the property that each function call is applied to
arguments obeying the respective input specification. Note that
this is also a very natural constraint, and it already gives a set
of verification conditions. For such coherent programs we are
able to define a necessary and sufficient set of verification
conditions, thus our condition generator is not only sound,
but also complete. This distinctive feature of our method is
very useful in practice for program debugging – as we also
demonstrate by an example.

II. PROCEDURAL PROGRAMS

A. Theoretical Preliminaries

We start with a brief presentation of the necessary prop-
erties and techniques from polynomial algebra and algebraic
combinatorics (for additional details see [7], [10], [19]).

We denote by K a field with characteristic zero (like e.g.
Q, R, C), and by K̄ we denote the algebraic closure of K
(e.g. C is the algebraic closure of R).

Polynomial assertions. Ideals:
Definition 2.1: Polynomial Assertions.

A polynomial assertion over K is a formula

p1(x1, . . . , xn) = 0 ∧ . . . ∧ pm(x1, . . . , xn) = 0,

where pi(x1, . . . , xn), i = 1,m is a multi–variate poly-
nomial in the program variables x1, . . . xm, i.e. pi ∈
K[x1, . . . xm], i = 1,m.

Definition 2.2: Ideals.
Let R be a ring. A set A ⊆ R is called an ideal in R iff for
all a1, a2, a ∈ A, p ∈ R we have a1 + a2 ∈ A and pa ∈ A.
We write A E R to denote that A is an ideal in R.

For p1, . . . , pr ∈ R we denote by 〈p1, . . . , pr〉 the smallest
ideal containing p1, . . . , pr. If A = 〈p1, . . . , pr〉, we say that
A is generated by p1, . . . , pr and that p1, . . . , pr is a basis of
A.

C–finite sequences:
Definition 2.3: Linear and C-finite recurrences.

1) A linear recurrence in K is a recurrence of the form

f(n + r) = a0(n)f(n) + a1(n)f(n + 1) + . . .+
ar−1(n)f(n + r − 1) + a(n), (n ≥ 1)

The value r is called the order of the recurrence.
The recurrence is called homogeneous if a(n) = 0 and
inhomogeneous otherwise.

2) A homogeneous linear recurrence is called C–finite if
a1(n), . . . , ar−1(n) are constants, i.e. independent of n.

A crucial and elementary fact about C–finite sequences is
that they always admit a closed form solution (i.e. a solution

that is expressed, without recursion, as a function of the
recurrence index) [10].

Proposition 2.1: Closed Form of C–finite Sequences.
The closed form of a C–finite sequence f(n) is:

f(n) = p1(n)φn
1 + · · ·+ ps(n)φn

s , (1)

where φ1, . . . , φs ∈ K̄ are the roots of the characteristic
polynomial [10] of the C–finite sequence f(n).

(The proof of this proposition can be found in [10], [22].)
Remark 2.1: For solving C-finite recurrences in our invari-

ant generation algorithm, we use the SumCracker package
[19] implemented in Mathematica by the Combinatorics group
of RISC-Linz.

Algebraic Dependencies:
Definition 2.4: Algebraic Dependencies.

Let f1(n), . . . , fs(n) be sequences in K.
An algebraic dependency (or algebraic relation) [19] of these
sequences is a polynomial p such that

p(f1(n), . . . , f1(n + r1), , fs(n), . . . , fs(n + rs)) = 0, (2)

where r1, . . . , rs are the orders of f1(n), . . . , fs(n), respec-
tively.

A complete study of finding algebraic dependencies among
sequences θn

1 , . . . , θn
s (i.e. exponentials), with θ1, . . . , θs ∈ K̄,

can be found in [19]. In this paper, let us state only the
properties on which our algorithm relies on:

Remark 2.2: In the case when θ1, . . . , θs are algebraic
numbers, then, if they are related algebraically, one can deter-
mine automatically all their algebraic dependencies [19]. For
obtaining automatically the needed algebraic dependencies,
we use the Dependencies package [19] implemented in
Mathematica by the RISC combinatorics group.

Remark 2.3: In the case of our algorithm, at the current
stage, we restrict our work to rational exponential sequences,
i.e. θ1, . . . , θs ∈ Q̄. Thus, using Remark 2.2, we are able to
determine automatically the existing algebraic dependencies
among θ1, . . . , θs.

Definition 2.5: Annihilating Ideal.[19]
For any sequences f1(n), . . . , fm(n) over K, we call the
ideal of their algebraic dependencies the annihilating ideal
(or annihilator) of these sequences.

B. Imperative Program Verification

Programming Language: We have developed and integrated
in the Theorema system an environment for imperative pro-
gram verification. The user interface has four main (intuitive)
constructors[21], [16]:

1) Specification: Pre- and postcondition of the pro-
gram, written in first-order predicate logic;

2) Program: Programs are considered as procedures, with
input, transient and output values;

3) VCG: A predicate transformer, for generating verification
conditions in the language of first-order predicate logic;

4) Execute: Testing the program, with concrete input
values.

Our programming language supports: assignments, blocks,
conditionals, For and While loops, procedure calls.

686868

Verification Environment: The verification of programs con-
sists of two main parts, namely:
Generation of verification conditions: In order to verify im-
perative programs, we automatized the Floyd–Hoare–Dijkstra
method, namely the weakest precondition strategy [11], [8],
and it is implemented as VCG. In more detail, the VCG takes a
program and its specification, and working recursively bottom–
up on the program syntax, using a predicate transformer, the
program is “eliminated”, and a collection of purely logical,
universally quantified proof situations remain (in Theorema
syntax). These proof obligations are the so–called verification
conditions, that one has to prove in order to insure the cor-
rectness of the considered program. The automated generation
of loop invariants is performed in this phase;
Proving verifications conditions: The automatically obtained
verification conditions are fed into the available provers of the
Theorema system. In most cases the PCS prover of Theorema
is applied [3], that uses quantifier elimination, and produces
human–readable proofs of the verification conditions (i.e.
program correctness is proved), or failures in case the program
is not correct. The proving part of the verification process is
not in the scope of the current paper. However, it is worth to be
mentioned, that in many examples the generated verification
conditions were proven automatically, by calling PCS.

C. A Method for Polynomial Invariant Generation

An important task in imperative program verification is to
automatically infer loop invariants and termination terms (or
ranking functions).

In this paper we focus on automated loop invariant genera-
tion. Our method combines computer algebra and algorithmic
combinatorics with formal methods and computational logic,
in such a way that the end of the invariant generation process
valid polynomial assertions (if the imperative loop has such
assertions) are obtained. For doing so, we introduce the notion
of a P-solvable loop. The main result of this paper is the
theoretical and practical presentation of the fact that if an
imperative program contains P–solvable loops and if the loop
has polynomial invariant properties, our algorithm will find
(all of) them.

In this paper we extend an earlier conference paper [23]
by allowing C-finite assignment statement in the loop body.
Thus, the considered imperative loops contain conditional
statements, with the property that among the assignment
statements there are some C-finite assignments (and/or Gosper-
summable recurrences, geometric series). This work relies
also on results from [16], where treatment of loop with only
(Gosper-summable) assignment statements was considered.

P-Solvable Imperative Loops:
Definition 2.6: P-Solvable Imperative Loops.

An imperative loop is called P-solvable iff

• its assignment statements are either Gosper-summable
[14], [16], geometric series (i.e. special cases of C-finite)
or C-finite recurrences;

• its recursively changed variables x1, . . . , xm have their

closed forms of the following nature:
x1(n) = p1,1(n)θn

1,1 + · · ·+ p1,s1(n)θn
1,s1

x2(n) = p2,1(n)θn
2,1 + · · ·+ p2,s2(n)θn

2,s2
...
xm(n) = pm,1(n)θn

m,1 + · · ·+ pm,sm
(n)θn

m,sm

, (3)

where:

1) n is the loop counter;
2) xi(n) (1 ≤ i ≤ m) represents the value of xi at

iteration n;
3) p1,1, . . . , p1,s1 , , pm,1, . . . , pm,sm

∈ K̄[n];
4) θ1,1, . . . , θ1,s1 , , θm,1, . . . , θm,sm

∈ K̄;
5) there exist algebraic dependencies among

θn
1,1, . . . , θ

n
1,s1

, , θn
m,1, . . . , θ

n
m,sm

.
Theoretical Background of the Proposed Approach: In this

section we show the theoretical background of our algorithm
which, in the case when a P–solvable loops admits polynomial
invariants, finds all these polynomial assertions. We give only
a brief theoretical illustration of our algorithm, more details
can be found in [22].
Algorithm: Finding polynomial invariants of P-solvable
Loop
We consider a P-solvable loop, having x1, . . . , xm as its
recursively changed loop variables . The main steps of our
algorithm are as follows:

1) Solving recurrences:

a) Extract from the loop body the recurrence equa-
tions of x1, . . . , xm;

b) By recurrence solving (Gosper, geometric series or
C-finite), we obtain the system of closed forms of
x1, . . . , xm of the presented in eq. (3).
W.l.o.g. we can assume that, in the closed forms
of x1, . . . , xn: s1 = . . . = sm and θ1,1 = . . . =
θm,1, , θ1,s1 = . . . = θm,sm . (Otherwise,
we can add the missing θj,sj

to the respective
closed form as 0 · θj,sj

, and by renaming we have
in each closed form the same exponential terms.)
Thus the closed forms of the loop variables are:
x1(n) = p1,1(n)θn

1 + · · ·+ p1,s(n)θn
s

x2(n) = p2,1(n)θn
1 + · · ·+ p2,s(n)θn

s
...
xm(n) = pm,1(n)θn

1 + · · ·+ pm,s(n)θn
s

, (4)

c) Since there are algebraic dependencies among
θj (j = 1, s), according to def.(2.6) we have the
polynomial equations: tk(θ1, . . . , θs) = 0 (k > 1).
We introduce the notations: y0 = n, y1 =
θn
1 , . . . , ys = θn

s . Thus by rewriting (and reorder-
ing) eq.(4), we have:

x1(n) = q1(y0, y1, . . . , ys)
x2(n) = q2(y0, y1, . . . , ys)
...
xm(n) = qm(y0, y1, . . . , ys)

, (5)

696969

where qi ∈ K̄[y0, y1, . . . , ys].
2) Polynomial invariant generation.

Consider A to be the generator of the annihilating ideal
[7], [19] of y0, . . . , ys, i.e. A E K̄[y0, . . . , ys]. (In other
words, A is the ideal of tk(θ1, . . . , θs) (k > 1).)
Consider
I = 〈x1−q1(y0, . . . , ys), . . . , xm−qm(y0, . . . , ys)〉+A.
Thus I E K̄[x1, . . . , xm, y0, . . . , ys].
Consider J = I ∩ K̄[x1, . . . , xm]. Thus J E
K̄[x1, . . . , xm], hence J is the annihilating ideal of
x1, . . . , xm, i.e. it is the (generator of the) ideal of
all polynomial identities (i.e. algebraic dependencies)
among x1, . . . , xm.

Thus, if a P–solvable loop admits polynomial assertions, at
the end of our algorithm we obtain all polynomial identities
among the loop variables.

The Implementation of the Algorithm for Invariant Gener-
ation: We consider a slight generalization of the algorithm
presented above, namely an invariant generation algorithm of
P–solvable loops with conditionals.

For better understanding, we illustrate our algorithm on the
below example:

Example 2.1: Program for Computing Square Roots, by K. Zuse

Specification[“SqrtZuse”, SqrtZuse[↓ a, ↓ err, ↑ q],
Pre → (a ≥ 1) ∧ (err > 0),
Post → (q2 ≤ a) ∧ (a < q2 + err))]
Program[“SqrtZuse”, SqrtZuse[↓ a, ↓ err, ↑ q],
Module[{r, p}, r := a− 1; q := 1; p := 1/2;

(A) While[(2 ∗ p ∗ r ≥ err),
If[2 ∗ r − 2 ∗ q ∗ p ≥ 0
Then r := 2 ∗ r − 2 ∗ q − p; q := q + p; p := p/2,
Else r := 2 ∗ r; p := p/2]]]]

The invariant generation (based on the algorithm from the
previous section) is performed as follows:
Step 0: Transformation of loops with conditionals, i.e. outer
loops, into nested loops with assignments only, i.e. inner
loops (see Remark. 2.4).

Remark 2.4: Transformation Rule

{I}
While[b,
While[b ∧ b1′, c1; c2; c4];
While[b ∧ ¬b1′, c1; c3; c4]]
{I ∧ ¬b}

{I} While[b, c1;If[b1 Then c2 Else c3]; c4] {I ∧ ¬b}
,

where:
• all loops have the same invariant I;
• b1′ represents condition b1 the modified by the assign-

ment statement c1.
Performing this transformation on example (2.1), we obtain
the following system of nested while loops (each inner while
loop has only assignments):

(A) While[(2 ∗ p ∗ r ≥ err),
(B) While[(2 ∗ p ∗ r ≥ err) ∧ (2 ∗ r − 2 ∗ q ∗ p ≥ 0),

r := 2 ∗ r − 2 ∗ q − p; q := q + p; p := p/2];
(C) While[(2 ∗ p ∗ r ≥ err) ∧ ¬(2 ∗ r − 2 ∗ q ∗ p ≥ 0)

r := 2 ∗ r; p := p/2]]

Step 1: Solving recurrences for the inner loops (containing
assignments only):

Step 1.(a): Extracting system of recurrences for each
inner loop.

After statement simplification, we obtain the following
recurrence systems for the while loops (B), (C):

While loop (B): While loop (C):
i = 0, I j = 0,J, j′ = j + I pi+1 = pi/2

qi+1 = qi + pi

ri+1 = 2 ∗ ri − 2 ∗ qi − pi

 pj′+1 = pj′/2
qj′+1 = qj′

rj′+1 = 2 ∗ rj′

where I,J represent the unknown bounds of the iteration
number of each loop counter i, j, respectively.

Step 1.(b): Solving system of recurrences for each inner
loop (by Gosper algorithm, handling geometric series or
C-finite solving using eq.(1).)

While loop (B):

i = 0, I
pi =

geom.series
1
2i ∗ p0

qi =
Gosper

q0 + 2 ∗ p0 − 1
2i−1 ∗ p0

ri =
C−finite

2i ∗ (r0 − 2 ∗ q0 − 2 ∗ p0)−
1

2i−1 ∗ p0 + 2 ∗ q0 + 4 ∗ p0

While loop (C):

j = 0,J, j′ = j + I
pj′ =

geom.series
1
2j ∗ pI

qj′ = qI
rj′ =

geom.series
2j ∗ rI

For solving C-finite recurrences we use the SumCracker
package [19] (see Remark 2.1).

Step 1.(c): Introduction of extra variables with their
algebraic dependencies.

While loop (B): We denote xi = 2−i, yi = 2−i. Thus,
by Remark 2.3, and using the Dependencies package (see
Remark 2.2), we can determine all algebraic dependencies
among xi, yi, if they are related. In this case, we obtain the
algebraic dependency: xi ∗ yi − 1 = 0.

While loop (C): Working in the same manner, we introduce
the extra variables uj′ = 2j , vj′ = 2−j , and their algebraic
dependency uj′ ∗ vj′ − 1 = 0.
Thus, the final system of closed forms, describing the behavior

707070

of loop-variables in the while loops (B) and (C) is:

While loop (B):
i = 0, I

pi = p0 ∗ yi

qi = q0 + 2 ∗ p0 − 2 ∗ p0 ∗ yi

ri = xi ∗ (r0 − 2 ∗ q0 − 2 ∗ p0)−
2 ∗ p0 ∗ yi + 2 ∗ q0 + 4 ∗ p0

xi ∗ yi − 1 = 0

While loop (C):
j = 0,J, j′ = j + I

pj′ = pI ∗ vj′

qj′ = qI
rj′ = rI ∗ uj′

uj′ ∗ vj′ − 1 = 0

(6)

Since the systems from eq.(6), i.e. of while loops (B) and
(C), satisfy the definition of a P-solvable loop, we are able
to determine polynomial invariants for the while loop (A), if
they exist.

Step 1.(d): Merging connected systems of recurrences
(inner loops contained in outer loop).

While loop (A): By substituting the values of variables of
the while loop (B) into the expressions of variables of the
while loop (C) (from eq.(6)), we obtain the system (using
initial values and xj′ = xI, yj′ = yI, as well as ignoring
the index J by the convention that the variables indexed by
J denote the final values after an iteration of the while loop
(A)): 

p = 1
2 ∗ y ∗ v

q = 2− y
r = ((a− 4) ∗ x− y + 4) ∗ u
x ∗ y − 1 = 0
u ∗ v − 1 = 0

(7)

Step 2: Polynomial Invariant Generation.
By eliminating the loop-bound variables I, J and the extra
variables u, v, x, y from eq.(7), and performing Gröbner ba-
sis computation in order to get the essential set of polynomial
invariants, the automatically obtained polynomial invariant for
the while loop (A) is:

a− 2 ∗ p ∗ r = q2.

Step 3: The final invariant property for the outer loops.
In addition to the automatically generated invariant properties,
there are some other invariant properties that cannot be yet
obtained automatically by our algorithm (e.g. inequalities,
modulo expressions, etc.). In the current version of our ver-
ification framework for imperative programs these properties
are still considered to be given by the user.

Thus, in the case of example 2.1, the user–asserted invariant
properties are:

(err ≥ 0) ∧ (p ≥ 0) ∧ (r ≥ 0).

Hence, the final invariant property used for the verification of
example 2.1 is:

(a− 2 ∗ p ∗ r = q2) ∧ (err ≥ 0) ∧ (p ≥ 0) ∧ (r ≥ 0).

Using this invariant the VCG produces a universally quantified
lemma with 3 proof obligations in order to prove partial
correctness of the program. The proofs of these verification
conditions were done by applying the PCS prover of the
Theorema system [3].

D. Discussion

We have tested our algorithm on several examples of
programs that needed polynomial invariants in order to be
verified [22]. In all cases, our algorithm succeeded with the
generation of polynomial invariants.

Note that the generated invariant equalities do not depend
on the pre- and/or postconditions of the program. However,
currently we investigate the possibility for invariant inequal-
ity generation by using quantifier elimination together with
manipulation of pre- and postconditions. Moreover, current
research suggests that such invariants are very useful for
performing loop optimization [13] and constant propagation
[25].

III. FUNCTIONAL PROGRAMS

We consider the correctness problem expressed as follows:
given the program which computes the function F in a domain
D and given its specification by a precondition on the input
IF [x] and a postcondition on the input and the output OF [x, y],
generate the verification conditions V C1, ... V Cn which are
sufficient for the program to satisfy the specification. The
function F satisfies the specification, if: F terminates on any
input x satisfying IF , and, for each such input, the condition
OF [x, F [x]] holds. This is also called “total correctness” of
the program.

(∀x : IF [x]) OF [x, F [x]], (8)

Any VCG should come together with its Soundness state-
ment, that is: for a given program F , defined on a domain D,
with a specification IF and OF if the verification conditions
V C1, ... V Cn hold in the theory of D, then the program F
satisfies its specification IF and OF .

Moreover, we are also interested in the following question:
What if some of the verification conditions do not hold?
May we conclude that the program is not correct? In fact,
the program may still be correct. However, if the VCG is
complete, then one can be sure that the program is not correct.
A VCG is complete, if whenever the program satisfies its
specification, the produced verification conditions hold.

The notion of Completeness of a VCG is important for the
following two reasons: theoretically, it is the dual of Soundness
and practically, it helps debugging. Any counterexample for
the failing verification condition would carry over to a coun-
terexample for the program and the specification, and thus give
a hint on ”what is wrong”. Indeed, most books about program
verification present methods for verifying correct programs.

717171

However, in practical situations, it is the failure which occurs
more often until the program and the specification are com-
pletely debugged.

A. Coherent Programs

In this subsection we state the principles we use for writ-
ing coherent programs with the aim of building up a non-
contradictory system of verified programs. Although, these
principals are not our invention (similar ideas appear in [20]),
we state them here because we want to emphasize on and later
formalize them.

Building up correct programs: Firstly, we want to ensure
that our system of coherent programs would contain only
correct (verified) programs. This we achieve, by:

– start from basic (trustful) functions e.g. addition, multi-
plication, etc.;

– define each new function in terms of already known
(defined previously) functions by giving its source text, the
specification (input and output predicates) and prove their total
correctness with respect to the specification.

This simple inductively defined principle would guarantee
that no wrong program may enter our system. The next we
want to ensure is the easy exchange (mobility) of our program
implementations. This principle is usually referred as:

Modularity: Once we define the new function and prove
its correctness, we ”forbid” using any knowledge concerning
the concrete function definition. The only knowledge we may
use is the specification. This gives the possibility of easy
replacement of existing functions. For example we have a
powering function P , with the following program definition
(implementation):

P [x, n] = If n = 0 then 1 else P [x, n− 1] ∗ x

The specification of P is:
The domain D = R2, precondition IP [x, n] ⇐⇒ n ∈ N and
a postcondition OP [x, n, P [x, n]] ⇐⇒ P [x, n] = xn.

Additionally, we have proven the correctness of P . Later,
after using the powering function P for defining other func-
tions, we decide to replace its definition (implementation) by
another one, however, keeping the same specification. In this
situation, the only thing we should do (besides preserving the
name) is to prove that the new definition (implementation) of
P meets the old specification.

Furthermore, we need to ensure that when defying a new
program, all the calls made to the existing (already defined)
programs obey the input restrictions of that programs – we
call this:

Appropriate values for the auxiliary functions. The follow-
ing example will give an intuition on what we are doing. Let
the program for computing F be:

F [x] = If Q[x] then H[x] else G[x],

with the specification of F (IF and OF) and specifications
of the auxiliary functions H (IH and OH), G (IG and OG).

The two verification conditions, ensuring that the calls to the
auxiliary functions have appropriate values are:

(∀x : IF [x]) (Q[x] =⇒ IH [x])
(∀x : IF [x]) (¬Q[x] =⇒ IG[x]).

B. Simple Recursive Programs

As we already mentioned, there is no universal VCG. Thus,
in our research, we concentrate on constructing a VCG which
is appropriate only for a certain kind of recursive programs –
Simple Recursive Programs. They are the most used in practice
and at the same time the most elementary (from mathematical
point of view) ones. Simple recursive programs are those F ,
which may be defined as:

F [x] = If Q[x] then S[x] else C[x, F [R[x]]], (9)

where Q is a predicate1 and S, C, R are auxiliary functions
(S[x] is a “simple” function, C[x, y] is a “combinator” func-
tion, and R[x] is a “reduction” function). We assume that
the functions S, C, and R satisfy their specifications given
by IS [x], OS [x, y], IC [x, y], OC [x, y, z], IR[x], OR[x, y].
Note that functions with multiple arguments also fall into
this scheme, because the arguments x, y, z could be vectors
(tuples).

Type (or domain) information does not appear explicitly
in this formulation, however it may be included in the input
conditions.

Note that the “programming language” used here contains
only the construct If–then–else in addition to the language of
first order predicate logic.

One may also use some additional restrictions on the
shape of the definitions of Q, S, C, and R (e. g. that they
do not contain quantifiers) in order to make the program
“easy” to execute. However, this depends on the complexity
of the “interpreter” (“compiler”) and does not influence the
actual generation of the verification conditions. In general, the
auxiliary functions may be already defined in the underlying
theory, or by other programs (that includes logical terms).

Considering Coherent Simple Recursive programs, we give
here the appropriate definition:

Definition 3.1: Let S, C, and R be functions which satisfy
their specifications. Then the program (9) is coherent if the
following conditions hold:

(∀x : IF [x]) (Q[x] =⇒ IS [x]) (10)

(∀x : IF [x]) (¬Q[x] =⇒ IF [R[x]]) (11)

(∀x : IF [x]) (¬Q[x] =⇒ IR[x]) (12)
(∀x : IF [x])

(¬Q[x] ∧OF [R[x], F [R[x]]] =⇒ IC [x, F [R[x]]]). (13)

Theorem 3.1: Let S, C, and R be functions which satisfy
their specifications. Let also the program (9) be coherent.

1In practice Q may also be implemented by a program, and it may also have
an input condition, but we do not want to complicate the present discussion
by including this aspect, which has a special flavor.

727272

Then, (9) satisfies the specification given by IF and OF if
and only if the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (14)
(∀x : IF [x])

(¬Q[x] ∧OF [R[x], F [R[x]]] =⇒ OF [x, C[x, F [R[x]]]])
(15)

(∀x : IF [x]) (F ′[x] = 0) (16)

where:

F ′[x] = If Q[x] then 0 else F ′[R[x]] (17)
Before going to the detailed proof, we note that this theorem,
in fact, gives two statements, namely:

– Soundness: If (14), (15) and (16) hold, then the program
(9) is correct, and

– Completeness: If (9) is correct, then (14), (15) and (16)
hold.

The proof of the Soundness statement is split into two parts:
– prove partial correctness of (9) using Scott induction in

the fixpoint theory of programs [24];
– prove termination using induction on the number of

recursive calls.
Formally, the Soundness statement of the theorem is an

immediate consequence of a similar theorem stated in [16],
where the necessary conditions for the program correctness
are (14), (15), (16), (10), (11), (12) and (13). Proof:
(Completeness) Assume (9) is correct. We start now with
proving (14) and (15) simultaneously. Take arbitrary but fixed
x and assume IF [x]. We consider firstly the case Q[x], then
by the definition of F , we have F [x] = S[x], and by using
the correctness formula (8) of F , we conclude (14) holds. The
validity of (15) is trivial, because we have Q[x].

In the second case, we assume ¬Q[x]. Now, the valid-
ity of (14) is trivial. For proving (15), it suffices to show
OF [x,C[x, F [R[x]]]]. By the definition of F , we obtain
F [x] = C[x, F [R[x]]]. Since, F is assumed to be correct,
that is, its correctness formula hold, by having IF [x], we
obtain OF [x, F [x]], and hence OF [x,C[x, F [R[x]]]], which
completes the proof of (15).

Now, we show that the simplified version F ′ of the initial
function F terminates. Moreover, F ′ terminates if F termi-
nates. In the course of the proof, one may notice that proving
F ′[x] = 0 is the same as proving that F ′ terminates. The
precise proof goes as follows: Take arbitrary but fixed x and
assume IF [x]. Since F [x] terminates, we denote F (x) = a, for
some constant a. We first show that there must exist a number
n such that after n steps of recursive calls, the predicate Q
will be satisfied, that is

F (x) = a =⇒ (∃n ∈ N)(Q[Rn[x]]), (18)

where R0[x] = x and Rn+1[x] = R[Rn[x]]. We prove this
statement by contradiction, i.e. assume:

F (x) = a ∧ (∀n ∈ N)(¬Q[Rn[x]]).

Henceforth, by ↓ we denote the predicate expressing termina-
tion (we want to prove F ′[x] ↓) and by Ω the nowhere defined
function and by ⊥ the nonterminating term – ∀xΩ[x] = ⊥.

Let f0, f1, ...fm... be the finite approximations of F ob-
tained as

f0[x] = Ω[x]
fm+1[x] = If Q[x] then S[x] else C[x, fm[R[x]]],

then the function computed by (9) is defined as

F ′ =
⋃
m

fm

which is the least fixpoint of (9).
Since we have F (x) = a, there must exist a finite approx-

imation fm, such that fm[x] = a. If m = 0 then f0[x] = a
which contradicts the definition of f0 = Ω, hence m > 0.

From (∀n ∈ N)(¬Q[Rn[x]]) and in particular ¬Q[x] by the
definition of fm we obtain fm[x] = C[x, fm−1[R[x]]], thus
fm−1[R[x]] ↓.

By repeating the same kind of reasoning m times, we
obtain that fm−m[Rm[x]] = f0[Rm[x]] and by its definition
f0[Rm[x]] = ⊥ which contradicts fm[x] = a, and so, we have
proven (18).

The proof of the termination of F ′ (F ′[x] = 0) will be
completed by proving the following statement:

(∃n ∈ N)(Q[Rn[x]] ⇒ F ′[x] ↓). (19)

Assume Q[Rn[x] for some n and, without loss of generality,
assume (∀k < n)(¬Q[Rk[x]]).

– Case 1: n = 0. By the definition of F ′, F ′[x] = 0 and
thus F ′[x] ↓.

– Case 2: n > 0. By unfolding the definition of F ′, we
obtain F ′[x] = F ′[R[x]] = F ′[R2[x]]..., and finally, we obtain
F ′[x] = F ′[Rn[x]]. From here, by the definition of F ′ and
Q[Rn[x] we obtain F ′[x] = 0. This completes the proof.
In fact, the method presented here works analogously on the
more general class of programs containing Case (If–then–else
with several cases), as illustrated in the example below.

C. Example and Discussion

We consider binary powering:

P [x, n] = If n = 0 then 0
elseif Even[n] then P [x ∗ x, n/2]
else x ∗ P [x ∗ x, (n− 1)/2].

We consider this program in the context of the theory of
real numbers, and in the following formulae, all variables are
implicitly assumed to be real. Additional type information (e.
g. n ∈ N) may be explicitly included in some formulae.

The specification is:

(∀x, n : n ∈ N) P [x, n] = xn. (20)

The (automatically generated) conditions for coherence are:

(∀x, n : n ∈ N) (n = 0 ⇒ T) (21)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ Even[n]) (22)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ Odd[n]) (23)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧m = (x ∗ x)n/2 ⇒ T) (24)
(∀x, n, m : n ∈ N)

(n 6= 0 ∧ ¬Even[n] ∧m = (x ∗ x)(n−1)/2 ⇒ T)
(25)

737373

One sees that the formulae (21), (24) and (25) are trivially
valid. The formulae (22) and (23) are easy consequences of
the elementary theory of reals and naturals.

For the further check of correctness the generated condi-
tions are:

(∀x, n : n ∈ N) (n = 0 ⇒ 0 = xn) (26)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ n/2 ∈ N) (27)
(∀x, n, m : n ∈ N)
(n 6= 0 ∧ Even[n] ∧m = (x ∗ x)n/2 ⇒ m = xn)

(28)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ (n− 1)/2 ∈ N) (29)
(∀x, n, m : n ∈ N)
(n 6= 0 ∧ ¬Even[n] ∧m = (x ∗ x)(n−1)/2 ⇒ x ∗m = xn)

(30)

(∀x, n : n ∈ N) P ′[x, n] = 0, (31)

where

P ′[x, n] = If n = 0 then 0

elseif Even[n] then P ′[x ∗ x, n/2]

else P ′[x ∗ x, (n− 1)/2].

The proofs of these verification conditions are straightforward,
however (26) reduces to:

0 = 1

(because we consider a theory where 00 = 1).
Therefore, according to the completeness of the method, we

conclude that the program P does not satisfy its specification.
Moreover, the failed proof gives a hint for “debuging”: we
need to change the return value in the case n = 0 to 1.

The new program will have the same verification conditions,
except that (26) is changed to

(∀x, n : n ∈ N) (n = 0 ⇒ 1 = xn),

which is now provable.

IV. CONCLUSIONS

The theoretical basis and the concrete implementation of
our automatic system for program verification is a result of an
experimental and practical approach to the problem of program
correctness, both procedural and functional ones. Although
the examples presented here appear to be relatively simple,
they already demonstrate the usefulness of our approach in
the general case. We aim at extending these experiments to
industrial-scale examples, which are in fact not more complex
from the mathematical point of view. Furthermore we aim
at improving the education of future software engineers by
exposing them to successful examples of using formal methods
(and in particular automated reasoning) for the verification and
the debugging of concrete programs.

REFERENCES

[1] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful Techniques for the
Automatic Generation of Invariants. In Proc. of SAS 1996, volume 1102
of LNCS, pages 323–335, 1996.

[2] B. Buchberger. Introduction to Gröbner Bases, volume 251 of London
Mathematical Society Lecture Notes: ”Gröbner Bases and Applica-
tions”, pages 3–31. Cambridge University Press, 1998.

[3] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Naka-
gawa, F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger.
Theorema: Towards Computer-Aided Mathematical Theory Exploration.
Journal of Applied Logic, 4(4):470–504, 2006.

[4] B. Buchberger and F. Lichtenberger. Mathematics for Computer Science
I - The Method of Mathematics (in German). Springer, 2nd edition, 1981.

[5] M. A. Colon, S. Sankaranarayanan, and H. B. Sipma. Linear Invariant
Generation Using Non-Linear Constraint Solving. In Proc. of CAV 2003,
volume 2725 of LNCS, pages 420–432, 2003.

[6] P. Cousot. Proving Program Invariance and Termination by Parametric
Abstraction, Lagrangian Relaxation and Semidefinite Programming. In
Proc. of VMCAI’05, pages 1–24, 2005.

[7] D. Cox, J. Little, and D. O’Shea. Ideal, Varieties, and Algorithms. An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer, 2nd edition, 1998.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[9] B. Elspas, M. W. Green, K. N. Lewitt, and R. J. Waldinger. Research

in interactive program—proving techniques. Technical report, Stanford
Research Institute, May 1972.

[10] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence
Sequences, volume 104 of Mathematical Surveys and Monographs.
American Mathematical Society, 2003.

[11] R. W. Floyd. Assigning Meanings to Programs. In Proc. Symphosia in
Applied Mathematics 19, pages 19–37, 1967.

[12] S. M. German and B. Wegbreit. A Synthesizer of Inductive Assertions.
IEEE Transactions on Software Engineering, 1(1):68–75, March 1975.

[13] B. Goldberg, L. Zuck, and C. Barrett. Into the Loops. In Proc. of COCV
2004, 2004.

[14] R. W. Gosper. Decision Procedures for Indefinite Hypergeometric
Summation. Journal of Symbolic Computation, 75:40–42, 1978.

[15] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Comm. ACM, 12, 1969.

[16] T. Jebelean, L. Kovács, and N. Popov. Experimental Program Veri-
fication in the Theorema System. Int. Journal on Software Tools for
Technology Transfer (STTT), 2006. To appear.

[17] D. Kapur. Automatically Genearting Loop Invariants using Quantifier
Elimination. In Proc. of ACA, 2004.

[18] M. Karr. Affine Relationships Amomg Variables of Programs. Acta
Informatica, 6:133–151, 1976.

[19] M. Kauers. Algorithms for Nonlinear Higher Order Difference Equa-
tions. PhD thesis, RISC-Linz, Johannes Kepler University Linz, Austria,
2005.

[20] M. Kaufmann and J. S. Moore. An Industrial Strength Theorem Prover
for a Logic Based on Common Lisp. Software Engineering, 23(4):203–
213, 1997.

[21] M. Kirchner. Program Verification with the Mathematical Software
System Theorema. Technical Report 99-16, RISC-Linz, Austria, 1999.

[22] L. Kovacs. Finding Polynomial Invariants for Imperative Loops in the
Theorema System. Technical Report 06-03, RISC-Linz, Austria, 2006.

[23] L. Kovacs and T. Jebelean. An Algorithm for Automated Generation of
Invariants for Loops with Conditionals. IEEE Computer Society, pages
245–249, 2005. Proc. of SYNASC’05.

[24] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Inc.,
1974.

[25] M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally Analyzing
Polynomial Identities. In Proc. of STACS 2006, 2006.

[26] M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In
Proc. of SAS 2002, volume 2477 of LNCS, 2002. pp. 4-19.

[27] M. C. Paull. Algorithm Design. A Recursion Transformation Framework.
Wiley, 1987.

[28] E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Poly-
nomial Loop Invariants: Algebraic Foundations. In Proc. of ISSAC 04,
2004.

[29] B. Salvy and P. Zimmermann. Gfun: A Package for the Manipulation
of Generating and Holonomic Functions in One Variable. ACM Trans.
Math. Software, 20:163–177, 1994.

[30] S. Sankaranaryanan, B. S. Henry, and Z. Manna. Non-Linear Loop
Invariant Generation using Gröbner Bases. In Proc. of POPL 2004,
Venice, Italy, 2004.

[31] R. P. Stanley. Differentiably Finite Power Series. European Journal of
Combinatorics, 1:175–188, 1980.

[32] A. Tiwari, H. Ruess, H. Saidi, and N. Shankar. A Technique for Invariant
Generation. In Proc. of TACAS, volume 2031 of LNCS, pages 113–127,
2001.

747474

